1
|
Allouche M, Lassoued A, Ishak S, Boufahja F, Hamadi NB, Ali MAM, Elfalleh W, Badraoui R, Bendif H, Hedfi A. Assessment of the effects of paroxetine and zinc on crustaceans through integrated quantitative and taxon/functional tools with a focus on free-living marine copepods and amphipods. MARINE POLLUTION BULLETIN 2025; 215:117887. [PMID: 40157212 DOI: 10.1016/j.marpolbul.2025.117887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
This experiment examined the individual and combined effects of the antidepressant paroxetine and zinc on copepods and amphipods collected from Jeddah coast in Saudi Arabia. Various treatments were tested, revealing a decline in the abundance and diversity of both groups. Specific sensitivities were noted for copepods: Amphiascus parvulus was particularly affected by paroxetine, while Harpacticus littoralis, Harpacticus gracilis, and Heterolaophonte stroemii stroemii showed increased sensitivity to zinc. In amphipods, Microdeutopus algicola was most impacted across treatments, and Ampithoe ramondi and Nototropis massiliensis were more sensitive in mixed conditions. The study found significant synergistic effects when both pollutants were present, leading to greater reductions in meiofaunal abundance and diversity. The impacts noticed were further supported by in silico modeling focusing on both GH7 Family Cellobiohydrolase (4XNN) and Arginine Kinase wild type (6KY2) derived from Daphnia as a crustacean model.
Collapse
Affiliation(s)
- Mohamed Allouche
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Amal Lassoued
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Sahar Ishak
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Box 5701, Riyadh 11432, Saudi Arabia.
| | - Mohamed A M Ali
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Walid Elfalleh
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Riadh Badraoui
- Department of Biology, University of Ha'il, Ha'il 45851, Saudi Arabia.
| | - Hamdi Bendif
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
2
|
Wang C, Guo R, Guo C, Yin H, Xu J. Photodegradation of typical psychotropic drugs in the aquatic environment: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:320-354. [PMID: 39886903 DOI: 10.1039/d4em00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Continuous consumption combined with incomplete removal during wastewater treatment means residues of psychotropic drugs (PDs), including antidepressants, antipsychotics, antiepileptics and illicit drugs, are continuously entering the aquatic environment, where they have the potential to affect non-target organisms. Photochemical transformation is an important aspect to consider when evaluating the environmental persistence of PDs, particularly for those present in sunlit surface waters. This review summarizes the latest research on the photodegradation of typical PDs under environmentally relevant conditions. According to the analysis results, four classes of PDs discussed in this paper are influenced by direct and indirect photolysis. Indirect photodegradation has been more extensively studied for antidepressants and antiepileptics compared to antipsychotics and illicit drugs. Particularly, the photosensitization process of dissolved organic materials (DOM) in natural waters has received significant research attention due to its ubiquity and specificity. The direct photolysis pathway plays a less significant role, but it is still relevant for most PDs discussed in this paper. The photodegradation rates and pathways of PDs are influenced by various water constituents and parameters such as DOM, nitrate and pH value. The contradictory results reported in some studies can be attributed to differences in experimental conditions. Based on this analysis of the existing literature, the review also identifies several key aspects that warrant further research on PD photodegradation. These results and recommendations contribute to a better understanding of the environmental role of water matrixes and provide important new insights into the photochemical fate of PDs in aquatic environments.
Collapse
Affiliation(s)
- Chuanguang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruonan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hailong Yin
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Fergusson KN, Tanner JL, Brand JA, Hannington SL, Pettersen AK, Sundin J, Saaristo M, Bertram MG, Martin JM, Wong BBM. Effects of long-term fluoxetine exposure on morphology, but not behaviour or metabolic rate, in male guppies (Poecilia reticulata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107082. [PMID: 39270523 DOI: 10.1016/j.aquatox.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Contamination of aquatic ecosystems by pharmaceuticals is a growing threat worldwide. The antidepressant fluoxetine is one such pharmaceutical that is frequently detected in aquatic ecosystems, and has been found to alter the behaviour and physiology of exposed wildlife. Few studies, however, have investigated potential combined effects on behaviour and metabolic rate. In addition, exposures are often short in duration and rarely conducted under ecologically relevant conditions. Here, we examined the impacts of long-term fluoxetine exposure on boldness (exploration, activity, and antipredator behaviour), metabolic rate, and morphology in male guppies (Poecilia reticulata). Specifically, fish were exposed for 8 months (corresponding to approximately two overlapping generations) in semi-natural mesocosms to one of three treatments: an unexposed control (0 ng L-1), or low or high fluoxetine (mean measured concentrations: 30 ng L-1 and 292 ng L-1, respectively). Following exposure, we quantified male exploratory behaviour and activity in a novel environment (maze arena) and antipredator behaviour in the presence or absence of a live predator (spangled perch, Leiopotherapon unicolor), as well as metabolic rate and morphology (mass, standard length, and scaled mass index). Fluoxetine exposure did not significantly alter boldness, metabolic rate, mass, or standard length. However, fluoxetine exposure did alter body condition, whereby fish in the high treatment had a higher scaled mass index than control fish. Our results, considered alongside previous work, underscore the importance of exposure duration in mediating the effects of fluoxetine on fitness-related traits. Continued research under extended exposure periods (i.e., spanning multiple generations) is essential if we are to accurately predict the ecological impacts of fluoxetine on exposed wildlife, and their underlying mechanism(s).
Collapse
Affiliation(s)
- Kate N Fergusson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | - James L Tanner
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | - Jack A Brand
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | | | - Amanda K Pettersen
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Josefin Sundin
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden.
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Environment Protection Authority Victoria, EPA Science, Macleod, Victoria, Australia.
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden; School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Australia.
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Chan WS, Santobuono M, D'Amico E, Selck H. The antidepressant, sertraline, impacts growth and reproduction in the benthic deposit feeder, Tubifex tubifex. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117134. [PMID: 39357382 DOI: 10.1016/j.ecoenv.2024.117134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Among emerging contaminants, pharmaceuticals are considered one of the most pertinent substances that may threaten aquatic ecosystems. Pharmaceuticals are designed to be directed at specific metabolic- and molecular pathways. Thus, they are assumed to be still biologically active when entering the ecosystem and may result in unpremeditated impacts on non-target organisms. One of the most widely used selective serotonin reuptake inhibitors, sertraline (an antidepressant), is regularly found in aquatic environments. However, knowledge about the effects, and in particular, of sediment-associated sertraline in benthic invertebrates is limited. We examined the impacts of chronic exposure (28 d) to sediment-associated sertraline (3.3, 33, 330 μg/g dw sed.) on survival, growth and reproduction in the deposit-feeding oligochaete, Tubifex tubifex. Sertraline significantly decreased T. tubifex survival and growth. Worms exposed to high sertraline concentrations (330 μg/g) had a lower growth rate and reproduction, as indicated by a significantly lower number of cumulated cocoons. Worms exposed to an environmentally relevant concentration (3.3 μg/g) decreased growth but maintained a reproduction rate similar to that of the control. The implications are that adult worms exposed to high sertraline concentrations presumably required more energy for maintenance and detoxification, thereby reducing available energy for reproduction and growth. This represents a trade-off between survival, reproduction and growth. In contrast, T. tubifex exposed to environmentally relevant concentrations allocated more energy to reproduction by slightly increasing the number of cocoons produced and reducing growth. However, the quantity and quality of offspring may be impacted as we observed fewer juveniles in the environmentally relevant treatment than in the control. Overall, the results indicate that sediment-associated sertraline is bioavailable and negatively impacts T. tubifex survival, growth, and reproduction even at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Wing Sze Chan
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Martina Santobuono
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Elettra D'Amico
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Henriette Selck
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
5
|
Tea M, Pan YK, Lister JGR, Perry SF, Gilmour KM. Effects of serta and sertb knockout on aggression in zebrafish (Danio rerio). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:785-799. [PMID: 38416162 DOI: 10.1007/s00359-024-01693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Zebrafish (Danio rerio) are unusual in having two paralogues of the serotonin re-uptake transporter (Sert), slc6a4a (serta) and slc6a4b (sertb), the transporter that serves in serotonin re-uptake from a synapse into the pre-synaptic cell or in serotonin uptake from the extracellular milieu into cells in the peripheral tissues. To address a knowledge gap concerning the specific roles of these paralogues, we used CRISPR/Cas9 technology to generate zebrafish knockout lines predicted to lack functional expression of Serta or Sertb. The consequences of loss-of-function of Serta or Sertb were assessed at the gene expression level, focusing on the serotonergic signalling pathway, and at the behaviour level, focusing on aggression. Whereas serta mRNA was expressed in all tissues examined, with high expression in the heart, gill and brain, only the brain displayed substantial sertb mRNA expression. In both serta-/- and sertb-/- fish, changes in transcript abundances of multiple components of the serotonin signalling pathway were detected, including proteins involved in serotonin synthesis (tph1a, tph1b, tph2, ddc), packaging (vmat2) and degradation (mao), and serotonin receptors (htr1aa, htr1ab). Using a mirror aggression test, serta-/- male but not female fish exhibited greater aggression than wildtype fish. However, both male and female sertb-/- fish displayed less aggression than their wildtype counterparts. These differences in behaviour between serta-/- and sertb-/- individuals hold promise for increasing our understanding of the neurophysiological basis of aggression in zebrafish.
Collapse
Affiliation(s)
- Michael Tea
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Yihang Kevin Pan
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Joshua G R Lister
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
6
|
Meador JP, Ball SC, James CA, McIntyre JK. Using the fish plasma model to evaluate potential effects of pharmaceuticals in effluent from a large urban wastewater treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123842. [PMID: 38554836 DOI: 10.1016/j.envpol.2024.123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Several pharmaceuticals and personal care products (PPCPs) were evaluated using the fish plasma model (FPM) for juvenile Chinook salmon exposed to effluent from a large urban wastewater treatment plant. The FPM compares fish plasma concentrations to therapeutic values determined in human plasma as an indication of potential adverse effects. We used human Cmax values, which are the maximum plasma concentration for a minimum therapeutic dose. Observed and predicted plasma concentrations from juvenile Chinook salmon exposed to a dilution series of whole wastewater effluent were compared to 1%Cmax values to determine Response Ratios (RR) ([plasma]/1%Cmax) for assessment of possible adverse effects. Several PPCPs were found to approach or exceed an RR of 1, indicating potential effects in fish. We also predicted plasma concentrations from measured water concentrations and determined that several of the values were close to or below the analytical reporting limit (RL) indicating potential plasma concentrations for a large number of PPCPs that were below detection. Additionally, the 1%Cmax was less than the RL for several analytes, which could impede predictions of possible effect concentrations. A comparison of observed and predicted plasma concentrations found that observed values were frequently much higher than values predicted with water concentrations, especially for low log10Dow compounds. The observed versus predicted values using the human volume of distribution (Vd), were generally much closer in agreement. These data appear to support the selection of whole-body concentrations to predict plasma values, which relies more on estimating simple partitioning within the fish instead of uptake via water. Overall, these observations highlight the frequently underestimated predicted plasma concentrations and potential to cause adverse effects in fish. Using measured plasma concentrations or predicted values from whole-body concentrations along with improved prediction models and reductions in analytical detection limits will foster more accurate risk assessments of pharmaceutical exposure for fish.
Collapse
Affiliation(s)
- James P Meador
- University of Washington, Dept. of Environmental and Occupational Health Sciences, School of Public Health, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, USA.
| | - Suzanne C Ball
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA.
| | - C Andrew James
- University of Washington Tacoma, Center for Urban Waters, 326 East D Street, Tacoma, WA, 98421-1801, USA.
| | - Jenifer K McIntyre
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA.
| |
Collapse
|
7
|
Dey S. Exploring the Impact of Naphthalene (Polycyclic Aromatic Hydrocarbons) on Anabas testudineus (Bloch) through Dose-Specific Bioenzymological Analysis. ACS OMEGA 2024; 9:14923-14931. [PMID: 38585137 PMCID: PMC10993261 DOI: 10.1021/acsomega.3c08535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
This study addresses the increasing concern about naphthalene, a polycyclic aromatic hydrocarbon (PAH), highlighting its growing threats to the environment and aquatic life. The research examines its impact on Anabas testudineus (Bloch) through a detailed dose-specific bioenzymological analysis. Experimental fish groups were exposed to T1 (0.71 mg/L) and T2 (1.42 mg/L) naphthalene concentrations, representing 25 and 50% of the LC50 value, respectively, over a 1-21 day period. Following the experiment, water samples underwent physicochemical analysis, while fish tissues were examined for diverse bioenzymological parameters. Among these parameters, aspirate aminotransferase (AST) and alanine aminotransferase (ALT) serve as crucial indicators for monitoring the physiological status of fish and addressing pollution induced by PAHs, especially naphthalene. Statistical significance was observed in morpho-pathological changes and erythrocyte alterations, particularly the presence of tear-drop appearance (Tr) positively interacting with swelled cells (Sc), vacuolated cells (Va), and sickle cells (Sk) (P < 0.05). These findings highlight tear-drop appearance (Tr) as a significant biomarker in response to naphthalene exposure. The observed changes in A. testudineus tissue bioenzymology, apoptosis, and erythrocytic alterations were exposure and dose-dependent. The research highlights the significance of overseeing and controlling PAH concentrations in aquatic ecosystems to ensure the well-being of A. testudineus (Bloch).
Collapse
Affiliation(s)
- Sukhendu Dey
- The University of Burdwan, Burdwan, West Bengal 713104, India
| |
Collapse
|
8
|
Ferreira CSS, Venâncio C, Almeida M, Lopes I, Kille P, Oliveira M. Sub-chronic exposure to paroxetine disrupts ecologically relevant behaviours in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170405. [PMID: 38280602 DOI: 10.1016/j.scitotenv.2024.170405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The functional conservation of important selective serotonin reuptake inhibitor (SSRI) targets in non-target organisms raises concerns about their potential adverse effects on the ecosystems. Although the environmental levels of SSRIs like paroxetine (PAR) have risen, the knowledge regarding the effects of long-term exposure to PAR is limited. This study investigated the impact of sub-chronic exposure (21 days) to two sub-lethal concentrations of PAR (40 and 400 μg/L) on the behaviour of adult zebrafish in different scenarios: basal activity (under dark and light conditions), stress response (evoked by sudden light transitions) and stress response recovery. A new framework was employed for the integrative study of fish's swimming performance based on their innate ability to respond to light shifts. Several swimming-associated parameters (e.g., total swimming distance, time of inactivity, swimming angles) and thigmotaxis were monitored for an integrated analysis in each scenario. Data revealed reduced swimming activity, impaired behavioural response to stress and alterations in stress recovery of PAR-exposed fish. An anxiolytic effect was particularly noticeable in fish basal swimming activity in the dark at 400 μg/L and in the behavioural response to stress (from dark to light) and stress recovery (from light to dark) for organisms exposed to 40 μg/L. The detected PAR-induced behavioural modifications suggest a disruption of brain glucocorticoid signalling that may have implications at the individual level (e.g., changing behavioural responses to predators), with potential repercussions on the population and community levels. Therefore, the applied protocol proved sensitive in detecting behavioural changes induced by PAR.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cátia Venâncio
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mónica Almeida
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Ferreira CSS, Venâncio C, Kille P, Oliveira M. Are early and young life stages of fish affected by paroxetine? A case study with Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165706. [PMID: 37499832 DOI: 10.1016/j.scitotenv.2023.165706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Paroxetine (PAR) is a selective serotonin reuptake inhibitor (SSRI) antidepressant increasingly detected in surface waters worldwide. Its environmental presence raises concerns about the potential detrimental effects on non-target organisms. Thus, this study aimed to increase knowledge on PAR's potential environmental impacts, assessing the effects of commercial formulation (PAR-c) and active ingredient (PAR-a) on fish. Therefore, the short-term exposure effects of PAR-c and PAR-a were assessed on zebrafish (Danio rerio) embryos/larvae to determine the most toxic formulation [through median lethal (LC50) and effective concentrations (EC50)]. PAR-c and PAR-a induced morphological abnormalities (scoliosis) in a dose-dependent manner from 96 hours post-fertilization onwards, suggesting the involvement of a fully functional biotransformation system. As PAR-c exhibited higher toxicity, it was selected to be tested in the subsequent stage (juvenile stage), which was more sensitive (lower LC50). PAR-c significantly decreased fish swimming activity and disrupted fish stress response. Overall, the results highlight the ability of PAR-c to adversely affect fish swimming performance, an effect that persisted even after exposure ceases (21-day depuration), suggesting that PAR-c may impair individual fitness.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cátia Venâncio
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
10
|
Polverino G, Aich U, Brand JA, Bertram MG, Martin JM, Tan H, Soman VR, Mason RT, Wong BBM. Sex-specific effects of psychoactive pollution on behavioral individuality and plasticity in fish. Behav Ecol 2023; 34:969-978. [PMID: 37969553 PMCID: PMC10636733 DOI: 10.1093/beheco/arad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 11/17/2023] Open
Abstract
The global rise of pharmaceutical contaminants in the aquatic environment poses a serious threat to ecological and evolutionary processes. Studies have traditionally focused on the collateral (average) effects of psychoactive pollutants on ecologically relevant behaviors of wildlife, often neglecting effects among and within individuals, and whether they differ between males and females. We tested whether psychoactive pollutants have sex-specific effects on behavioral individuality and plasticity in guppies (Poecilia reticulata), a freshwater species that inhabits contaminated waterways in the wild. Fish were exposed to fluoxetine (Prozac) for 2 years across multiple generations before their activity and stress-related behavior were repeatedly assayed. Using a Bayesian statistical approach that partitions the effects among and within individuals, we found that males-but not females-in fluoxetine-exposed populations differed less from each other in their behavior (lower behavioral individuality) than unexposed males. In sharp contrast, effects on behavioral plasticity were observed in females-but not in males-whereby exposure to even low levels of fluoxetine resulted in a substantial decrease (activity) and increase (freezing behavior) in the behavioral plasticity of females. Our evidence reveals that psychoactive pollution has sex-specific effects on the individual behavior of fish, suggesting that males and females might not be equally vulnerable to global pollutants.
Collapse
Affiliation(s)
- Giovanni Polverino
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
- Department of Ecological and Biological Sciences, University of Tuscia, L.go dell'Università snc, Viterbo, 01100, Italy
| | - Upama Aich
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - Jack A Brand
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-907 36, Umeå,Sweden
| | - Jake M Martin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-907 36, Umeå,Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b114 18, Stockholm, Sweden
| | - Hung Tan
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - Vrishin R Soman
- Department of Mechanical and Aerospace Engineering, New York University, 370 Jay Street, Brooklyn, 11201, NY, USA
| | - Rachel T Mason
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
- School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, 3125, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| |
Collapse
|