1
|
Viscusi G, Gorrasi G. Fabrication of novel multifunctional copper-functionalized hemp fibers to remove anionic dye and non-steroidal anti-inflammatory drugs from wastewaters. CHEMOSPHERE 2025; 372:144039. [PMID: 39755210 DOI: 10.1016/j.chemosphere.2024.144039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
This research aims to design a novel selective and multifunctional adsorbent based on Al/Cu modified hemp fibres as a novel and multifunctional adsorbent for removing different classes of pollutants. The adsorbent, which was widely characterized, was shown to be more effective in removing anionic dyes compared to cationic ones. Among the tested dyes, methyl orange (MO) was selected to understand how different parameters, such as temperature (20-80 °C), contact time, pH (2-12), initial dye concentration (50-300 ppm), salinity and adsorbent dosage (1-10 g/L) affect the removal capacity. The Langmuir model greatly describes the adsorption data with a qm = 338.98 mg/g. Thermodynamic calculation proved that the adsorption process is spontaneous (negative ΔG) and endothermic (positive enthalpy) while the adsorption process is governed by either film or pore diffusion. The Design of Experiment algorithm was adopted to predict the recovery of MO through a response surface model by varying simultaneously the pH, temperature and initial dye concentration, in accordance with the experimental data. It was demonstrated the multifunctional properties of the produced adsorbent since it showed a great selectivity in removing two anti-inflammatory drugs (91% for piroxicam and 34% for diclofenc sodium salt). Finally, the selective removal of different anionic dyes in a mixed solution was proved, following the order methyl orange>congo red>acid yellow 17. The reported approach presents a sustainable, low-cost option for the preparation of novel and effective adsorbents with interesting properties to achieve remarkable adsorption of anionic dyes and anti-inflammatory drugs with a great reusability.
Collapse
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Salerno, Italy.
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Salerno, Italy
| |
Collapse
|
2
|
Baran NY, Çalışkan M, Kızılbulut N, Baran T. Pd@Na-CMC/g-C 3N 4: A nanostructured catalyst system based on sodium carboxymethyl cellulose/graphitic carbon nitride hydrogel beads and its performance in the treatment of organic and inorganic pollutants in water. Int J Biol Macromol 2024; 276:134001. [PMID: 39032897 DOI: 10.1016/j.ijbiomac.2024.134001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The chemical reduction of organic or inorganic water contaminants is very important for both human health and pollution control. However, challenges still persist in preparing catalysts for chemical reduction, and there is a need for the development of inexpensive, easily synthesized, and effective catalyst systems. In this study, we have synthesized a new palladium nanocatalyst supported on the composite hydrogel beads composed of sodium carboxymethyl cellulose (Na-CMC) and graphitic carbon nitride (g-C3N4). The Pd@Na-CMC/g-C3N4 composite was fully characterized using FE-SEM, XRD, BET, EDS, TEM, and EDS mapping analysis, confirming its successful preparation at the nano-scale. Pd@Na-CMC/g-C3N4 was utilized to reduce various nitroaromatics such as 4-nitrophenol (4-NP), 2-nitrophenol (2-NA), 4-nitroaniline (4-NA), 4-nitro-o-phenylenediamine (4-NPDA), and organic dyes including methylene blue (MB), methyl orange (MO), Rhodamine B (RhB), as well as potassium hexacyanoferrate(III) (K3[Fe(CN)6]), which is the inorganic contaminant. While Pd@Na-CMC/g-C3N4 completely reduced nitroaromatics within 65-120 s at 1 × 10-4 M concentration, organic dyes within 0-60 s at 1 × 10-5 M concentration, and K3[Fe(CN)6] within 90 s at 0.002 M concentration in water at room temperature. Rate constant values (kapp) of 4-NP, 2-NA, 4-NA, 4-NPDA, MO, RhB, and K3[Fe(CN)6] were calculated to be 0.0085 s-1, 0.012 s-1, 0.016 s-1, 0.01 s-1, 0.013 s-1, 0.021 s-1, and 0.015 s-1, respectively. Additionally, the Pd@Na-CMC/g-C3N4 displayed high stability and even after four consecutive runs, it was able to reduce 4-NP and MO without any significant loss in its performance.
Collapse
Affiliation(s)
- Nuray Yılmaz Baran
- Department of Chemistry Technology, Technical Vocational School, Aksaray University, 68100 Aksaray, Turkey.
| | - Melike Çalışkan
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Nurcan Kızılbulut
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| |
Collapse
|
3
|
Al-Hazeef MSF, Aidi A, Hecini L, Osman AI, Hasan GG, Althamthami M, Ziad S, Otmane T, Rooney DW. Valorizing date palm spikelets into activated carbon-derived composite for methyl orange adsorption: advancing circular bioeconomy in wastewater treatment-a comprehensive study on its equilibrium, kinetics, thermodynamics, and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50493-50512. [PMID: 39096460 PMCID: PMC11364697 DOI: 10.1007/s11356-024-34581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Leveraging date palm spikelets (DPS) as a precursor, this study developed a DPS-derived composite (ZnO@DPS-AC) for water treatment, focusing on methyl orange (MO) removal. The composite was synthesized through ZnCl2 activation and pyrolysis at 600 °C. Comprehensive characterization was conducted using TGA, FTIR, XRD, SEM/EDS, and pHPZC. Characterization revealed a highly carbonaceous material (> 74% carbon) with significant porosity and surface functional groups. ZnO@DPS-AC demonstrated rapid MO removal, achieving over 45% reduction within 10 min and up to 99% efficiency under optimized conditions. The Langmuir model-calculated maximum adsorption capacity reached 226.81 mg/g at 20 °C. Adsorption mechanisms involved hydrogen bonding, π-π interactions, and pore filling. The composite showed effectiveness in treating real wastewater and removing other pollutants. This study highlights the potential of agricultural waste valorization in developing efficient, sustainable adsorbents for water remediation, contributing to circular bioeconomy principles.
Collapse
Affiliation(s)
- Mazen S F Al-Hazeef
- Laboratory of LARGHYDE, University of Biskra, P.O. Box 145, 07000, Biskra, Algeria
| | - Amel Aidi
- Laboratory of LARGHYDE, University of Biskra, P.O. Box 145, 07000, Biskra, Algeria
- Department of Industrial Chemistry, University of Biskra, P.O. Box 145, 07000, Biskra, Algeria
| | - Lynda Hecini
- Scientific and Technical Research Center for Arid Zones CRSTRA, University of Biskra, PO Box 145, 07000, Biskra, Algeria
- Laboratory of LARHYSS, University of Biskra, BP 145 RP, 07000, Biskra, Algeria
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, BT9 5AG, UK.
| | - Gamil Gamal Hasan
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Mohammed Althamthami
- Department of Industrial Chemistry, University of Biskra, P.O. Box 145, 07000, Biskra, Algeria
| | - Sabrina Ziad
- Laboratory of LARHYSS, University of Biskra, BP 145 RP, 07000, Biskra, Algeria
| | - Tarik Otmane
- Scientific and Technical Research Center for Arid Zones CRSTRA, University of Biskra, PO Box 145, 07000, Biskra, Algeria
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, BT9 5AG, UK
| |
Collapse
|
4
|
Wang C, Feng X, Tian Y, Huang X, Shang S, Liu H, Song Z, Zhang H. Facile synthesis of lignin-based Fe-MOF for fast adsorption of methyl orange. ENVIRONMENTAL RESEARCH 2024; 251:118651. [PMID: 38479718 DOI: 10.1016/j.envres.2024.118651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 06/03/2024]
Abstract
To rapidly remove dyes from wastewater, iron-based metal-organic frameworks modified with phenolated lignin (NH2-MIL@L) were prepared by a one-step hydrothermal method. Analyses of the chemical structure and adsorption mechanism of the NH2-MIL@L proved the successful introduction of lignin and the enhancement of its adsorption sites. Compared with NH2-MIL-101-Fe without phenolated lignin, the modification with lignin increased the methyl orange (MO) adsorption rate of NH2-MIL@L. For the best adsorbent, NH2-MIL@L4, the MO adsorption efficiency in MO solution reached 95.09% within 5 min. NH2-MIL@L4 reached adsorption equilibrium within 90 min, exhibiting an MO adsorption capacity of 195.31 mg/g. The process followed pseudo-second-order kinetics and the Dubinin-Radushkevich model. MO adsorption efficiency of NH2-MIL@L4 was maintained at 89.87% after six adsorption-desorption cycles. In mixed solutions of MO and methylene blue (MB), NH2-MIL@L4 achieved an MO adsorption of 94.02% at 5 min and reached MO adsorption equilibrium within 15 min with an MO adsorption capacity of 438.6 mg/g, while the MB adsorption equilibrium was established at 90 min with an MB adsorption rate and capacity of 95.60% and 481.34 mg/g, respectively. NH2-MIL@L4 sustained its excellent adsorption efficiency after six adsorption-desorption cycles (91.2% for MO and 93.4% for MB). The process of MO adsorption by NH2-MIL@L4 followed the Temkin model and pseudo-second-order kinetics, while MB adsorption followed the Dubinin-Radushkevich model and pseudo-second-order kinetics. Electrostatic interactions, π-π interactions, hydrogen bonding, and synergistic interactions affected the MO adsorption process of NH2-MIL@L4.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuezhen Feng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Yabing Tian
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 210042, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China.
| |
Collapse
|
5
|
Ahamad Z, Nasar A. Polypyrrole-decorated bentonite magnetic nanocomposite: A green approach for adsorption of anionic methyl orange and cationic crystal violet dyes from contaminated water. ENVIRONMENTAL RESEARCH 2024; 247:118193. [PMID: 38220086 DOI: 10.1016/j.envres.2024.118193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
In the presented study, a novel polypyrrole-decorated bentonite magnetic nanocomposite (MBnPPy) was synthesized for efficient removal of both anionic methyl orange (MO) and cationic crystal violet (CV) dyes from contaminated water. The synthesis of this novel adsorbent involved a two-step process: the magnetization of bentonite followed by its modification through in-situ chemical polymerization. The adsorbent was characterized by SEM/EDX, TEM/SAED, BET, TGA/DTA-DTG, FTIR, VSM, and XRD studies. The investigation of the adsorption properties of MBnPPy was focused on optimizing various parameters, such as dye concentration, medium pH, dosage, contact time, and temperature. The optimal conditions were established as follows: dye concentration of Co (CV/MO) at 100 mg/L, MBnPPy dosage at 2.0 g/L, equilibrium time set at 105 min for MO and 120 min for CV, medium pH adjusted to 5.0 for MO dye and 8.0 for CV dye, and a constant temperature of 303.15 K. The different kinetic and isotherm models were applied to fit the experimental results, and it was observed that the Pseudo-2nd-order kinetics and Langmuir adsorption isotherm were the best-fitted models. The maximal monolayer adsorption capacities of the adsorbent were found to be 78.74 mg/g and 98.04 mg/g (at 303.15 K) for CV and MO, respectively. The adsorption process for both dyes was exothermic and spontaneous. Furthermore, a reasonably good regeneration ability of MBnPPy (>83.45%/82.65% for CV/MO) was noted for up to 5 adsorption-desorption cycles with little degradation. The advantages of facile synthesis, cost-effectiveness, non-toxicity, strong adsorption capabilities for both anionic and cationic dyes, and easy separability with an external magnetic field make MBnPPy novel.
Collapse
Affiliation(s)
- Zeeshan Ahamad
- Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202 002, India
| | - Abu Nasar
- Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
6
|
Purnomo AS, Hairunnisa FW, Misdar, Maria VP, Rohmah AA, Putra SR, Putro HS, Rizqi HD. Anionic dye removal by immobilized bacteria into alginate-polyvinyl alcohol-bentonite matrix. Heliyon 2024; 10:e27871. [PMID: 38533018 PMCID: PMC10963318 DOI: 10.1016/j.heliyon.2024.e27871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Methyl orange (MO) is commonly used in the textile dyeing industry, posing serious health and environmental hazards due to its carcinogenic, mutagenic properties, and potential for bioaccumulation. Appropriate handling is needed to solve these problems by harnessing the capacity of living microorganisms and the adsorption properties of bentonite clay minerals. Although the conventional approach predominantly depends on free cells, recent study has developed other methods such as immobilization techniques. Therefore, this study aimed to investigate the efficiency of the immobilization matrix comprising sodium alginate (SA), polyvinyl alcohol (PVA), and bentonite by modifying Pseudomonas aeruginosa, Bacillus subtilis, and Ralstonia pickettii for MO removal of 50 mg/L. In the free cell technique, the results showed that the MO decreased to 43.13, 36.61, and 27.45% for each of the bacteria within 10 days at 35 °C. The bacterial immobilization technique, including live immobilized P. aeruginosa (LIPa), live immobilized B. subtilis (LIBs), and live immobilized R. pickettii (LIRp) beads also demonstrated significant efficiency, achieving MO removal rates up to 97.15, 95.65, and 66.63% within 10 days. These synthesized beads showed reusability, with LIPa, LIBs, and LIRp being used up to 4, 4, and 2 cycles, respectively. The external and internal surface conditions were observed using SEM instrument and the results showed that all components were agglomerated. Comparisons using dead bacterial biomass indicated that treatment with live bacteria consistently yielded significantly higher removal rates. These results showed the effectiveness of immobilized bacteria in MO removal, offering a promising potential in reducing pollutants.
Collapse
Affiliation(s)
- Adi Setyo Purnomo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Frida Wahyu Hairunnisa
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Misdar
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Virda Putri Maria
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Alya Awinatul Rohmah
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Surya Rosa Putra
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Herdayanto Sulistyo Putro
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Hamdan Dwi Rizqi
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| |
Collapse
|
7
|
Akhi A, Hasan A, Saha N, Howlader S, Bhattacharjee S, Dey K, Atique Ullah AKM, Bhuiyan FR, Chakraborty AK, Akhtar US, Shaikh MAA, Dey BK, Bhattacharjee S, Ganguli S. Ophiorrhiza mungos-Mediated Silver Nanoparticles as Effective and Reusable Adsorbents for the Removal of Methylene Blue from Water. ACS OMEGA 2024; 9:4324-4338. [PMID: 38313493 PMCID: PMC10831830 DOI: 10.1021/acsomega.3c05992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
Green synthesis of silver nanoparticles (AgNPs) using a plant extract has attracted significant attention in recent years. It is found as an alternative for other physicochemical approaches because of its simplicity, low cost, and eco-friendly rapid steps. In the present study, Ophiorrhiza mungos (Om)-mediated AgNPs have been shown to be effective bioadsorbents for methylene blue (MB) dye removal (88.1 ± 1.74%) just after 1 h at room temperature in the dark from an aqueous medium for the first time. Langmuir and Freundlich isotherms fit the experimental results having the correlation coefficient constants R2 = 0.9956 and R2 = 0.9838, respectively. From the Langmuir fittings, the maximum adsorption capacity and adsorption intensity were found to be 80.451 mg/g and 0.041, respectively, indicating the excellent performance and spontaneity of the process. Taking both models under consideration, interestingly, our findings indicated a fairly cooperative multilayer adsorption that might have been governed by chemisorption and physisorption, whereas the adsorption kinetics followed the pseudo-second-order kinetics mechanism. The positive and low values of enthalpy (ΔH0 = 4.91 kJ/mol) confirmed that adsorption is endothermic and physical in nature; however, the negative free energy and positive entropy value (ΔS0 = 53.69 J/mol K) suggested that the adsorption is spontaneous. The biosynthesized adsorbent was successfully reused up to the fifth cycle. A proposed reaction mechanism for the adsorption process of MB dye onto Om-AgNPs is suggested. The present study may offer a novel finding such as an effective and sustainable approach for the removal of MB dye from water using biosynthesized Om-AgNPs as reusable adsorbents at a comparatively faster rate at a low dose for industrial applications.
Collapse
Affiliation(s)
- Aklima
A Akhi
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Abid Hasan
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Nakshi Saha
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sabbir Howlader
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sabonty Bhattacharjee
- Centre
for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Kamol Dey
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - A. K. M. Atique Ullah
- Nanoscience
and Technology Research Laboratory, Atomic Energy Center, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - Farhana Rumzum Bhuiyan
- Laboratory
of Biotechnology and Molecular Biology, Department of Botany, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ashok Kumar Chakraborty
- Department
of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Umme Sarmeen Akhtar
- Bangladesh
Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md. Aftab Ali Shaikh
- Bangladesh
Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Benu Kumar Dey
- Department
of Chemistry and Pro-Vice-Chancellor (Academic), University of Chittagong, Chattogram 4331, Bangladesh
| | - Samiran Bhattacharjee
- Centre
for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Sumon Ganguli
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| |
Collapse
|
8
|
Wiśniewska M, Sadłowska A, Herda K, Urban T, Nowicki P. Production of Mineral-Carbon Composites and Activated Carbons as a Method of Used Gear Oil, Ashes, and Low-Quality Brown Coals Management. Molecules 2023; 28:6919. [PMID: 37836762 PMCID: PMC10574163 DOI: 10.3390/molecules28196919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
The main objective of this study was to assess the usefulness of the low-quality brown coal, ash obtained as a result of its combustion, as well as used gear oil for the production of mineral-carbon adsorbents. The adsorbents were characterized in terms of textural parameters, acidic-basic character of the surface, mineral matter contribution to the structure, as well as their suitability for drinking water purification. Adsorption tests were carried out against two synthetic dyes-methylene blue and methyl orange. In order to understand the nature of the organic pollutants adsorption, the effect of the initial dye concentration, temperature, and pH of the system as well as the phase contact time were investigated. The obtained mineral-carbon composite and activated carbons significantly differed not only in terms of the elemental composition and chemical character of the surface (from slightly acidic to strongly alkaline), but also showed a very diverse degree of specific surface development (from 21 to 656 m2/g) and the type of porous structure generated (from micro/mesoporous to typically mesoporous). Adsorption tests showed that the efficiency of organic dye removal from aqueous solutions primarily depends on the type of the adsorbent and adsorbate applied, and, to a lesser extent, on the temperature and pH of the system. In turn, kinetic studies have shown that the sorption of dyes on such materials is consistent with a pseudo-second-order kinetics model, regardless of the type of adsorbed dye.
Collapse
Affiliation(s)
- Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Amanda Sadłowska
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Karolina Herda
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Teresa Urban
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Piotr Nowicki
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|