1
|
Gao Y, Yuan C, Cheng S, Sun J, Ouyang S, Xue W, Zhang W, Zhou L, Wang J, Sun S. Potential risks and hazards posed by the pressure of pharmaceuticals and personal care products on water treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 378:126344. [PMID: 40320128 DOI: 10.1016/j.envpol.2025.126344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/26/2025]
Abstract
Pharmaceuticals and personal care products (PPCPs) are widely used in various industrial and commercial products, contributing to their substantial presence in the environment. In recent years, numerous studies have focused on the environmental behavior, toxicity, and removal approaches of PPCPs. Nevertheless, few studies systematically summarized the current understanding of these issues and provided suggestions and comments for future research directions. In this review, the classification and detection of PPCPs that are useful for their source, distribution, and occurrence are discussed. Moreover, this review highlights the environmental behavior, biological toxicity, and potential risk of PPCPs after entering the environment. Furthermore, we summarized the removal methods and efficiency of PPCPs and evaluated the inadequacies of current sewage treatment facilities in addressing emerging pollutants. Given the widespread application and complex component of PPCPs, they can potentially threaten water resource safety and human health risks, future research should focus on the following: (1) establishing advanced artificial intelligence statistical analysis and the detection and quantification technologies of PPCPs to more precisely predict their behavior and fate in the environment; (2) evaluating the long-term biological toxicity and human risk effect of PPCPs in terrestrial and aqueous system; and (3) developing new sewage treatment facilities and technologies to remove PPCPs from multiple environmental media.
Collapse
Affiliation(s)
- Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Chenhui Yuan
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Shenghua Cheng
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Jing Sun
- Center of Eco-environmental Monitoring and Scientific Research, Administration of Ecology and Environment of Haihe River Basin and Beihai Sea Area, Ministry of Ecology and Environment of People's Republic of China, Tianjin, 300170, China.
| | - Shaohu Ouyang
- MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 73000, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| |
Collapse
|
2
|
Olivas-Martínez A, Ventura-Wischner PS, Fernandez MF, Freire C. Influence of exposure to endocrine disruptors and other environmental chemicals on breast development in girls: A systematic review of human studies. Int J Hyg Environ Health 2025; 263:114487. [PMID: 39566420 DOI: 10.1016/j.ijheh.2024.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Age at thelarche has decreased over recent decades. This change in female puberty timing may be influenced by exposure to endocrine disrupting chemicals (EDCs) during critical periods of development. OBJECTIVE To review the scientific literature for evidence on the association of exposure to EDCs and other environmental chemicals with the timing of thelarche in girls. METHODS A systematic search for original peer-reviewed articles published up to July 2023 was conducted in three databases (Medline/PubMed, Scopus, and Web of Science), following the PECO strategy and PRISMA guidelines. The quality of evidence and reporting and the risk of bias were evaluated using GRADE, STROBE, and ROBINS-E tools. RESULTS Out of 3094 articles retrieved in the search, 67 met the review inclusion criteria. Data from 10 out of the 14 studies offering high-quality suggest that in utero and/or childhood exposure to certain synthetic and natural chemicals is associated with earlier breast development in girls; 8 of these 10 studies described a relationship with exposure to organohalogenated compounds in utero and to phthalates in childhood. CONCLUSIONS This systematic review provides the first overview of available human data on the association of EDCs/environmental chemicals with the timing of thelarche. Further high-quality research is urgently needed to fully elucidate the influence of this exposure on breast development timing in girls.
Collapse
Affiliation(s)
- Alicia Olivas-Martínez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012, Granada, Spain; Centre for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Paula Sol Ventura-Wischner
- Institut D'Investigació en Ciències de La Salut Germans Trias I Pujol, 08916, Badalona, Barcelona, Spain; Servicio de Pediatria, Hospital Universitari Arnau de Vilanova, 25198, Lleida, Spain
| | - Mariana F Fernandez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012, Granada, Spain; Centre for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012, Granada, Spain; Centre for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
3
|
Soomro MH, England-Mason G, Reardon AJF, Liu J, MacDonald AM, Kinniburgh DW, Martin JW, Dewey D. Maternal exposure to bisphenols, phthalates, perfluoroalkyl acids, and trace elements and their associations with gestational diabetes mellitus in the APrON cohort. Reprod Toxicol 2024; 127:108612. [PMID: 38782143 DOI: 10.1016/j.reprotox.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The increasing global prevalence of gestational diabetes mellitus (GDM) has been hypothesized to be associated with maternal exposure to environmental chemicals. Here, among 420 women participating in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort study, we examined associations between GDM and second trimester blood or urine concentrations of endocrine disrupting chemicals (EDCs): bisphenol-A (BPA), bisphenol-S (BPS), twelve phthalate metabolites, eight perfluoroalkyl acids (PFAAs), and eleven trace elements. Fifteen (3.57%) of the women were diagnosed with GDM, and associations between the environmental chemical exposures and GDM diagnosis were examined using multiple logistic and LASSO regression analyses in single- and multi-chemical exposure models, respectively. In single chemical exposure models, BPA and mercury were associated with increased odds of GDM, while a significant inverse association was observed for zinc. Double-LASSO regression analysis selected mercury (AOR: 1.51, CI: 1.12-2.02), zinc (AOR: 0.017, CI: 0.0005-0.56), and perfluoroundecanoic acid (PFUnA), a PFAAs, (AOR: 0.43, CI: 0.19-0.94) as the best predictors of GDM. The combined data for this Canadian cohort suggest that second trimester blood mercury was a robust predictor of GDM diagnosis, whereas blood zinc and PFUnA were protective factors. Research into mechanisms that underlie the associations between mercury, zinc, PFUnA, and the development of GDM is needed.
Collapse
Affiliation(s)
- Munawar Hussain Soomro
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anthony J F Reardon
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Analytical Chemistry and Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Freire C, Castiello F, Babarro I, Anguita-Ruiz A, Casas M, Vrijheid M, Sarzo B, Beneito A, Kadawathagedara M, Philippat C, Thomsen C, Sakhi AK, Lopez-Espinosa MJ. Association of prenatal exposure to phthalates and synthetic phenols with pubertal development in three European cohorts. Int J Hyg Environ Health 2024; 261:114418. [PMID: 38968838 DOI: 10.1016/j.ijheh.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND There is limited epidemiological evidence on the association of prenatal exposure to phthalates and synthetic phenols with altered pubertal timing. OBJECTIVE To examine the association of prenatal exposure to phthalates, bisphenol A (BPA), parabens, benzophenone 3 (BP-3), and triclosan (TCS) with pubertal development in girls and boys from three European cohorts. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP), BPA, methyl- (MePB), ethyl- (EtPB), propyl- (PrPB), and butyl-paraben (BuPB), BP-3, and TCS were quantified in one or two (1st and 3rd trimester) urine samples collected during pregnancy (1999-2008) from mothers in three birth cohorts: INMA (Spain), EDEN (France), and MoBa (Norway). Pubertal development of their children was assessed at a single visit at age 7-12 years (579 girls, 644 boys) using the parent-reported Pubertal Development Scale (PDS). Mixed-effect Poisson and g-computation and Bayesian Kernel Machine Regression (BKMR) were employed to examine associations of individual and combined prenatal chemical exposure, respectively, with the probability of overall pubertal onset, adrenarche, and gonadarche (stage 2+) in girls and boys. Effect modification by child body mass index (BMI) was also assessed. RESULTS Maternal concentrations of the molar sum of DEHP and of DiNP metabolites were associated with a slightly higher probability of having started puberty in boys (relative risk, RR [95% CI] = 1.13 [0.98-1.30] and 1.20 [1.06-1.34], respectively, for a two-fold increase in concentrations), with a stronger association for DiNP in boys with overweight or obesity. In contrast, BPA, BuPB, EtPB, and PrPB were associated with a lower probability of pubertal onset, adrenarche, and/or gonadarche in all boys (e.g. overall puberty, BPA: RR [95% CI] = 0.93 [0.85-1.01] and BuPB: 0.95 [0.90-1.00], respectively), and the association with BPA was stronger in boys with underweight/normal weight. In girls, MEHP and BPA were associated with delayed gonadarche in those with underweight/normal weight (RR [95% CI] = 0.86 [0.77-0.95] and 0.90 [0.84-0.97], respectively). Most of these associations were trimester specific. However, the chemical mixture was not associated with any pubertal outcome in boys or girls. CONCLUSIONS Prenatal exposure to certain phthalates and synthetic phenols such as BPA may impact the pubertal development of boys, and weight status may modify this effect. BPA may also alter the pubertal development of girls.
Collapse
Affiliation(s)
- Carmen Freire
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Francesca Castiello
- Pediatric Unit, Germans Trias I Pujol University Hospital, 08916, Badalona, Spain
| | - Izaro Babarro
- Faculty of Medicine and Nursing, University of the Basque Country (UPV/EU), 20014, Donostia/San Sebastián, Spain; Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastián, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, 08036, Barcelona, Spain; CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maribel Casas
- ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Martine Vrijheid
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Blanca Sarzo
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, 75004, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Maria-Jose Lopez-Espinosa
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| |
Collapse
|
5
|
Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E. Exposure to UV-B filter octylmethoxycinnamate and human health effects: Focus on endocrine disruptor actions. CHEMOSPHERE 2024; 358:142218. [PMID: 38704047 DOI: 10.1016/j.chemosphere.2024.142218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Human skin is the first line of photoprotection against UV radiation. However, despite having its defence mechanisms, the photoprotection that the skin exerts is not enough. To protect human skin, the inclusion of UV filters in the cosmetic industry has grown significantly as a photoprotection strategy. Octylmethoxycinnamate, also designated by octinoxate, or 2-ethylhexyl-4-methoxycinnamate (CAS number: 5466-77-3) is one of the most widely used UV-B filter in the cosmetic industry. The toxic effects of OMC have alarmed the public, but there is still no consensus in the scientific community about its use. This article aims to provide an overview of the UV filters' photoprotection, emphasizing the OMC and the possible negative effects it may have on the public health. Moreover, the current legislation will be addressed. In summary, the recommendations should be rethought to assess their risk-benefit, since the existing literature warns us to endocrine-disrupting effects of OMC. Further studies should be focus on the toxicity of OMC alone, in mixture and should consider its degradation products, to improve the knowledge of its risk assessment as EDC.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
6
|
Sun X, Wei D, Wang F, Yang F, Du Y, Xiao H, Wei X, Xiao A. Formation of nitrogen-containing disinfection by-products during the chloramination treatment of an emerging pollutant. CHEMOSPHERE 2024; 353:141536. [PMID: 38423150 DOI: 10.1016/j.chemosphere.2024.141536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Chloramination was commonly used as disinfectant for killing pathogens in water. However, in this process, nitrogen-containing disinfection by-products (N-DBPs) would accidently form and subsequently rise toxicity. Here, we investigated acute toxicity variation and by-products formation during chloramination treatment on UV filter 2-hydroxy-4-methoxy-5-sulfonic acid benzophenone (BP-4). Under alkaline conditions, the acute toxicity of this system had significant increase. A total of 17 transformation products were tentatively identified, and for them, plausible transformation pathways were proposed. Noticeably, numerous aniline and nitrosobenzene analogs were detected, and the dramatic increase of acute toxicity in this system might be primarily attributed to the formation of benzoquinone and aniline analogs. Besides, bromophenol, iodophenol and iodobenzoquinone analogs exhibiting high toxicity were generated in the presence of bromine and iodide ions. This study indicates that chloramination treatment may significantly increase potential health risk, further management on disinfection system is reasonable.
Collapse
Affiliation(s)
- Xuefeng Sun
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266000, Shandong, China.
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feipeng Wang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Yang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Xiao
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266000, Shandong, China
| | - Xinming Wei
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266000, Shandong, China
| | - Anshan Xiao
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266000, Shandong, China
| |
Collapse
|
7
|
Gao Y, Geng M, Wang G, Yu H, Ji Y, Jordan RW, Jiang SJ, Gu YG, An T. Environmental and dietary exposure to 24 polycyclic aromatic hydrocarbons in a typical Chinese coking plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123684. [PMID: 38428790 DOI: 10.1016/j.envpol.2024.123684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), known for their health risks, are prevalent in the environment, with the coking industry being a major source of their emissions. To bridge the knowledge gap concerning the relationship between environmental and dietary PAH exposure, we explore this complex interplay by investigating the dietary exposure characteristics of 24 PAHs within a typical Chinese coking plant and their association with environmental pollution. Our research revealed Nap and Fle as primary dietary contaminants, emphasizing the significant influence of soil and atmospheric pollution on PAH exposure. We subjected our data to non-metric multidimensional scaling (NMDS), Spearman correlation analysis, Lasso regression, and Weighted Quantile Sum (WQS) regression to delve into this multifaceted phenomenon. NMDS reveals that dietary PAH exposure, especially within the high molecular weight (HMW) group, is common both within and around the coking plant. This suggests that meals prepared within the plant may be contaminated, posing health risks to coking plant workers. Furthermore, our assessment of dietary exposure risk highlights Nap and Fle as the primary dietary contaminants, with BaP and DahA raising concerns due to their higher carcinogenic potential. Our findings indicate that dietary exposure often exceeds acceptable limits, particularly for coking plant workers. Correlation analyses uncover the dominant roles of soil and atmospheric pollution in shaping dietary PAH exposure. Soil contamination significantly impacts specific PAHs, while atmospheric pollution contributes to others. Additionally, WQS regression emphasizes the substantial influence of soil and drinking water on dietary PAHs. In summary, our study sheds light on the dietary exposure characteristics of PAHs in a typical Chinese coking plant and their intricate interplay with environmental factors. These findings underscore the need for comprehensive strategies to mitigate PAH exposure so as to safeguard both human health and the environment in affected regions.
Collapse
Affiliation(s)
- Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 China.
| | - MingZe Geng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 China
| | - Guangyao Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 China
| | - Yuemeng Ji
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 China
| | - Richard W Jordan
- Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Shi-Jun Jiang
- College of Oceanography, Hohai University, Nanjing, 245700, China
| | - Yang-Guang Gu
- Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, 510300, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 China
| |
Collapse
|
8
|
Liu J, Gao D, Wang H, Li Y, Chen M, Ma Q, Wang X, Cui M, Chen L, Zhang Y, Guo T, Yuan W, Ma T, Jiang J, Dong Y, Zou Z, Ma J. Long-term exposure to exogenous phthalate, masculinity and femininity trait, and gender identity in children: a Chinese 3-year longitudinal cohort study. Environ Health 2023; 22:81. [PMID: 38012654 PMCID: PMC10683128 DOI: 10.1186/s12940-023-01031-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Phthalate esters (PAEs) are known to have hormone-like properties, and there is a growing trend of children expressing a gender identity different from assigned sex. However, there has been limited research in the potential links between PAEs exposure and gender identity. METHODS A total of 571 children (278 boys) completed the follow-up from Oct 2017 to Oct 2020 in Childhood Blood Pressure and Environmental Factors (CBPEF) cohort in Xiamen, China. Urinary PAE metabolites were measured at three time of visits using ultraperformance liquid chromatography-tandem mass spectrometry. The Children's Sex Role Inventory scale was used to assess gender identity (masculinity, femininity, androgyny and undifferentiated), and Tanner definition was used to define puberty timing. Generalized linear models and log-binomial regression were used to assess the relationships between PAEs exposure, gender trait scores and gender identity. RESULTS Overall, the concentration of most PAEs in more than 90% of participants was above the limit of detection values. In visit 1, there were 10.1% boys with femininity and 11.3% girls with masculinity; while these figures increased to 10.8% and 12.3% during follow-up, respectively. Early puberty onset accounted for 24.8% and 25.6% among boys and girls. Long-term exposure to mono-2-ethylhexyl phthalate (MEHP) (β = 1.20, 95%CI = 0.13, 2.28), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) (β = 1.25, 95%CI = 0.22, 2.28) and mono-2-ethyl-5-oxohexyl phthalate (MEOHP) (β = 1.40, 95%CI = 0.24, 2.56) was associated with the increased differences of femininity trait scores in boys who enter puberty earlier, prolonged exposure to di(2-ethylhexyl) phthalate (DEHP) might also have such a positive impact (β = 1.38, 95%CI = 0.36, 2.41). For gender identity, persistent exposure to low molecular weight phthalates (LMWP) was negatively associated with undifferentiated type among boys entering puberty earlier (RR = 0.18, 95%CI = 0.05, 0.75, P < 0.05), and most of the PAE metabolites exposures showed risk ratios > 1 for their femininity. CONCLUSION Long-term exposure to PAEs increase the femininity trait scores in boys with early onset of puberty. Although the mechanisms remain to be determined, environmental pollution might have subtle, yet measurable effects on childhood gender identity. Reducing these chemicals exposure has important public implications on gender development.
Collapse
Affiliation(s)
- Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Di Gao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Huan Wang
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Yanhui Li
- School of Nursing, Peking University, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Xinxin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Mengjie Cui
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China.
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| |
Collapse
|
9
|
Soomro MH, England-Mason G, Liu J, Reardon AJF, MacDonald AM, Kinniburgh DW, Martin JW, Dewey D. Associations between the chemical exposome and pregnancy induced hypertension. ENVIRONMENTAL RESEARCH 2023; 237:116838. [PMID: 37544468 DOI: 10.1016/j.envres.2023.116838] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/04/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Exposure to environmental chemicals has been linked to an increased risk of pregnancy-induced hypertension (PIH). This prospective cohort study examined the associations between PIH and maternal chemical exposure to four classes of chemicals (i.e., phthalates, bisphenols, perfluoroalkyl acids, non-essential metals and trace minerals). Participants included 420 pregnant women from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort who had data available on diagnosed PIH and environmental chemical exposure. Twelve phthalate metabolites, two bisphenols, eight perfluoroalkyl acids and eleven non-essential metals or trace minerals were quantified in maternal urine or blood samples collected in the second trimester of pregnancy. Associations between the urinary and blood concentrations of these chemicals and PIH were assessed using multiple logistic and LASSO regression analyses in single- and multi-chemical exposure models, respectively. Thirty-five (8.3%) participants were diagnosed with PIH. In single chemical exposure models, two phthalate metabolites, mono-methyl phthalate (MMP) and monoethyl phthalate (MEP), three perfluoroalkyl acids, perfluoroheptanoic acid (PFHpA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA), and one metal, manganese, were associated with increased odds of PIH. The metabolites of di (2-ethylhexyl) phthalate (DEHP) and the molar sum of these metabolites, as well as antimony, displayed trend associations (p < 0.10). In multi-chemical exposure models using LASSO penalized regressions and double-LASSO regressions, MEP (AOR: 1.43, 95% CI: 1.09-1.88, p = 0.009) and PFNA (AOR: 2.03, 95% CI: 1.01-4.07, p = 0.04) were selected as the chemicals most highly associated with PIH. These findings suggest that maternal levels of phthalates and perfluoroalkyl acids may be associated with the diagnosis on PIH. Future research should consider both individual and multi-chemical exposures when examining predictors of PIH and other maternal cardiometabolic health disorders, such as preeclampsia, eclampsia, HELLP syndrome, and gestational diabetes.
Collapse
Affiliation(s)
- Munawar Hussain Soomro
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anthony J F Reardon
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Analytical Chemistry and Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|