1
|
Shen L, Zhu X, Jiang H, Zhang J, Chen C, R Reinfelder J, Kappler A, Fang L, Liu T, Liu C, Wu Y, Li F. Physical Contact between Bacteria and Carbonaceous Materials: The Key Switch Triggering Activated Carbon and Biochar to Promote Microbial Iron Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9576-9586. [PMID: 40208263 DOI: 10.1021/acs.est.4c14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Carbonaceous materials, including activated carbon and pyrolytic carbon, have been recognized for about over a decade as effective electron shuttles or conductive materials in promoting microbial Fe(III) mineral reduction. However, recent studies reveal inhibitory effects, sparking debates about their overall impact. We hypothesized that the physical contact between bacteria and carbon is an overlooked yet critical factor in determining whether carbon promotes or inhibits microbial Fe(III) reduction. Using systems containing Shewanella oneidensis MR-1, activated carbon, and ferrihydrite, we investigated how carbon-iron oxide aggregate structure affects Fe(III) reduction kinetics. At low activated carbon-to-iron oxide ratios (C/Fe = 5:7 by mass), ferrihydrite aggregated with carbon, forming carbon-encapsulated particles that suppressed Fe(III) reduction rates. Conversely, at higher ratios (C/Fe = 100:7), the ferrihydrite dispersed on the carbon surface, enhancing both the rate and extent of Fe(III) reduction. Tests with 11 different carbonaceous materials (activated carbon and biochar) all confirmed that the microstructure of iron oxides─whether encapsulating or dispersed─on carbon surfaces is critical for determining Fe(III) reduction rates. This insight resolves the debate on whether carbonaceous materials promote or inhibit Fe(III) mineral reduction and enhances our understanding of their roles in biogeochemical processes and environmental remediation.
Collapse
Affiliation(s)
- Lin Shen
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoze Jiang
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Juntao Zhang
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Andreas Kappler
- Geomicrobiology, Department of Geoscience, University of Tübingen, Tübingen 72076, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, Tübingen University, Tübingen 72076, Germany
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chuanping Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yundang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
2
|
Jia W, Yu Z, Chen J, Zhang J, Zhu J, Yang W, Yang R, Wu P, Wang S. Synergistic effect between biochar and nitrate fertilizer facilitated arsenic immobilization in an anaerobic contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177007. [PMID: 39427894 DOI: 10.1016/j.scitotenv.2024.177007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Nitrate nitrogen fertilizer was usually used to mitigate arsenic (As) release and mobilization in the anaerobic contaminated paddy soil. However, the effect of the interplay between nitrate fertilizer and biochar on As availability as well as the involved mechanism were poorly understood. Herein, the effects and mechanisms of biochar, nitrate fertilizer, and biochar-based nitrate fertilizer on the availability of As in the contaminated paddy soil were investigated via a microcosm incubation experiment. Results indicated that the application of biochar-based nitrate fertilizer significantly lessened the available As concentration in the contaminated paddy soil from 3.01 ± 0.03 (control group) to 2.24 ± 0.08 mg kg-1, which presented an immobilization efficiency of 26.6 % better than those of individual biochar (13.5 %) and nitrate fertilizer (17.6 %), exhibiting a synergistic effect. Moreover, the biochar-based nitrate fertilizer also facilitated the transformation of more toxic arsenite in the contaminated soil to less toxic arsenate. Further, biochar-based nitrate fertilizer increased soil redox potential (Eh), dissolved organic carbon, organic matter, and nitrate yet decreased soil pH and ammonium, which changed the microbial community in the soil, enhancing the relative abundance of Bacillus, Arthrobacter, and Paenibacillus. These functional microorganisms drove the coupled transformation between nitrate denitrification and Fe(II) or As(III) oxidation, favoring As immobilization in the anaerobic paddy soil. Additionally, the co-application of biochar offset the negative effect of single nitrate fertilizer on microbial community diversity. Overall, biochar-based nitrate fertilizer could be a promising candidate for the effective immobilization of As in the anaerobic paddy soil. The current research can provide a valuable reference to the remediation of As-contaminated paddy soil and the production of safe rice.
Collapse
Affiliation(s)
- Wenli Jia
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhi Yu
- Guizhou Research and Designing Institute of Environmental Sciences, Guiyang 550081, China
| | - Junfeng Chen
- Geological Brigade 105, Bureau of Geology and Mineral Exploration and Development of Guizhou Province, Guiyang 550018, China
| | - Jian Zhang
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystem Observation and Research Station, Ministry of Education, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Jian Zhu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Ruidong Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Pan Wu
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
3
|
Liu M, Li H, Fu Q, Li T, Hou R, Xue P, Yang X, Li M, Liu D. Critical role of soil-applied molybdenum dioxide composite biochar material in enhancing Cr(VI) remediation process: The driver of Fe(III)/Fe(II) redox cycle. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123246. [PMID: 39541815 DOI: 10.1016/j.jenvman.2024.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Heavy metal contamination of agricultural land due to sewage irrigation, over-application of fertilizers and pesticides, and industrial activities. Biochar, due to its rich functional groups and excellent electrochemical performance, is used for the remediation of heavy metal-contaminated farmland. However, the remediation mechanism remains uncertain due to the influence of minerals and multi-element composite pollution on soil. Therefore, introducing transition metal oxide MoO2 to prepare biochar composite remediation materials enhances the adsorption and reduction of soil Cr (Ⅵ). This study compared the differences in Cr (Ⅵ) improvement under different pollution systems and pH conditions and explored the potential mechanism of Fe (Ⅲ)/Fe (Ⅱ) redox cycling in Cr (Ⅵ) remediation. The results showed that both biochar MoO2 ball-milling composite (BC + M) and biochar-loaded MoO2 (BC/M) retained the original biochar (BC) remediation method for Cr (Ⅵ). Among them, the remediation of BC/M was the most stable, with the maximum remediation value ranging from approximately 6.52 to 58.58 mg/kg. In different pollution systems, Cd and Pb exhibited competitive adsorption toward Cr (Ⅵ), but they enhanced Cr (Ⅵ) remediation by promoting adsorption and self-complexation. In acidic conditions (pH = 4), BC/M showed the best remediation effect, with a reduction kinetic constant of 34.61 × 10-3 S-1 and a maximum adsorption capacity of 61.64 mg/g. Fe (Ⅲ)/Fe (Ⅱ) redox cycling accelerated the reduction of Cr (Ⅵ) (R2 = 0.81), and MoO2 promoted the Fe (Ⅲ)/Fe (Ⅱ) redox cycle. BC/M enhanced the Fe (Ⅱ) formation efficiency by 66.39% and 71.81% compared to BC + M and BC at pH = 4. The introduction of MoO2 and biochar composite materials enhanced the reduction process of Cr (Ⅵ), with BC/M achieving the optimal remediation level. This study reveals the potential mechanisms of MoO2 and biochar composite materials in soil Cr (Ⅵ) remediation, providing a reference and insight for the preparation of Cr (Ⅵ) remediation materials and the treatment of contaminated farmland.
Collapse
Affiliation(s)
- Mingxuan Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Heng Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ping Xue
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xuechen Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Mo Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Dong Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
4
|
Shi K, Zhao Y, Wu C, Geng Y, Zhou S, Chai B. Revealing the distribution characteristics and key driving factors of dissolved organic matter in Baiyangdian Lake inflow rivers from different seasons and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175768. [PMID: 39191325 DOI: 10.1016/j.scitotenv.2024.175768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
The river course is a transitional area connecting the source and receiving water bodies. The dissolved organic matter (DOM) in the river course is an important factor affecting the aquatic environment and ecological health. However, there are shortcomings in studying the differences and quantitative contributions of river DOM in different seasons and sources. In this study, ultraviolet-visible (UV-vis) and three-dimensional fluorescence spectra were used to characterize the optical properties, analyze the spatiotemporal changes, and establish the quantitative relationship between environmental factors and DOM in the inflow rivers of Baiyangdian Lake. The results showed that the relative DOM concentrations in summer and autumn were significantly higher than those in the other seasons (P < 0.001) and that the DOM source (SR < 1) was mainly exogenous. The fluorescence abundance of protein-like substances (C1 + C2 + C3) was the highest in spring, whereas that of humus C4 was the highest in autumn. Moreover, the inflow rivers exhibited strong autogenetic characteristics (BIX > 1) throughout the year. Self-organizing maps (SOM) indicated that the main driving factors of water quality were NO3--N in spring, autumn, and winter and DO, pH, and chemical oxygen demand (COD) in summer. Random forest analysis showed that the fluorescent components (C1-C4) were closely related to the migration and transformation of nitrogen, and pH and nitrogen were the main predictors of each component. The Mantel test and structural equation model (SEM) showed that temperature and NO3--N significantly influenced the DOM concentration, components, and molecular properties in different seasons. Moreover, the river source also affected the distribution mechanism of DOM in the water body. Our study comprehensively analyzed the response of DOM in inflow rivers in different seasons and water sources, providing a basis for further understanding the driving mechanisms of water quality.
Collapse
Affiliation(s)
- Kun Shi
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Zhao
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Chenbin Wu
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Geng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shilei Zhou
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Beibei Chai
- Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
5
|
Wang J, Norgaard T, Pugliese L, Carvalho PN, Wu S. Global meta-analysis and machine learning reveal the critical role of soil properties in influencing biochar-pesticide interactions. ENVIRONMENT INTERNATIONAL 2024; 193:109131. [PMID: 39541786 DOI: 10.1016/j.envint.2024.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Biochar application in soils is increasingly advocated globally for its dual benefits in enhancing agricultural productivity and sequestering carbon. However, lingering concerns persist regarding its environmental impact, particularly concerning its interactions with pesticide residues in soil. Previous research has fragmentarily indicated elevated pesticide residues and prolonged persistence in biochar-amended soil, suggesting a potential adverse consequence of biochar application on pesticide degradation. Yet, conclusive evidence and conditions for this phenomenon remain elusive. To address this gap, we conducted a comprehensive assessment using meta-analysis and machine learning techniques, synthesizing data from 58 studies comprising 386 observations worldwide. Contrary to initial concerns, our findings revealed no definitive increase in pesticide concentrations in soil following biochar application. Moreover, a significant reduction of 66 % in pesticide concentrations within soil organisms, such as plants and earthworms, was observed. The quantitative analysis identified soil organic matter content as a key factor influencing biochar-pesticide interactions, suggesting that applying biochar to soils rich in organic matter is less likely to increase pesticide persistence. This study provides a critical assessment of the environmental fate of pesticides under biochar application, offering valuable guidance for the optimal utilization of both pesticides and biochar in sustainable agricultural practices.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Trine Norgaard
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark.
| |
Collapse
|
6
|
Cui S, Wang R, Chen Q, Pugliese L, Wu S. Geobatteries in environmental biogeochemistry: Electron transfer and utilization. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100446. [PMID: 39104555 PMCID: PMC11298864 DOI: 10.1016/j.ese.2024.100446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024]
Abstract
The efficiency of direct electron flow from electron donors to electron acceptors in redox reactions is significantly influenced by the spatial separation of these components. Geobatteries, a class of redox-active substances naturally present in soil-water systems, act as electron reservoirs, reversibly donating, storing, and accepting electrons. This capability allows the temporal and spatial decoupling of redox half-reactions, providing a flexible electron transfer mechanism. In this review, we systematically examine the critical role of geobatteries in influencing electron transfer and utilization in environmental biogeochemical processes. Typical redox-active centers within geobatteries, such as quinone-like moieties, nitrogen- and sulfur-containing groups, and variable-valent metals, possess the potential to repeatedly charge and discharge. Various characterization techniques, ranging from qualitative methods like elemental analysis, imaging, and spectroscopy, to quantitative techniques such as chemical, spectroscopic, and electrochemical methods, have been developed to evaluate this reversible electron transfer capacity. Additionally, current research on the ecological and environmental significance of geobatteries extends beyond natural soil-water systems (e.g., soil carbon cycle) to engineered systems such as water treatment (e.g., nitrogen removal) and waste management (e.g., anaerobic digestion). Despite these advancements, challenges such as the complexity of environmental systems, difficulties in accurately quantifying electron exchange capacity, and scaling-up issues must be addressed to fully unlock their potential. This review underscores both the promise and challenges associated with geobatteries in responding to environmental issues, such as climate change and pollutant transformation.
Collapse
Affiliation(s)
- Shihao Cui
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Rui Wang
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| |
Collapse
|
7
|
Liu S, Zhang Y, Duan Y, Shen X, Guo H, Kong Z, Gao Y, Han X, Wang W, Daigger GT, Zhang G, Li R, Liu Y, Song Z, Song G. Feasibility and mechanism of adsorption and bioreduction of hexavalent chromium using Rhodopseudomonas palustris immobilized on multiple materials. CHEMOSPHERE 2024; 366:143457. [PMID: 39366488 DOI: 10.1016/j.chemosphere.2024.143457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Rhodopseudomonas palustris immobilized on multiple materials was used to invistigate Cr(VI) adsorption and bioreduction. The highest Cr(VI) removal (97.5%) was achieved at 276h under the opitimed conditions of 2.5% SA, 8% PVA, and 50% filling degree. The highest adsorption capacity was obtained at 11.75 mg g-1 under 300 mg L-1 Cr(VI). Results from adsorption kinetics and isotherms indicated that Cr(VI) adsorption of immobilized photosynthetic bacteria (IPSB) was consistent with the Freundich model and the pseudo-second-order kinetic model (qe = 14.00 mg g-1). SEM and FTIR analyses verified that the porous multilayer network structure of IPSB provided more adsorption sites and functional groups for the removal of Cr(VI). Furthermore, the maximum Cr(VI) reduction efficiency of IPSB was achieved at 10.80 mg g-1, which correlated with the up-regulation of chrR gene expressions at 100 mg L-1 Cr(VI). This study demonstrated the dual mechanisms of Cr(VI) removal in IPSB-treated Cr wastewater, involving both chemisorption and bioreduction working synergistically.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Yacong Duan
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001,China.
| | - Xiangyu Shen
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Wenxiao Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Zhixin Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou 450046, China.
| |
Collapse
|
8
|
Luo L, Wang J, Yan A, Wang J, Wu S, Xu X, Chen W, Liu Z. Is Pyrolysis Treatment a Viable Solution to Detoxify Metal(loid)s in Sewage Sludge toward Land Application? Case Studies of Chromium and Zinc. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16186-16195. [PMID: 39189695 DOI: 10.1021/acs.est.4c04266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Metal(loid)s in sewage sludge (SS) are effectively immobilized after pyrolysis. However, the bioavailability and fate of the immobilized metal(loid)s in SS-derived biochar (SSB) following land application remain largely unknown. Here, the speciation and bioavailability evolution of SSB-borne Cr and Zn in soil were systematically investigated by combining pot and field trials and X-ray absorption spectroscopy. Results showed that approximately 58% of Cr existing as Cr(III)-humic complex in SS were transformed into Fe (hydr)oxide-bound Cr(III), while nano-ZnS in SS was transformed into stable ZnS and ferrihydrite-bound species (accounting for over 90% of Zn in SSB) during pyrolysis. All immobilized metal(loid)s, including Cr and Zn, in SSB tended to be slowly remobilized during aging in soil. This study highlighted that SSB acted as a dual role of source and sink of metal(loid)s in soil and posed potential risks by serving a greater role of a metal(loid) source than a sink when applied to uncontaminated soils. Nevertheless, SSB could impede the translocation of metal(loid)s from soil to crop compared to SS, where coexisting elements, including Fe, P, and Zn, played critical roles. These findings provide new insights for understanding the fate of SSB-borne metal(loid)s in soil and assessing the viability of pyrolyzing SS for land application.
Collapse
Affiliation(s)
- Lei Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jiawen Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Grassland, Resources, and Environment, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Aichu Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaxiao Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Songlin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuehui Xu
- College of Grassland, Resources, and Environment, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Ma P, Yin B, Wu M, Han M, Lv L, Li W, Zhang G, Ren Z. Synergistic enhancement of microbes-to-pollutants and inter-microbes electron transfer by Fe, N modified ordered mesoporous biochar in anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135030. [PMID: 38944989 DOI: 10.1016/j.jhazmat.2024.135030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Extracellular electron transfer was essential for degrading recalcitrant pollutants by anaerobic digestion (AD). Therefore, existing studies improved AD efficiency by enhancing the electron transfer from microbes-to-pollutants or inter-microbes. This study synthesized a novel Fe, N co-doped biochar (Fe, N-BC), which could enhance both the microbes-to-pollutants and inter-microbes electron transfer in AD. Detailed characterization data indicated that Fe, N-BC has an ordered mesoporous structure, high specific surface area (463.46 m2/g), and abundant redox functional groups (Fe2+/Fe3+, pyrrolic-N), which translate into excellent biocompatibility and electrochemical properties of Fe, N-BC. By adding Fe, N-BC, the stability and efficiency of the medium-temperature AD system in the treatment of methyl orange (MO) wastewater were improved: obtained a high degradation efficiency of MO (96.8 %) and enhanced the methane (CH4) production by 65 % compared to the control group. Meanwhile, Fe, N-BC reduced the accumulation of volatile fatty acids in the AD system, and the activity of anaerobic granular sludge electron transport system and coenzyme F420 was enhanced. In addition, Fe, N-BC showed positive enrichment of azo dyes decolorization bacteria (Georgenia) and direct interspecies electron transfer (DIET) synergistic partners (Syntrophobacter, Methanosarcina). Overall, the rapid degradation of MO and enhanced CH4 production in AD systems by Fe, N-BC is associated with enhancing two electronic pathways, i.e., microbes to MO and DIET between syntrophic bacteria and methanogenic archaea. This study introduced an enhanced "two-pathways of electron transfer" theory, realized by Fe, N-BC. These findings provided new insights into the interactions within AD systems and offer strategies for enhancing their performance with recalcitrant pollutants.
Collapse
Affiliation(s)
- Peiyu Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Bingbing Yin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Minhao Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Muda Han
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
10
|
Zhou T, Chen H, Guo X, Zhang J, Meng Y, Luan F. AQDS-functionalized biochar enhances the bioreduction of Cr(VI) by Shewanella putrefaciens CN32. CHEMOSPHERE 2024; 363:142866. [PMID: 39019176 DOI: 10.1016/j.chemosphere.2024.142866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
The bioreduction of toxic chromium(VI) to sparingly soluble chromium(III) represents an environmentally friendly and cost-effective method for remediating Cr contamination. Usually, this bioreduction process is slow and requires the addition of quinone compounds as electron shuttles to enhance the reaction rate. However, the dissolved quinone compounds are susceptible to loss with water flow, thereby limiting their effectiveness. To address this challenge, this study loaded anthraquinone-2,6-disulfonate (AQDS), a typical quinone compound, onto biochar (BC) to create a novel solid-phase electron mediator (BC-AQDS) that can sustainably promote Cr(VI) bioreduction. The experimental results demonstrated that BC-AQDS significantly promoted the bioreduction of Cr(VI), where the reaction rate constant increased by 4.81 times, and the reduction extent increased by 38.31%. X-ray photoelectron spectroscopy and Fourier-Transform Infrared Spectroscopy analysis revealed that AQDS replaced the -OH functional groups on the BC surface to form BC-AQDS. Upon receiving electrons from Shewanella putrefaciens CN32, BC-AQDS was reduced to BC-AH2DS, which subsequently facilitated the reduction of Cr(VI) to Cr(III). This redox cycle between BC-AQDS and BC-AH2DS effectively enhanced the bioreduction rate of Cr(VI). Our study also found that a lower carbonization temperature of BC resulted in a higher surface -OH functional group content, enabling a greater load of AQDS and a more pronounced enhancement effect on the bioreduction of Cr(VI). Additionally, a smaller particle size of BC and a higher dosage of BC-AQDS further contributed to the enhancement of Cr(VI) bioreduction. The preparation of BC-AQDS in this study effectively improve the utilization of quinone compounds and offer a promising approach for enhancing the bioreduction of Cr(VI). It provides a more comprehensive reference for understanding and solving the problem of Cr pollution in groundwater.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, Gansu, PR China
| | - Hai Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Xiaonan Guo
- College of Resources and Environmental Science of Hebei Normal University, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang, 050024, PR China
| | - Jianda Zhang
- College of Resources and Environmental Science of Hebei Normal University, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang, 050024, PR China
| | - Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
11
|
Bian P, Shao Q. Efficient adsorption of hexavalent chromium in water by torrefaction biochar from lignin-rich kiwifruit branches: The combination of experiment, 2D-COS and DFT calculation. Int J Biol Macromol 2024; 273:133116. [PMID: 38889832 DOI: 10.1016/j.ijbiomac.2024.133116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
A biochar (KBC) enriched with O functional groups was prepared by torrefaction using lignin-rich kiwifruit branches (KBM) as a raw material, which was characterized, and then KBC was used to adsorb hexavalent chromium (Cr6+) from water. The results showed that KBC contained more functional groups compared to KBM. The maximum adsorption of Cr6+ by KBC could reach 143.64 mg·g-1 and also had better adsorption performance than other adsorbents reported in some other reports. Cr6+ absorption by KBC was mainly a mechanism of electrostatic interaction and adsorption-reduction coupling. FTIR and XPS revealed that -OH, -COOH, CO and CC on KBC participated in Cr6+ adsorption and new groups (C=O) were generated during the process of adsorption, which implied that a redox reaction occurred. 2D-COS and DFT calculations showed that the order of functional groups on KBC interacting with Cr6+ was -OCH3 > -COOH > -OH > phenolic hydroxyl, and the binding tightness of the different functional groups to Cr6+ was -OCH3 (the shortest displacement of both groups after the adsorption) > -COOH > -OH > phenolic hydroxyl. KBC has good regeneration performance, and it is a good adsorbent for Cr6+.
Collapse
Affiliation(s)
- Pengyang Bian
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qinqin Shao
- School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, PR China.
| |
Collapse
|
12
|
Ke Q, Ren J, Feng K, Zhang Z, Huang W, Xu X, Zhao L, Qiu H, Cao X. Crucial roles of soil inherent Fe-bearing minerals in enhanced Cr(VI) reduction by biochar: The electronegativity neutralization and electron transfer mediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124014. [PMID: 38642792 DOI: 10.1016/j.envpol.2024.124014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Biochar has been used for soil Cr(VI) remediation in the last decade due to its enriched redox functional groups and good electrochemical properties. However, the role of soil inherent Fe-bearing minerals during the reduction of Cr(VI) has been largely overlooked. In this study, biochar with different electron-donating capacities (EDCs) was produced at 400 °C (BC400) and 700 °C (BC700), and their performance for Cr(VI) reduction in soils with varied properties (e.g., Fe content) was investigated. The addition of BC400 caused around 14.2-36.0 mg g-1 Cr(VI) reduction after two weeks of incubation in red soil, paddy soil, loess soil, and fluvo-aquic soil, while a less Cr(VI) was reduced by BC700 (2.57-16.7 mg g-1) with smaller EDCs. The Cr(VI) reduction by both biochars in different soils was closely related to Fe content (R2 = 0.93-0.98), so red soil with the richest Fe (14.8% > 1.79-3.49%) showed the best reduction capability, and the removal of soil free Fe oxides (e.g., hematite) resulted in 71.9% decrease of Cr(VI) reduction by BC400. On one hand, Fe-bearing minerals could increase the soil acidity, neutralize the surface negative charge of biochar, enhance the contact between Cr(VI) and biochar, and thus facilitate the direct Cr(VI) reduction by biochar in soils. On the other hand, Fe-bearing minerals could also facilitate the indirect Cr(VI) reduction by mediating the electron from biochar to Cr(VI) with the cyclic transformation of Fe(II)/Fe(III). This study demonstrates the key role of soil Fe-bearing minerals in Cr(VI) reduction by biochar, which advances our understanding on the biochar-based remediation mechanism of Cr(VI)-contaminated soils.
Collapse
Affiliation(s)
- Qiang Ke
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kanghong Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehong Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenfeng Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
13
|
Tang S, Zhang L, Zhu H, Jiang SC. Coupling physiochemical adsorption with biodegradation for enhanced removal of microcystin-LR in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173370. [PMID: 38772489 DOI: 10.1016/j.scitotenv.2024.173370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
To innovate the design of water treatment technology for algal toxin removal, this research investigated the mechanisms of cyanotoxin microcystin-LR (MC-LR) removal by a coupled adsorption-biodegradation. Eight types of woody carbonaceous adsorbents with and without Sphingopyxis sp. m6, a MC-LR degrading bacterium, were tested for MC-LR removal in water. All adsorbents showed good adsorption capability, removing 40 % to almost 100 % of the MC-LR (4.5 mg/L) within 48 h in batch experiments. Adding Sphingopyxis sp. m6 continuously promoted MC-LR biological removal, and successfully broke the barrier of adsorption capacity of tested adsorbents, removing >90 % of the MC-LR in most of the coupled adsorption-biodegradation tests, especially for those adsorbents had low physiochemical adsorption capacity. Variance partitioning analysis indicated that mesopore was the dominant contributor to adsorption capacity of MC-LR in pure adsorption treatments, which acted synergistically with electrical conductivity, polarity and total functional groups on the absorbent. Pore structure was the key factor beneficial for the growth of Sphingopyxis sp. m6 (51% contribution) and subsequent MC-LR biological removal rate (80 % contribution). Overall, pinewood-based carbonaceous adsorbents (especially pinewood activated carbon) exhibited the highest adsorption capacity towards MC-LR and provided the most favorable conditions for biological removal of MC-LR, largely because of their high mesopore volume, total functional groups and electric conductivity. The research outcomes not only deepened the quantitative understanding of mechanisms for MC-LR removal by the coupled process, but also provided theoretical basis for future materials' selection and modification during the practical application of coupled process.
Collapse
Affiliation(s)
- Shengyin Tang
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697, United States; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lixun Zhang
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697, United States; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haoxin Zhu
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697, United States
| | - Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697, United States.
| |
Collapse
|
14
|
Xie J, Latif J, Yang K, Wang Z, Zhu L, Yang H, Qin J, Ni Z, Jia H, Xin W, Li X. A state-of-art review on the redox activity of persistent free radicals in biochar. WATER RESEARCH 2024; 255:121516. [PMID: 38552490 DOI: 10.1016/j.watres.2024.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/24/2024]
Abstract
Biochar-bound persistent free radicals (biochar-PFRs) attract much attention because they can directly or indirectly mediate the transformation of contaminants in large-scale wastewater treatment processes. Despite this, a comprehensive top-down understanding of the redox activity of biochar-PFRs, particularly consumption and regeneration mechanisms, as well as challenges in redox activity assessment, is still lacking. To tackle this challenge, this review outlines the identification and determination methods of biochar-PFRs, which serve as a prerequisite for assessing the redox activity of biochar-PFRs. Recent developments concerning biochar-PFRs are discussed, with a main emphasis on the reaction mechanisms (both non-free radical and free radical pathways) and their effectiveness in removing contaminants. Importantly, the review delves into the mechanism of biochar-PFRs regeneration, triggered by metal cations, reactive oxygen species, and ultraviolet radiations. Furthermore, this review thoroughly explores the dilemma in appraising the redox activity of biochar-PFRs. Components with unpaired electrons (particular defects and metal ions) interfere with biochar-PFRs signals in electron paramagnetic resonance spectra. Scavengers and extractants of biochar-PFRs also inevitably modify the active ingredients of biochar. Based on these analyses, a practical strategy is proposed to precisely determine the redox activity of biochar-PFRs. Finally, the review concludes by presenting current gaps in knowledge and offering suggestions for future research. This comprehensive examination aims to provide new and significant insights into the redox activity of biochar-PFRs.
Collapse
Affiliation(s)
- Jia Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Junaid Latif
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kangjie Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zhiqiang Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Lang Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Huiqiang Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jianjun Qin
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zheng Ni
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Wang Xin
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
| | - Xing Li
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
| |
Collapse
|
15
|
Shang Z, Ren D, Yang F, Wang J, Liu B, Chen F, Du Y. Simultaneous immobilization of V and Cr availability, speciation in contaminated soil and accumulation in ryegrass by using Fe-modified pyrolysis char. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134097. [PMID: 38518692 DOI: 10.1016/j.jhazmat.2024.134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
In this study, municipal waste pyrolytic char (PEWC) was prepared by pyrolysis from municipal solid waste extracted in landfills, and Fe-based modified pyrolytic char (Fe-PEWC) was prepared by modification. Focusing on the evaluation of the stabilization capacity of Fe-PEWC for vanadium (V) and chromium (Cr) in soils, the effects of PEWC addition on soil properties, bioavailability and morphological distribution of V and Cr, ryegrass growth, and V and Cr accumulation were thoroughly investigated. The results of pot experiment showed that the application of PEWC and Fe-PEWC significantly (P < 0.05) improved soil properties (such as pH, EC, total nitrogen, available phosphorus, available potassium, and organic matter). After 42 days of cultivation, Fe-PEWC has a better fixation effect on heavy metals, and the bioavailable V and Cr of 3% Fe-PEWC decreased by 14.96% and 19.48%, respectively. The exchangeable state and reducible state decreased, while the oxidizable state and residual state increased to varying degrees. The Fe-PEWC can effectively reduce the accumulation of V and Cr in ryegrass by 71.25% and 76.43%, respectively, thereby reducing their toxicity to plants. In summary, modified pyrolytic char can effectively solidify heavy metals in soil, improve soil ecology and reduce the toxicity to plants. The use of excavated waste as a raw material for the preparation of soil heavy metal curing agent has the significance of resource recycling, low price, and practical application.
Collapse
Affiliation(s)
- Zhixin Shang
- College of Textile and Clothing, Dezhou University, Dezhou 253023, China
| | - Dongyin Ren
- College of Textile and Clothing, Dezhou University, Dezhou 253023, China
| | - Fan Yang
- College of Textile and Clothing, Dezhou University, Dezhou 253023, China
| | - Jin Wang
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan, Shandong 250101, China
| | - Bing Liu
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan, Shandong 250101, China
| | - Feiyong Chen
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan, Shandong 250101, China
| | - Yufeng Du
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| |
Collapse
|
16
|
Fan Y, Sun S, Gu X, Zhang M, Peng Y, Yan P, He S. Boosting the denitrification efficiency of iron-based constructed wetlands in-situ via plant biomass-derived biochar: Intensified iron redox cycle and microbial responses. WATER RESEARCH 2024; 253:121285. [PMID: 38354664 DOI: 10.1016/j.watres.2024.121285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Considering the unsatisfied denitrification performance of carbon-limited wastewater in iron-based constructed wetlands (ICWs) caused by low electron transfer efficiency of iron substrates, utilization of plant-based conductive materials in-situ for improving the long-term reactivity of iron substrates was proposed to boost the Fe (III)/Fe (II) redox cycle thus enhance the nitrogen elimination. Here, we investigated the effects of withered Iris Pseudacorus biomass and its derived biochar on nitrogen removal for 165 days in ICWs. Results revealed that accumulate TN removal capacity in biochar-added ICW (BC-ICW) increased by 14.7 % compared to biomass-added ICW (BM-ICW), which was mainly attributed to the synergistic strengthening of iron scraps and biochar. The denitrification efficiency of BM-ICW improved by 11.6 % compared to ICWs, while its removal capacity declined with biomass consumption. Autotrophic and heterotrophic denitrifiers were enriched in BM-ICW and BC-ICW, especially biochar increased the abundance of electroactive species (Geobacter and Shewanella, etc.). An active iron cycle exhibited in BC-ICW, which can be confirmed by the presence of more liable iron minerals on iron scraps surface, the lowest Fe (III)/Fe (II) ratio (0.51), and the improved proportions of iron cycling genes (feoABC, korB, fhuF, TC.FEV.OM, etc.). The nitrate removal efficiency was positively correlated with the nitrogen, iron metabolism functional genes and the electron transfer capacity (ETC) of carbon materials (P < 0.05), indicating that redox-active carbon materials addition improved the iron scraps bioavailability by promoting electron transfer, thus enhancing the autotrophic nitrogen removal. Our findings provided a green perspective to better understand the redox properties of plant-based carbon materials in ICWs for deep bioremediation in-situ.
Collapse
Affiliation(s)
- Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
17
|
Liu Y, Kang Z, Wang Q, Wang T, Song N, Yu H. One-step synthesis of ferrous disulfide and iron nitride modified hydrochar for enhanced adsorption and reduction of hexavalent chromium in Bacillus LD513 by promoting electron transfer and microbial metabolism. BIORESOURCE TECHNOLOGY 2024; 396:130415. [PMID: 38316228 DOI: 10.1016/j.biortech.2024.130415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Microbial immobilization technology is effective in improving bioremediation efficiency and heavy metal pollution. Herein, Bacillus LD513 with hexavalent chromium (Cr(VI)) tolerance was isolated and immobilized on a novel ferrous disulfide (FeS2)/iron nitride (FeN) modified hydrochar (Fe3-SNHC) prepared from waste straws. The prepared Fe3-SNHC-based LD513 (FeLD) significantly improves Cr(VI) adsorption and reduction by 31.4 % and 15.7 %, respectively, compared to LD513 alone. Furthermore, the FeLD composite system demonstrates efficient Cr(VI) removal efficiency and good environmental adaptability under different culture conditions. Microbial metabolism and electrochemical analysis indicate that Fe3-SNHC is an ideal carrier for protecting LD513 activity, promoting extracellular polymer secretion, and reducing oxidative stress. Additionally, the carrier serves as an electron shuttle that accelerates electron transfer and promotes Cr(VI) reduction. Overall, FeLD is an environmentally friendly biocomposite that shows good promise for reducing Cr(VI) contamination in wastewater treatment.
Collapse
Affiliation(s)
- Yuxin Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Tianye Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Ningning Song
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| |
Collapse
|
18
|
Zhao W, Hu T, Ma H, Li D, Zhao Q, Jiang J, Wei L. A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings. BIORESOURCE TECHNOLOGY 2024; 391:129929. [PMID: 37923231 DOI: 10.1016/j.biortech.2023.129929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The biochar is a well-developed porous material with various excellent properties, that has been proven with excellent ability in anaerobic digestion (AD) efficiency promotion. Current research is usually focused on the macro effects of biochar on AD, while the systematic review about the mechanisms of biochar on microbial behavior are still lacking. This review summarizes the effects and potential mechanisms of biochar on microorganisms in AD systems, and found that biochar addition can provide habitats for microbial colonization, alleviate toxins stress, supply essential nutrients, and accelerate interspecies electron transferring. Moreover, it also improves microbial community diversity, facilitates EPS secretion, enhances functional enzyme activity, promotes functional genes expression, and inhibits the antibiotic resistance genes transformation. Future research directions including biochar targeted design, in-depth microbial mechanisms revelation, and modified model development were suggested, which could promote the widely practical application of of biochar-amended AD technology.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|