1
|
Singh R, Bansal SL, Tripathi SC, Ahmad I, Srivastava N. Nanofabrication of Biochar from Cellulosic Waste for Bio-Sensing Application of Waste Water Treatment: Process, Challenges and Future Update. Indian J Microbiol 2025; 65:297-305. [PMID: 40371024 PMCID: PMC12069177 DOI: 10.1007/s12088-024-01387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/28/2024] [Indexed: 05/16/2025] Open
Abstract
Waste water pollution is one of the most prominent concerns across the globe due to its severe impact on human health and environment which affects the ecosystem directly. Therefore, for sustainable and consistence environment, waste water treatment is the primary and mandatory agenda of agencies involve worldwide to rectify this issue. Additionally, among various sustainable trail based strategies for waste water treatment, biochar catalyst utilization is very potential and impactful whereas, use of nanoform of biochar which is also known as nanobiochar is more impactful in waste water pollution remediation. Therefore, the present review represents the sustainable fabrication of nanobiochar from organic waste biomass and process strategy for its reduction from bulk form to nano form using different sustainability procedures. Type and mode of action of different biomass, types, fabrication, methods and functional properties along with their functional efficacy have been highlighted and discussed in the review. Existing challenges and sustainable possibilities to overcome them have also discussed as future prospects for sustainable and promising application of nanobiochar as potential sensor foreco-friendly remediation of waste water pollution. Graphical Abstract The figure present general overview to fabricate nanobiochar from waste biomass biomass for environmental application.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi, 110025 India
| | - Swarn Lata Bansal
- Department of Chemistry, University of Lucknow, Lucknow, UP 226007 India
| | - Subhash C. Tripathi
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406 India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi, UP 221005 India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| |
Collapse
|
2
|
Zhao J, Ji C, Peng C, Wang Y, Yang S, Li Y, Tao E. Interfacial interaction mechanism between Mn doped highly conjugated biochar and berberine hydrochloride. J Colloid Interface Sci 2025; 677:108-119. [PMID: 39083888 DOI: 10.1016/j.jcis.2024.07.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
MnSO4-modified biochar (Mn-BC) was synthesized to remove berberine hydrochloride (BH) from wastewater by utilizing tea waste as raw material and MnSO4 as modifier. Brunel Emmett Taylor (BET) analysis reveals that the specific surface area (SSA) and average pore size (Dave) of Mn-BC are 1.4 and 7 times higher than those of pristine biochar apart, attributing to the dissociation effect can promote the dispersion of MnSO4 in the pores of the biochar. Meanwhile, the doping of Mn not only introduces additional oxygen-containing functional groups (OCFGs), but also modulates the π electron density. Furthermore, Response surface method (RSM) analysis reveals that Mn-BC dosage has the most significant effect on BH removal, followed by BH concentration and pH value. Kinetic and isothermal studies reveal that the BH adsorption process of Mn-BC was mainly dominated by chemical and monolayer adsorption. Meanwhile, density functional theory (DFT) calculations confirm the contribution of Mn doping to the conjugation effect in the adsorption system. Originally proposed Mn-BC is one potentially propitious material to eliminate BH from wastewater, meanwhile this also provides a newfangled conception over the sustainable utilization of tea waste resources.
Collapse
Affiliation(s)
- Jiangmei Zhao
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Cheng Ji
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yuanfei Wang
- Liaoning Huadian Environmental Testing Co., LTD, Jinzhou 121013, Liaoning, China
| | - Shuyi Yang
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| | - Yun Li
- Chemistry & Chemical Engineering of College, Yantai University, Yantai 264005, China.
| | - E Tao
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| |
Collapse
|
3
|
Thi HP, Bui TH, Nguyen MV, Nguyen MP, Hien Chu TT, Nguyen HT. Exploring the potential of CoMoO 4-modified graphitic carbon nitride to boost oxidation of amoxicillin micropollutants in hospital wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:219. [PMID: 38849667 DOI: 10.1007/s10653-024-01990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 06/09/2024]
Abstract
This study investigates the removal of amoxicillin micropollutants (AM) from hospital wastewater using CoMoO4-modified graphitic carbon nitride (CMO/gCN). Consequently, CMO/gCN exhibits notable improvements in visible light absorption and electron-hole separation rates compared to unmodified gCN. Besides, CMO/gCN significantly enhances the removal efficiency of AM, attaining an impressive 96.5%, far surpassing the performance of gCN at 48.6%. Moreover, CMO/gCN showcases outstanding reusability, with AM degradation performance exceeding 70% even after undergoing six cycles of reuse. The removal mechanism of AM employing CMO/gCN involves various photoreactions of radicals (•OH, •O2-) and amoxicillin molecules under light assistance. Furthermore, CMO/gCN demonstrates a noteworthy photodegradation efficiency of AM from hospital wastewater, reaching 92.8%, with a near-complete reduction in total organic carbon levels. Detailed discussions on the practical applications of the CMO/gCN photocatalyst for removal of micropollutants from hospital wastewater are provided. These findings underline the considerable potential of CMO/gCN for effectively removing various pollutants in environmental remediation strategies.
Collapse
Affiliation(s)
- Huong Pham Thi
- Laboratory of Environmental Sciences and Climate Change, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Trung Hieu Bui
- VKTech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Minh Viet Nguyen
- VNU Key Laboratory of Advanced Material for Green Growth, Faculty of Chemistry, VNU University of Science, 334 Nguyen Trai Street, Hanoi, Thanh Xuan, Vietnam.
| | - Minh Phuong Nguyen
- Faculty of Chemistry, VNU University of Science, 334 Nguyen Trai Street, Hanoi, Thanh Xuan, Vietnam
| | - Thi Thu Hien Chu
- Department of Chemistry, Faculty of Building Materials, Hanoi University of Civil Engineering (HUCE), Giai Phong, Hai Ba Trung, Hanoi, 10000, Vietnam
| | - Hai Trieu Nguyen
- Faculty of Chemistry, VNU University of Science, 334 Nguyen Trai Street, Hanoi, Thanh Xuan, Vietnam
| |
Collapse
|
4
|
Huong NTM, Hoai PTT, Quyen DTT. Enhanced removal of pesticide micropollutant and bacteria using solar light-assisted Ag-doped TiO 2: prospects for environmental and health impacts. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:229. [PMID: 38849639 DOI: 10.1007/s10653-024-02017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/27/2024] [Indexed: 06/09/2024]
Abstract
Pesticide micropollutants like 4-chlorophenol (4CP) and E. coli bacteria represent a substantial hazard, impacting both the environment and human health. This study delves into the effectiveness of Ag-doped TiO2 (Ag@TiO2) in removing both 4CP and E. coli. Ag@TiO2 has demonstrated remarkable effectiveness in removing 4CP under both solar and visible light conditions, earning degradation efficiencies of 91.3% and 72.8%, respectively. Additionally, it demonstrates outstanding photodegradation efficiency for 4CP (98.8%) at an initial concentration of 1 mg L-1. Moreover, Ag@TiO2 exhibited substantially higher removal performance for 4CP (81.6%) compared to TiO2 (27.6%) in wastewater. Analysis of the radicals present during the photodegradation process revealed that ·O2- primarily drives the decomposition of 4CP, with h+ and ·OH also playing significant roles in the oxidation reactions of the pollutant. Interestingly, even under dark conditions, Ag@TiO2 exhibited the capability to eliminate approximately 20% of E. coli, a percentage that increased to over 96% under solar light. In addition, the prospects for environmental and health impacts of utilizing Ag@TiO2 for pesticide micropollutant removal and bacteria were discussed.
Collapse
Affiliation(s)
- Ngyuyen Thi Mai Huong
- Faculty of Food Technology, University of Economics-Technology for Industries (UNETI), Hanoi, 11622, Vietnam
| | - Pham Thi Thu Hoai
- Faculty of Food Technology, University of Economics-Technology for Industries (UNETI), Hanoi, 11622, Vietnam.
| | - Dang Thi Thanh Quyen
- Faculty of Food Technology, University of Economics-Technology for Industries (UNETI), Hanoi, 11622, Vietnam
| |
Collapse
|
5
|
Liu Y, Zhu K, Yan B. Food and environmental safety monitoring platform based on Tb(III) functionalized HOF hybrids for ultrafast detection of thiabendazole and 2-chlorophenol. Talanta 2024; 272:125829. [PMID: 38422907 DOI: 10.1016/j.talanta.2024.125829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Development of efficient and intelligent method for detecting harmful agrochemicals in resource-limited settings remains an urgent need to ensure food and environmental safety. Herein, a novel dual-emitting Tb3+-modified hydrogen-bonded organic framework (Tb@TBTC, TBTC is the ligand of HOF-TBTC.) with visible green fluorescence has been prepared through coordination post-synthetic modification. Tb@TBTC can be designed as a fluorescence sensor for the identification of two harmful carcinogenic pesticides, thiabendazole (TBZ) and 2-chlorophenol (2-CP) with high sensitivity, high efficiency and excellent selectivity. Tb@TBTC can also adsorb 2-CP with high adsorption rate. In realistic fruit juice and river water samples, the detection limits of Tb@TBTC toward TBZ and 2-CP are as low as 2.73 μM and 2.18 μM, respectively, demonstrating the feasibility in practical application. Furthermore, an intelligent real-time and on-site monitoring platform for 2-CP detection is constructed based on Tb@TBTC-agarose hydrogel films with the assistance of back propagation neural network, which can efficiently and accurately determine the concentration of 2-CP from fluorescence images through human-machine interaction. This work presents a facile pathway to prepare Tb@HOF fluorescent sensor for food and ecological environment safety, which is highly promising for preventing human disease and improving global public health.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Kai Zhu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China.
| |
Collapse
|
6
|
Pham MT, Chu TTH, Vu DC. Mitigation of caffeine micropollutants in wastewater through Ag-doped ZnO photocatalyst: mechanism and environmental impacts. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:168. [PMID: 38592575 DOI: 10.1007/s10653-024-01952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Micropollutants, such as caffeine (M-CF), pose a significant threat to ecosystems and human health through water and food sources. The utilization of metal oxide-based photocatalysts has proven to be an effective treatment method for the removal of organic pollutants. This study explores the efficacy of Ag-doped ZnO (Ag/ZnO) for removing M-CF from wastewater. The characterization of Ag/ZnO underscores the crucial role of band gap energy in the photocatalytic degradation process. This parameter influences the separation of electrons and holes (e-/h+) and the generation of reactive radicals. Under solar light, Ag/ZnO demonstrated markedly superior photocatalytic activity, achieving an impressive degradation efficiency of approximately 93.4%, in stark contrast to the 53.2% occurred by ZnO. Moreover, Ag/ZnO exhibited a remarkable degradation efficiency of M-CF in wastewater, reaching 83.5%. A key advantage of Ag/ZnO lies in its potential for recovery and reuse in subsequent treatments, contributing to a reduction in operational costs for industrial wastewater treatment. Impressively, even after five cycles, Ag/ZnO maintained a noteworthy photodegradation rate of M-CF at 78.6%. These results strongly suggest that Ag/ZnO presents a promising solution for the removal of micropollutants in wastewater, with potential scalability for industrial and large-scale applications.
Collapse
Affiliation(s)
- Minh Thuy Pham
- Department of Chemistry, Faculty of Building Materials, Ha Noi University of Civil Engineering (HUCE), Giai Phong, Hai Ba Trung, Hanoi, 10000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
| | - Thi Thu Hien Chu
- Department of Chemistry, Faculty of Building Materials, Ha Noi University of Civil Engineering (HUCE), Giai Phong, Hai Ba Trung, Hanoi, 10000, Vietnam.
| | - Duc Chinh Vu
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
| |
Collapse
|
7
|
Lin X, Zhou Q, Xu H, Chen H, Xue G. Advances from conventional to biochar enhanced biotreatment of dyeing wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167975. [PMID: 37866601 DOI: 10.1016/j.scitotenv.2023.167975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
DW (Dyeing wastewater) contains a large amount of dye organic compounds. A considerable proportion of dye itself or its intermediate products generated during wastewater treatment process exhibits CMR (Carcinogenic/Mutagenic/Toxic to Reproduction) toxicity. Compared with physicochemical methods, biological treatment is advantageous in terms of operating costs and greenhouse gas emissions, and has become the indispensable mainstream technology for DW treatment. This article reviews the adsorption and degradation mechanisms of dye organic compounds in wastewater and analyzed different biological processes, ranging from traditional methods to processes enhanced by biochar (BC). For traditional biological processes, microbial characteristics and communities were discussed, as well as the removal efficiency of different bioreactors. BC has adsorption and redox electron mediated effects, and coupling with biological treatment can further enhance the process of biosorption and degradation. Although BC coupled biological treatment shows promising dye removal, further research is still needed to optimize the treatment process, especially in terms of technical and economic competitiveness.
Collapse
Affiliation(s)
- Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qifan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huanghuan Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China.
| |
Collapse
|
8
|
Cho SK, Igliński B, Kumar G. Biomass based biochar production approaches and its applications in wastewater treatment, machine learning and microbial sensors. BIORESOURCE TECHNOLOGY 2024; 391:129904. [PMID: 37918492 DOI: 10.1016/j.biortech.2023.129904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Biochar is a stable carbonaceous material derived from various biomass and can be utilized as adsorbents, catalysts and precursors in various environmental applications. This review discusses various feedstock materials and methods of biochar production via traditional as well as modern approaches. Additionally, the biochar characteristics, HTC process, and its modification by employing steam and gas purging, acidic, basic / alkaline and organo-solvent, electro- and magnetic fields have been discussed. The recent biochar applications for real water, wastewater and industrial wastewater for the abstraction of environmental contaminants also reviewed. Moreover, applications in machine learning and microbial sensors were discussed. In the meantime, analyses on commercial and environmental profit, current ecological concerns and the future directions of biochar application have been well presented.
Collapse
Affiliation(s)
- Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Bartłomiej Igliński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|