1
|
Shavalier SA, Gezelter JD. Thermal Transport through CTAB- and MTAB-Functionalized Gold Interfaces Using Molecular Dynamics Simulations. J Chem Inf Model 2025; 65:811-824. [PMID: 39804767 DOI: 10.1021/acs.jcim.4c02195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Thermal transport coefficients, notably the interfacial thermal conductance, were determined in planar and spherical gold interfaces functionalized with CTAB (cetyltrimethylammonium bromide) or MTAB (16-mercapto-hexadecyl-trimethylammonium bromide) using reverse nonequilibrium molecular dynamics (RNEMD) methods. The systems of interest included (111), (110), and (100) planar facets as well as nanospheres (r = 10 Å). The effect of metal polarizability was investigated through the implementation of the density-readjusted embedded atom model (DR-EAM), a polarizable metal potential. We find that conductance is higher in MTAB-capped interfaces, due in large part to the metal-to-ligand coupling provided by the Au-S bond. Alternatively, CTAB does not couple strongly with either the metal or the solvent, and it is largely a barrier to heat transfer, resulting in a much lower interfacial thermal conductance. Through analysis of physical contact between the ligand and the solvent, we find that there is significantly more overlap in the MTAB systems than the CTAB systems, mirroring the trends we observed in the conductance.
Collapse
Affiliation(s)
- Sydney A Shavalier
- 251 Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - J Daniel Gezelter
- 251 Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Sabahat S, Nazish Y, Saira F, Tariq I, Khan ZUH, Saleem RSZ, Abdullah MMS, Chen YM. Fabrication of Supported and Unsupported Gold Nanorods for Nonenzymatic Glucose Sensing and Study of Their Growth Kinetics. ACS OMEGA 2024; 9:33616-33628. [PMID: 39130546 PMCID: PMC11307306 DOI: 10.1021/acsomega.4c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
This work includes a novel approach for synthesis/fabrication of AuNRs of varied aspect ratios leading to investigation on the kinetics of their growth mechanism. The synthesized AuNRs were further functionalized with MWCNTs (AuNRs@MWCNTs) by one-pot synthesis. The synthesized AuNRs and AuNRs@MWCNTs were characterized by employing UV-vis spectroscopy. Red shifts in the spectra of AuNRs confirmed the formation of nanorods of higher aspect ratios. Morphology of AuNRs and functionalized AuNRs was confirmed by high-resolution scanning electron microscopy. Biological studies were carried out by fabricating efficient nonenzymatic glucose sensors for optical and electrochemical sensing via UV and cyclic voltammetry in the detection ranges of 0.7-28 mM glucose (UV) and 5.5 μM-0.33 mM (CV). An electrochemical sensing study was carried out via AuNR- and AuNRs@MWCNT-modified GCEs in a 0.1 M NaOH electrolyte solution. The modified electrodes exhibited very high sensitivity with a broad linear range. The order of sensitivity (via CV) was found to be AuNRX0@MWCNTs > AuNRD5@MWCNTs > AuNRD5 > AuNRX0.
Collapse
Affiliation(s)
- Sana Sabahat
- Department
of Chemistry, COMSATS University Islamabad, Islamabad 44000, Pakistan
| | - Yumna Nazish
- Department
of Chemistry, COMSATS University Islamabad, Islamabad 44000, Pakistan
| | - Farhat Saira
- Nanoscience
and Technology Division, National Centre
for Physics (NCP), QAU Campus, Shahdra Valley Road, Islamabad 44000, Pakistan
| | - Iqra Tariq
- Department
of Chemistry, COMSATS University Islamabad, Islamabad 44000, Pakistan
| | - Zia Ul Haq Khan
- Department
of Chemistry, COMSATS University Islamabad, Islamabad 44000, Pakistan
| | - Rahman Shah Zaib Saleem
- Department
of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences (LUMS), DHA, Lahore 54792, Pakistan
| | - Mahmood M. S. Abdullah
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yong-Mei Chen
- College
of Chemistry, Beijing University of Chemical
Technology, Beijing 100029, China
| |
Collapse
|
3
|
He J, Zhu T, Jiao L, Yu L, Peng S, Wang Z, Wang D, Liu H, Zhang S, Hu Y, Sun Y, Gao G, Cai T, Liu Z. Surface-Engineered Polygonatum Sibiricum Polysaccharide CaCO 3 Microparticles as Novel Vaccine Adjuvants to Enhance Immune Response. Mol Pharm 2024; 21:3936-3950. [PMID: 39017595 DOI: 10.1021/acs.molpharmaceut.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Micro- and nanoparticles delivery systems have been widely studied as vaccine adjuvants to enhance immunogenicity and sustain long-term immune responses. Polygonatum sibiricum polysaccharide (PSP) has been widely studied as an immunoregulator in improving immune responses. In this study, we synthesized and characterized cationic modified calcium carbonate (CaCO3) microparticles loaded with PSP (PEI-PSP-CaCO3, CTAB-PSP-CaCO3), studied the immune responses elicited by PEI-PSP-CaCO3 and CTAB-PSP-CaCO3 carrying ovalbumin (OVA). Our results demonstrated that PEI-PSP-CaCO3 significantly enhanced the secretion of IgG and cytokines (IL-4, IL-6, IFN-γ, and TNF-α) in vaccinated mice. Additionally, PEI-PSP-CaCO3 induced the activation of dendritic cells (DCs), T cells, and germinal center (GC) B cells in draining lymph nodes (dLNs). It also enhanced lymphocyte proliferation, increased the ratio of CD4+/CD8+ T cells, and elevated the frequency of CD3+ CD69+ T cells in spleen lymphocytes. Therefore, PEI-PSP-CaCO3 microparticles induced a stronger cellular and humoral immune response and could be potentially useful as a vaccine delivery and adjuvant system.
Collapse
Affiliation(s)
- Jin He
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Song Peng
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zheng Wang
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huina Liu
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Shun Zhang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Yaoren Hu
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo 315099, PR China
| | - Yuechao Sun
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Guosheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo 315099, PR China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Zhenguang Liu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| |
Collapse
|
4
|
Zhou J, Wang H, Chen Y, Lin D, Zhang L, Xing Z, Zhang Q, Xia J. A self-calibrating flexible SERS substrate incorporating PB@Au assemblies for reliable and reproducible detection. Analyst 2024; 149:4060-4071. [PMID: 38979998 DOI: 10.1039/d4an00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The precise quantitative analysis using surface-enhanced Raman spectroscopy (SERS) in an uncontrollable environment still faces a significant obstacle due to the poor reproducibility of Raman signals. Herein, we propose a facile method to fabricate a self-calibrating substrate based on a flexible polyvinyl alcohol (PVA) film comprising assemblies of Prussian blue (PB) and Au NPs (PB@Au) for reliable detection. PB cores were coated with an Au shell through simple electrostatic interaction, forming core-shell nanostructure PB@Au assemblies within the PVA film. The outer Au layer provided identical trends in enhancement for both the PB core and neighboring targets while PB cores served as an internal standard (IS) to correct signal fluctuations. The prevention of competitive adsorption on the metal surface between targets and ISs was achieved. The proposed PVA/PB@Au film exhibited enhanced stability of Raman signals after IS correction, resulting in improved spot-to-spot and batch-to-batch reproducibility with significantly reduced standard deviation (RSD) values from 11.42% and 25.02% to 4.43% and 9.39%, respectively. Simultaneously, a higher accuracy in the quantitative analysis of 4-mercaptobenzoic acid (4-MBA) and malachite green (MG) was achieved with fitting coefficient (R2) values improving from 0.9675 and 0.9418 to 0.9974 and 0.9832, respectively. Moreover, the PVA/PB@Au film was successfully applied to detect residual MG in real fish samples. This work opens up an avenue to improve the reproducibility of Raman signals for flexible SERS substrates in the detection of residues under various complex conditions.
Collapse
Affiliation(s)
- Jie Zhou
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Huiting Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Yaxian Chen
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Dongxue Lin
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Ling Zhang
- College of Chemistry and Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Zhiqiang Xing
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Qian Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Jiarui Xia
- Institute of Health Sciences, China Medical University, Shenyang, 110122, China
| |
Collapse
|
5
|
Cheng J, Wei X, Wang L, Chen H. Construction of UCNPs-aptamer-AuNPs luminescence energy transfer probe for ratio detection of Staphylococcus aureus. LUMINESCENCE 2024; 39:e4829. [PMID: 39004775 DOI: 10.1002/bio.4829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
A ratio luminescence probe was developed for detecting Staphylococcus aureus (S. aureus) based on luminescence energy transfer (LET) using double-wavelength emission (550 nm and 812 nm) upconversion nanoparticles (UCNPs) as donor, gold nanoparticles (AuNPs) as acceptor and the aptamer for S. aureus as the specific recognition and link unit. The LET process could cause luminescence quenching because of the spectral overlap between the acceptor and the donor at 550 nm. In the presence of S. aureus, S. aureus selectively combined with the aptamer, and the AuNPs left the surface of UCNPs, which weakened the quenching effect and restored the luminescence of UCNPs. Based on this, the ratio detection was realized by monitoring the change of the luminescence signal of the probe at 550 nm and taking the luminescence signal at 812 nm as the reference signal. Crucially, the probe has a fast reaction speed, with a reaction time of 25 min, and the detection of S. aureus is realized in the concentration range of 5.0 × 103-3.0 × 105 CFU/ml, with the detection limit of 106 CFU/ml. Therefore, the ratio probe has great potential for detecting of S. aureus in food because of its high sensitivity, fast speed and good selectivity.
Collapse
Affiliation(s)
- Juanjuan Cheng
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Xinru Wei
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Lun Wang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Hongqi Chen
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
6
|
Ali R, Saleh SM. Design a Friendly Nanoscale Chemical Sensor Based on Gold Nanoclusters for Detecting Thiocyanate Ions in Food Industry Applications. BIOSENSORS 2024; 14:223. [PMID: 38785697 PMCID: PMC11118002 DOI: 10.3390/bios14050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
The surfactant cetyltrimethylammonium bromide (CTAB) induces the aggregation of gold nanoclusters (GNCs), leading to the development of a proposed fluorometric technique for detecting thiocyanate (SCN-) ions based on an anti-aggregation mechanism. This approach is straightforward to execute, highly sensitive, and selective. A significant quenching effect occurs in fluorescence upon using the aggregation agent CTAB in GNCs synthesis, resulting in a transition from intense red fluorescence to dim red. The decrease in fluorescence intensity of GNCs in the presence of CTAB is caused by the mechanism of fluorescence quenching mediated by aggregation. As the levels of SCN- rise, the fluorescence of CTAB-GNCs increases; this may be detected using spectrofluorometry or by visually inspecting under UV irradiation. The recovery of red fluorescence of CTAB-GNCs in the presence of SCN- enables the precise and discerning identification of SCN- within the concentration range of 2.86-140 nM. The minimum detectable concentration of the SCN- ions was 1 nM. The selectivity of CTAB-GNCs towards SCN- ions was investigated compared to other ions, and it was demonstrated that CTAB-GNCs exhibit exceptional selectivity. Furthermore, we believe that CTAB-GNCs have novel possibilities as favorable sensor candidates for various industrial applications. Our detection technique was validated by analyzing SCN- ions in milk samples, which yielded promising results.
Collapse
Affiliation(s)
- Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Chemistry Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Department of Petroleum Refining and Petrochemical Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| |
Collapse
|
7
|
Ain MU, Asma, Ullah R, Fatima Z, Illahi A, Ahmed W. Engineering gold nanoworms with tunable longitudinal plasmon peak in the near infrared and their refractive index sensing properties. RSC Adv 2024; 14:12772-12780. [PMID: 38645529 PMCID: PMC11027724 DOI: 10.1039/d4ra00994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
The plasmonic properties of rod-shaped Au nanoparticles make them promising for numerous applications. The synthesis recipes for Au nanorods are well established and their longitudinal plasmon peak can be tuned over a wide wavelength range. Herein, we demonstrate that the longitudinal plasmon peak of gold NWs (NWs), which are bent nanorods, can be finely tuned in the near-infra-red region. The NWs were synthesized using a one-step reaction method. We have seen that the length and aspect ratio of NWs can be tuned by simply changing the pH of the reaction medium. Under higher pH reaction conditions, NWs with relatively smaller sizes were obtained. Similar to nanorods, NWs have a well-defined longitudinal plasmon peak, which scales linearly with their aspect ratio. Finite element analysis was used to model the optical properties of Au NWs. The simulated results matched well with the experimental spectra. The synthesized NWs have shown good refractive index sensitivities (RIS). The RIS of NWs increased with an increase in their aspect ratio. A maximum sensitivity value of 542 nm per RIU, was obtained for NWs with the plasmon peak at 1033 nm. The RIS values are comparable to that of Au nanorods and bipyramids.
Collapse
Affiliation(s)
- Misbah Ul Ain
- Materials Laboratory, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan +92 51 9049 5305
| | - Asma
- Research in Modeling and Simulation (RIMS) Group, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan
| | - Rizwan Ullah
- Materials Laboratory, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan +92 51 9049 5305
| | - Zanjbeel Fatima
- Materials Laboratory, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan +92 51 9049 5305
| | - Ahsan Illahi
- Research in Modeling and Simulation (RIMS) Group, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan
| | - Waqqar Ahmed
- Materials Laboratory, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan +92 51 9049 5305
| |
Collapse
|
8
|
Azad M, Ali Khan G, Ismail F, Ahmed W. Facile and efficient dye degradation using silver nanoparticles immobilized cotton substrates. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Li X, Tang Y, Liu L, Zhang Y, Sheng R, NuLi Y. Ti 3C 2 MXene with pillared structure for hybrid magnesium-lithium batteries cathode material with long cycle life and high rate capability. J Colloid Interface Sci 2021; 608:2455-2462. [PMID: 34763892 DOI: 10.1016/j.jcis.2021.10.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
Cationic surfactants (CS) pillared Ti3C2 composites (Ti3C2/CS) were prepared by a facile electrostatic assembly method, which have large interlayer spacing and slight N-doping. In hybrid magnesium-lithium batteries (HMLBs), the Ti3C2/CS composites exhibit excellent performance by utilizing both Li+ and Mg2+ as charge carriers. Among these composites, the Ti3C2/CTAB (CTC) electrode displays a reversible capacity of 115.9 and 60 mAh g-1 in APC/LiCl (APCL) and APC electrolytes at 0.1 A g-1, and it also exhibits excellent high rate performance and ultralong cycle performance. It is verified that CS is vital to significantly improve the diffusion kinetics of Mg2+ on the electrode surface. The CS can act as the conductive "bridge" which connects different Ti3C2 layers and the interlayer pillar which expands the interlayer distance. In addition, the N element in CS is effective in neutralizing electronegativity and enhancing electrical conductivity for the CTC electrode. The electrode design strategy can adapt to the synthesis of cathode materials with high rate capability in HMLBs.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Yakun Tang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Lang Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| | - Yue Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Rui Sheng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Yanna NuLi
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| |
Collapse
|
10
|
Khan GA, Esentürk EN, Bek A, Bhatti AS, Ahmed W. Fabrication of Highly Catalytically Active Gold Nanostructures on Filter‐Paper and Their Applications towards Degradation of Environmental Pollutants. ChemistrySelect 2021. [DOI: 10.1002/slct.202102266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ghazanfar Ali Khan
- Materials Laboratory Department of Physics COMSATS University Islamabad Park Road 45500 Islamabad Pakistan
| | | | - Alpan Bek
- Department of Physics Middle East Technical University 06800 Ankara Turkey
| | - Arshad Saleem Bhatti
- Centre of Micro and Nanodevices (CMND) Department of Physics COMSATS University Islamabad Park Road 45500 Islamabad Pakistan
| | - Waqqar Ahmed
- Materials Laboratory Department of Physics COMSATS University Islamabad Park Road 45500 Islamabad Pakistan
| |
Collapse
|
11
|
Abdul-Moqueet MM, Tovias L, Lopez P, Mayer KM. Synthesis and bioconjugation of alkanethiol-stabilized gold bipyramid nanoparticles. NANOTECHNOLOGY 2021; 32:10.1088/1361-6528/abe823. [PMID: 33607639 PMCID: PMC8374007 DOI: 10.1088/1361-6528/abe823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
Gold bipyramid (GBP) nanoparticles are promising for a range of biomedical applications, including biosensing and surface-enhanced Raman spectroscopy, due to their favorable optical properties and ease of chemical functionalization. Here we report improved synthesis methods, including preparation of gold seed particles with an increased shelf life of ∼1 month, and preparation of GBPs with significantly shortened synthesis time (< 1 h). We also report methods for the functionalization and bioconjugation of the GBPs, including functionalization with alkanethiol self-assembled monolayers (SAMs) and bioconjugation with proteins via carbodiimide cross-linking. Binding of specific antibodies to the nanoparticle-bound proteins was subsequently observed via localized surface plasmon resonance sensing. Rabbit IgG and goat anti-Rabbit IgG antibodies were used as a model system for antibody-antigen interactions. As-synthesized, SAM-functionalized, and bioconjugated bipyramids were characterized using scanning electron microscopy, UV-vis spectroscopy, zeta potential, and dynamic light scattering.
Collapse
Affiliation(s)
- Mohammad M Abdul-Moqueet
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Leeana Tovias
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Priscilla Lopez
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Kathryn M Mayer
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| |
Collapse
|
12
|
Shi M, Wang Z. Valence, Size, and Shape Control of Gold Nanoparticles Synthesized by Electron-Assisted Reduction. Chem Asian J 2020; 15:3904-3912. [PMID: 33021084 DOI: 10.1002/asia.202001071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/05/2020] [Indexed: 01/18/2023]
Abstract
An electron-assisted strategy was developed to prepare gold nanoparticles (AuNPs) at room temperature. Glow discharge plasma as electron source was successfully used to control the valence state, size, and shape of AuNPs. Stable Au(I) was obtained in 3 min by plasma, and Au(I) was reduced to zero valence with the increase in treatment time. An increase in the amount of Au did not induce an increase in particle size. A narrow size distribution was also achieved. The narrowest size distribution was observed at 9 min at 600 V. AuNPs grew slowly under glow discharge plasma, which slightly changed the mean size of AuNPs. Moreover, the average size of AuNPs was smaller under alkaline conditions. The initial pH of the solution can affect the nucleation and growth of AuNPs and further affect their particle size. Spherical AuNPs, hexagonal AuNPs, rectangular AuNPs, flower-shaped AuNPs, and Au nanorods were easily obtained within 30 min by adding different additives. The hexagonal AuNPs exhibited the largest current response toward caffeine and showed a good linear range (0.1-1000 μM) with a low detection limit (0.064 μM), because their high-energy planes can increase the electron transfer rate and improve electrocatalytic activity.
Collapse
Affiliation(s)
- Mengge Shi
- School of Chemical Engineering and Technology, Tianjin University, National Engineering Research Centre of Industry Crystallization Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhao Wang
- School of Chemical Engineering and Technology, Tianjin University, National Engineering Research Centre of Industry Crystallization Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
13
|
Plascencia-Villa G, Mendoza-Cruz R, Bazán-Díaz L, José-Yacamán M. Gold Nanoclusters, Gold Nanoparticles, and Analytical Techniques for Their Characterization. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2118:351-382. [PMID: 32152992 DOI: 10.1007/978-1-0716-0319-2_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many reliable and reproducible methods exist for manufacturing gold nanoparticles with the desired and specific compositions, structures, arrangements, and physicochemical properties. In this report, we review the key principles guiding the formation and growth of nanoclusters, their evolution into nanoparticles, and the role and contribution of coatings. We describe a range of imaging methods for characterization of nanoparticles at atomic resolution and a range of spectroscopy methods for structural and physicochemical characterization of such nanoparticles. This chapter concludes with a short review of the emergent applications of nanoparticles in biosciences.
Collapse
Affiliation(s)
| | - Rubén Mendoza-Cruz
- Instituto de Investigaciones en Materiales (IIM), Universidad Nacional Autónoma de México (UNAM), Mexico City, TX, USA
| | - Lourdes Bazán-Díaz
- Instituto de Investigaciones en Materiales (IIM), Universidad Nacional Autónoma de México (UNAM), Mexico City, TX, USA
| | - Miguel José-Yacamán
- Department of Applied Physics and Material Science, Northern Arizona University, Flagstaff, USA
| |
Collapse
|
14
|
Adjuvant activities of CTAB-modified Polygonatum sibiricum polysaccharide cubosomes on immune responses to ovalbumin in mice. Int J Biol Macromol 2020; 148:793-801. [PMID: 31972196 DOI: 10.1016/j.ijbiomac.2020.01.174] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/04/2020] [Accepted: 01/18/2020] [Indexed: 02/02/2023]
Abstract
Recently, the cubosomes have been widely studied as drug carriers. It has been described that cubosomes could further stimulate the immune response after carrying the immune enhancer. Polygonatum sibiricum polysaccharide (PSP), one of the most important biologically active ingredients of Polygonatum sibiricum, has been reported as an immunostimulant to improve immune responses. This study was aimed to observe the immunomodulation effects of ovalbumin (OVA) absorbed cetyltrimethylammonium bromide-modified Polygonatum sibiricum polysaccharide cubosomes (CTAB-modified PSP-Cubs/OVA). Firstly, the antigen uptake of CTAB-modified PSP-Cubs/OVA by macrophages was determined in vitro. After that, mice were immunized with CTAB-modified PSP-Cubs/OVA. The activation of dendritic cells in lymph nodes, activation of lymphocyte, ratios of CD4+ to CD8+, the concentrations of OVA-specific IgG in serum and the cytokines concentrations were analyzed. As the results showed, CTAB-modified PSP-Cubs/OVA could promote the production of OVA-specific IgG in serum. The ratio of CD4+ to CD8+ in CTAB-modified PSP-Cubs/OVA group was significantly increased compared with other groups. CTAB-modified PSP-Cubs/OVA could significantly activate dendritic cells and promote lymphocyte proliferation. The results indicated that CTAB-modified PSP-Cubs/OVA could promote the secretion of related cytokines and the proliferation of lymphocytes, stimulate the cellular immune response and increase the level of humoral immunity. Above all, CTAB-modified PSP-Cubs had good adjuvant activity.
Collapse
|
15
|
Kaur R, Singh K, Khullar P, Gupta A, Ahluwalia GK, Bakshi MS. Applications of Molecular Structural Aspects of Gemini Surfactants in Reducing Nanoparticle-Nanoparticle Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14929-14938. [PMID: 31645104 DOI: 10.1021/acs.langmuir.9b02855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oppositely charged nanoparticle (NP)-nanoparticle (NP) interactions were studied by titrating sodium dodecyl sulfate (SDS) stabilized NPs with cetyltrimethylammonium bromide (CTAB) stabilized NPs at constant temperature with the help of UV-visible and dynamic light scattering measurements. CTAB stabilized NPs were systematically replaced with a series of cationic gemini surfactants to demonstrate the effect of head group and hydrocarbon tail modifications on the electrostatic interactions with SDS stabilized NPs. Introduction of the dimeric gemini head group (alkylammonium or imidazolium), spacer length, and double tail hydrocarbon length all significantly reduced the NP-NP interactions and delayed their salting-out process. They lead to the formation of stable colloidal aqueous solubilized NP-NP complexes. The results concluded that NP-NP interactions can be overcome if appropriately stabilized NPs are used to maintain their colloidal stability so as to achieve maximum applicability.
Collapse
Affiliation(s)
- Rajpreet Kaur
- Department of Chemistry , B.B.K. D.A.V. College for Women , Amritsar 143005 , Punjab , India
| | - Kultar Singh
- Department of Chemistry , Khalsa College , G.T. Road , Amritsar 143002 , Punjab , India
| | - Poonam Khullar
- Department of Chemistry , B.B.K. D.A.V. College for Women , Amritsar 143005 , Punjab , India
| | - Anita Gupta
- Amity Institute of Applied Sciences , AUUP , Noida 201304 , India
| | - Gurinder Kaur Ahluwalia
- Nanotechnology Research Laboratory , College of North Atlantic , Labrador City , Newfoundland and Labrador A2V 2K7 , Canada
| | - Mandeep Singh Bakshi
- Department of Chemistry, Natural and Applied Sciences , University of Wisconsin-Green Bay , 2420 Nicolet Drive , Green Bay , Wisconsin 54311-7001 , United States
| |
Collapse
|
16
|
Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci 2019; 271:101989. [PMID: 31330396 DOI: 10.1016/j.cis.2019.101989] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
In a couple of decades, nanotechnology has become a trending area in science due to it covers all subject that combines diverse range of fields including but not limited to chemistry, physics and medicine. Various metal and metal oxide nanomaterials have been developed for wide range applications. However, the application of gold nanostructures and nanoparticles has been received more attention in various biomedical applications. The unique property of gold nanoparticles (AuNPs) is surface plasmon resonance (SPR) that determine the size, shape and stability. The wide surface area of AuNPs eases the proteins, peptides, oligonucleotides, and many other compounds to tether and enhance the biological activity of AuNPs. AuNPs have multifunctionality including antimicrobial, anticancer, drug and gene delivery, sensing applications and imaging. This state-of-the-art review is focused on the role of unique properties of AuNPs in multifunctionality and its various applications.
Collapse
|
17
|
Sotoma S, Harada Y. Polydopamine Coating as a Scaffold for Ring-Opening Chemistry To Functionalize Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8357-8362. [PMID: 31194560 DOI: 10.1021/acs.langmuir.9b00762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles (GNPs) are promising nanomaterials for various biomedical applications owing to their remarkable optical properties and biocompatibility. However, their interfacial properties require modification for practical use in such applications. Herein, a simple method for modifying the surface of GNPs with polydopamine (PDA) to serve as a scaffold for the subsequent polymerization of hyperbranched polyglycerol (HPG) is reported. GNPs were first coated with PDA (GNP-PDA), and then ring-opening chemistry was used at this interface to modify GNP-PDA with HPG (GNP-PDA-HPG). The produced GNP-PDA-HPG shows not only excellent dispersibility in a salt-containing solution but also strong resistance to aggregation in high- and low-pH solutions, even after 10 days. Moreover, we demonstrate a one-pot method for functionalizing GNP-PDA with HPG and either COOH or trimethylammonium. Finally, we conjugated the trimethylammonium-functionalized GNP-PDA-HPG with fluorescent nanodiamonds to investigate the photothermal ability of the functional GNPs.
Collapse
Affiliation(s)
- Shingo Sotoma
- Japan Society for the Promotion of Science (JSPS) , 5-3-1 Chiyoda , Tokyo 102-0083 , Japan
| | | |
Collapse
|
18
|
Dykman LA, Khlebtsov NG. Methods for chemical synthesis of colloidal gold. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4843] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Ni H, Xu S, Gu P, wusiman A, Zhang Y, Qiu T, Liu Z, Ni H, Hu Y, Liu J, Wu Y, Wang D. Optimization of preparation conditions for CTAB-modified Polygonatum sibiricum polysaccharide cubosomes using the response surface methodology and their effects on splenic lymphocytes. Int J Pharm 2019; 559:410-419. [DOI: 10.1016/j.ijpharm.2019.01.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/11/2019] [Accepted: 01/26/2019] [Indexed: 12/19/2022]
|