1
|
Narenkumar J, Das B, Abilaji S, Sathishkumar K, AlSalhi MS, Devanesan S, Rajasekar A, Malik T. Biosurfactant-assisted bio-electrokinetic enhanced remediation of heavy metal-contaminated soil. Front Microbiol 2024; 15:1458369. [PMID: 39380679 PMCID: PMC11458532 DOI: 10.3389/fmicb.2024.1458369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 10/10/2024] Open
Abstract
Background Environmental soil contamination is a serious problem for humans worldwide, as it causes many diseases. Methods The present study focuses on utilizing biosurfactants produced by Pseudomonas stutzeri (P. stutzeri) NA3 and Bacillus cereus (B. cereus) EN6, as an electrolyte for removing chromium (Cr) from contaminated soil using the electrokinetic (EK) process. Results As a result, biosurfactants produced by P. stutzeri NA3 and B. cereus EN6, being lipopeptides, increase heavy metal mobility in the EK process. The Cr removal efficiency of a novel electrolyte (biosurfactants) in the EK process was compared with that of NA3 and EN6 biosurfactants. The EK results revealed a maximum Cr removal of 75 and 70% by NA3 and EN6, respectively, at the end of 7 days. Discussion The biosurfactant aids in the breaking down of the heavy metals that are present deeper into the soil matrix. From the metagenomics analysis, it was identified that biosurfactant changes the microbial community with an enhanced ability to remove heavy metals. The phytotoxicity assay confirms that NA3 biosurfactant solution showed 95% seed germination and can lower hazardous pollutants in the soil. Conclusion The application of biosurfactants as a potent electrolyte for the remediation of hazardous pollutants is an integrated process. Overall, the results of this study suggest that biosurfactants can serve as an economic and efficient electrolyte in the EK process to remove Cr from polluted soil.
Collapse
Affiliation(s)
- Jayaraman Narenkumar
- Department of Environmental & Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, India
| | - Bhaskar Das
- Department of Environmental & Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, India
| | - Subramani Abilaji
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohamad S. AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Adjunct Faculty, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Campos V, Domingos JMF, Nolasco MA, Morais LCDE, Marques DG. Assessment of treatability of the Tietê River through a process of coagulation-flocculation associated with hydrodynamic cavitation and ozonation. AN ACAD BRAS CIENC 2024; 96:e20230856. [PMID: 39166547 DOI: 10.1590/0001-3765202420230856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/26/2024] [Indexed: 08/23/2024] Open
Abstract
As it flows through the city of São Paulo, the Tietê River receives heavy discharges of industrial effluents and domestic sewage, resulting from the city's continuous urban expansion and the inadequacy of its sanitary sewage system. This study focused on an analysis of the efficiency of PGα21Ca and quaternary ammonium tannate, water purification products, based on coagulation-flocculation and sedimentation tests, followed by treatment with a hydrodynamic cavitation reactor associated with ozonation in the treatment of Tietê River water. The removal of turbidity, apparent color, and chemical oxygen demand (COD) were evaluated. Jar testing assays were conducted, and the best turbidity removal rates were obtained with a concentration of 300 mg L-1 for PGα21Ca and 150 mg L-1 for quaternary ammonium tannate. The coagulation-flocculation treatment removed approximately 93% of turbidity for both coagulants. After combining coagulation-flocculation with hydrodynamic cavitation with ozonation, the final COD removal rate applying PGα21Ca was 47.63% in 1 hour of reaction, while that of quaternary ammonium tannate was 40.13% in 2 hours of reaction. Although the results appear to indicate the superior performance of PGα21Ca, it should be noted that the treatment with quaternary ammonium tannate also provided good results in reducing turbidity, COD, and apparent color, using a smaller dose of this coagulant and that its use may be more advantageous from an environmental point of view, due to its natural composition.
Collapse
Affiliation(s)
- Valquíria Campos
- Universidade Estadual Paulista - UNESP , Instituto de Ciência e Tecnologia de Sorocaba, Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Janaina M F Domingos
- Universidade de São Paulo - USP , Escola de Artes, Ciências e Humanidades, Rua Arlindo Bettio, 1000, Ermelino Matarazzo, 03828-000 São Paulo, SP, Brazil
| | - Marcelo A Nolasco
- Universidade de São Paulo - USP , Escola de Artes, Ciências e Humanidades, Rua Arlindo Bettio, 1000, Ermelino Matarazzo, 03828-000 São Paulo, SP, Brazil
| | - Leandro C DE Morais
- Universidade Estadual Paulista - UNESP , Instituto de Ciência e Tecnologia de Sorocaba, Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Diego G Marques
- Universidade Estadual Paulista - UNESP , Instituto de Ciência e Tecnologia de Sorocaba, Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| |
Collapse
|
3
|
Satheeshkumar A, Duraimurugan R, Parthipan P, Sathishkumar K, AlSalhi MS, Devanesan S, Rajamohan R, Rajasekar A, Malik T. Integrated Electrochemical Oxidation and Biodegradation for Remediation of a Neonicotinoid Insecticide Pollutant. ACS OMEGA 2024; 9:15239-15250. [PMID: 38585078 PMCID: PMC10993376 DOI: 10.1021/acsomega.3c09749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
A novel integrated electrochemical oxidation (EO) and bacterial degradation (BD) technique was employed for the remediation of the chloropyridinyl and chlorothiazolyl classes of neonicotinoid (NEO) insecticides in the environment. Imidacloprid (IM), clothianidin (CL), acetamiprid (AC), and thiamethoxam (TH) were chosen as the target NEOs. Pseudomonas oleovorans SA2, identified through 16S rRNA gene analysis, exhibited the potential for BD. In EO, for the selected NEOs, the total percentage of chemical oxygen demand (COD) was noted in a range of 58-69%, respectively. Subsequently, in the biodegradation of EO-treated NEOs (BEO) phase, a higher percentage (80%) of total organic carbon removal was achieved. The optimum concentration of NEOs was found to be 200 ppm (62%) for EO, while for BEO, the COD efficiency was increased up to 79%. Fourier-transform infrared spectroscopy confirms that the heterocyclic group and aromatic ring were degraded in the EO and further utilized by SA2. Gas chromatography-mass spectroscopy indicated up to 96% degradation of IM and other NEOs in BD (BEO) compared to that of EO (73%). New intermediate molecules such as silanediamine, 1,1-dimethyl-n,n'-diphenyl produced during the EO process served as carbon sources for bacterial growth and further mineralized. As a result, BEO enhanced the removal of NEOs with a higher efficiency of COD and a lower consumption of energy. The removal efficiency of the NEOs by the integrated approach was achieved in the order of AC > CL > IM > TH. This synergistic EO and BD approach holds promise for the efficient detoxification of NEOs from polluted environments.
Collapse
Affiliation(s)
- Azhagarsamy Satheeshkumar
- Environmental
Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Ramanathan Duraimurugan
- Environmental
Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Punniyakotti Parthipan
- Department
of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu, Kattankulathur 603 203, Tamil Nadu, India
| | - Kuppusamy Sathishkumar
- Center
for Global Health Research, Saveetha Medical College and Hospitals,
Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University Chennai, 602105, India
| | - Mohamad S. AlSalhi
- Department
of Physics and Astronomy, College of Science, King Saud University, P.O. Box- 2455, Riyadh 11451, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department
of Physics and Astronomy, College of Science, King Saud University, P.O. Box- 2455, Riyadh 11451, Saudi Arabia
| | - Rajaram Rajamohan
- Organic Materials
Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic
of Korea
| | - Aruliah Rajasekar
- Environmental
Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Tabarak Malik
- Adjunct
Faculty, Division of Research & Development, Lovely Professional University, Jalandhar-Delhi, Phagwara, Punjab 144411, India
- Department
of Biomedical Sciences, Institute of Health, Jimma University, Jimma 378, Ethiopia
| |
Collapse
|
4
|
Dhandapani P, Srinivasan V, Parthipan P, AlSalhi MS, Devanesan S, Narenkumar J, Rajamohan R, Ezhilselvi V, Rajasekar A. Development of an environmentally sustainable technique to minimize the sludge production in the textile effluent sector through an electrokinetic (EK) coupled with electrooxidation (EO) approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:81. [PMID: 38367190 DOI: 10.1007/s10653-023-01847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/27/2023] [Indexed: 02/19/2024]
Abstract
This study presents an environmentally sustainable method for minimizing sludge production in the textile effluent sector through the combined application of electrokinetic (EK) and electrooxidation (EO) processes. AAS and XRF analyses reveal that utilizing acidic electrolytes in the EK method successfully eliminates heavy metals (Cu, Mn, Zn, and Cr) from sludge, demonstrating superior efficiency compared to alkaline conditions. In addition, the total removal efficiency of COD contents was calculated following the order of EK-3 (60%), EK-1 (51%) and EK-2 (34%). Notably, EK-3, leveraging pH gradient fluctuations induced by anolyte in the catholyte reservoir, outperforms other EK systems in removing COD from sludge. The EK process is complemented by the EO process, leading to further degradation of dye and other organic components through the electrochemical generation of hypochlorite (940 ppm). At an alkaline pH of 10.0, the color and COD removal were effectively achieved at 98 and 70% in EO treatment, compared to other mediums. In addition, GC-MS identified N-derivative residues at the end of the EO. This study demonstrates an integrated approach that effectively eliminates heavy metals and COD from textile sludge, combining EK with EO techniques.
Collapse
Affiliation(s)
- Perumal Dhandapani
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Venkatesan Srinivasan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Punniyakotti Parthipan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Jayaraman Narenkumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rajaram Rajamohan
- Organic Materials Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan-si, 38541, Republic of Korea.
| | - Varathan Ezhilselvi
- Indian Reference Materials (BND) Division, CSIR-National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi, 110012, India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
- Adjunct Faculty, Department of Prothodontics, Saveetha Dental Collge and Hospital, Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
5
|
Abilaji S, Narenkumar J, Das B, S S, Rajakrishnan R, Sathishkumar K, Rajamohan R, Rajasekar A. Electrochemical oxidation of azo dyes degradation by RuO 2-IrO 2-TiO 2 electrode with biodegradation Aeromonas hydrophila AR1 and its degradation pathway: An integrated approach. CHEMOSPHERE 2023; 345:140516. [PMID: 37879370 DOI: 10.1016/j.chemosphere.2023.140516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Azo dyes are the most varied class of synthetic chemicals with non-degradable characteristics. They are complex compounds made up of many different parts. It was primarily utilized for various application procedures in the dyeing industry. Therefore, it's crucial to develop an economical and environmentally friendly approach to treating azo dyes. Our present investigation is an integrated approach to the electrooxidation (EO) process of azo dyes using RuO2-IrO2-TiO2 (anode) and titanium mesh (cathode) electrodes, followed by the biodegradation process (BD) of the treated EO dyes. Chemical oxygen demand (COD) removal efficiency as follows MB (55%) ≥ MR (45%) ≥ TB (38%) ≥ CR (37%) correspondingly. The fragment generated during the degradation process which was identified with high-resolution mass spectrometry (HRMS) and its degradation mechanism pathway was proposed as demethylation reaction and N-N and C-N/C-S cleavage reaction occurs during EO. In biodegradation studies by Aeromonas hydrophila AR1, the EO treated dyes were completely mineralized aerobically which was evident by the COD removal efficiency as MB (98%) ≥ MR (92.9%) ≥ TB (88%) ≥ CR (87%) respectively. The EO process of dyes produced intermediate components with lower molecular weights, which was effectively utilized by the Aeromonas hydrophila AR1 and resulted in higher degradation efficiency 98%. We reported the significance of the enhanced approach of electrochemical oxidation with biodegradation studies in the effective removal of the pollutants in dye industrial effluent contaminated water environment.
Collapse
Affiliation(s)
- Subramani Abilaji
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
| | - Jayaraman Narenkumar
- Department of Environmental & Water Resources Engineering.School of Civil Engineering (SCE). Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Bhaskar Das
- Department of Environmental & Water Resources Engineering.School of Civil Engineering (SCE). Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Suresh S
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Rajagopal Rajakrishnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Rajaram Rajamohan
- Organic Materials Synthesis Laboratory, School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India.
| |
Collapse
|