1
|
Li X, Chen Y, Yang S, Zhou Y, Yang C. Whole genome-sequence analysis of Bacillus subtilis strain KC14-1 with broad-spectrum antifungal activity. BMC Genomics 2025; 26:319. [PMID: 40165078 PMCID: PMC11956405 DOI: 10.1186/s12864-025-11227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/08/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Bacillus is used as a biological control agent in agricultural production. The main mechanisms responsible for its biocontrol activity encompass the generation of various antifungal active substances during life activities, competition, antagonism with pathogens, promotion of growth, and induction of plant resistance, enhancing the inhibition of pathogenic fungi. Bacillus has high biological control potential and has become a research hotspot. RESULTS It was found that strain KC14-1 had significant inhibitory effects on Fusarium fujikuroi, Rhizoclonia solani, Alternaria solani, Fusarium oxysporum, and Valsa mali. Based on morphological observations, physiological and biochemical determinations, and 16 S rRNA, gyrA, and gyrB gene sequencing, strain KC14-1 was identified as Bacillus subtilis. Whole genome sequencing results showed that the genome of strain KC14-1 was composed of a ring chromosome 3,908,079 bp in size, with a GC content of 43.82% and 3,895 coding genes. Anti-SMASH predicted that the genome of strain KC14-1 contained nine gene clusters that synthesised antibacterial substances. The homology between fengycin, bacillibactin, pulcherriminic acid, subtilosin A, and bacilysin was 100%. CONCLUSION The biocontrol potential of Bacillus subtilis KC14-1 was determined through whole-genome analysis. Our study provides a solid foundation for developing and utilising this strain.
Collapse
Affiliation(s)
- Xiaowei Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, China
| | - Yahan Chen
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, China.
| | - Shunyi Yang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, China
| | - Yi Zhou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, China
| | - Chengde Yang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, China
| |
Collapse
|
2
|
Douka D, Spantidos TN, Tsalgatidou PC, Katinakis P, Venieraki A. Whole-Genome Profiling of Endophytic Strain B.L.Ns.14 from Nigella sativa Reveals Potential for Agricultural Bioenhancement. Microorganisms 2024; 12:2604. [PMID: 39770806 PMCID: PMC11678546 DOI: 10.3390/microorganisms12122604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.Ns.14, isolated from Nigella sativa leaves, which demonstrated multiple plant growth-promoting properties. In vitro tests showed that B.L.Ns.14 supports plant growth, colonization, and tolerance to abiotic stress. The strain also exhibited antifungal activity against phytopathogens such as Rhizoctonia solani, Colletotrichum acutatum, Verticillium dahliae, and Fusarium oxysporum f. sp. radicis-lycopersici. Whole-genome analysis, supported by ANI and dDDH values, identified B.L.Ns.14 as Bacillus halotolerans. Genome mining revealed 128 active carbohydrate enzymes (Cazymes) related to endophytism and biocontrol functions, along with genes involved in phosphate solubilization, siderophore and IAA production, biofilm formation, and motility. Furthermore, genes for osmolyte metabolism, Na+/H+ antiporters, and stress response proteins were also identified. The genome harbors 12 secondary metabolite biosynthetic gene clusters, including those for surfactin, plipastatin mojavensin, rhizocticin A, and bacilysin, known for their antagonistic effects against fungi. Additionally, B.L.Ns.14 promoted Arabidopsis thaliana growth under both normal and saline conditions, and enhanced Solanum lycopersicum growth via seed biopriming and root irrigation. These findings suggest that Bacillus halotolerans B.L.Ns.14 holds potential as a biocontrol and plant productivity agent, warranting further field testing.
Collapse
Affiliation(s)
- Dimitra Douka
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.D.); (T.-N.S.); (P.K.)
| | - Tasos-Nektarios Spantidos
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.D.); (T.-N.S.); (P.K.)
| | | | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.D.); (T.-N.S.); (P.K.)
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
3
|
Saikat TA, Sayem Khan MA, Islam MS, Tasnim Z, Ahmed S. Characterization and genome mining of Bacillus subtilis BDSA1 isolated from river water in Bangladesh: A promising bacterium with diverse biotechnological applications. Heliyon 2024; 10:e34369. [PMID: 39114027 PMCID: PMC11305188 DOI: 10.1016/j.heliyon.2024.e34369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
The metabolic versatility of Bacillus subtilis makes it useful for a wide range of applications in biotechnology, from bioremediation to industrially important metabolite production. Understanding the molecular attributes of the biocontrol characteristics of B. subtilis is necessary for its tailored use in the environment and industry. Therefore, the present study aimed to conduct phenotypic characterization and whole genome analysis of the B. subtilis BDSA1 isolated from polluted river water from Dhaka, Bangladesh to explore its biotechnological potential. The chromium reduction capacity at 100 ppm Cr (VI) showed that B. subtilis BDSA1 reduced 40 % of Cr (VI) within 24hrs at 37 °C. Exposure of this bacterium to 200 ppm cadmium resulted in 43 % adsorption following one week of incubation at 37 °C. Molecular detection of chrA and czcC gene confirmed chromium and cadmium resistance characteristics of BDSA1. The size of the genome of the B. subtilis BDSA1 was 4.2 Mb with 43.4 % GC content. Genome annotation detected the presence of numerous genes involved in the degradation of xenobiotics, resistance to abiotic stress, production of lytic enzymes, siderophore formation, and plant growth promotion. The assembled genome also carried chromium, cadmium, copper, and arsenic resistance-related genes, notably cadA, czcD, czrA, arsB etc. Genome mining revealed six biosynthetic gene clusters for bacillaene, bacillibacin, bacilysin, subtilosin, fengycin and surfactin. Importantly, BDSA1 was predicted to be non-pathogenic to humans and had only two acquired antimicrobial resistance genes. The pan-genome analysis showed the openness of the B. subtilis pan-genome. Our findings suggested that B. subtilis BDSA1 might be a promising candidate for diverse biotechnological uses.
Collapse
Affiliation(s)
| | - Md Abu Sayem Khan
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Zarin Tasnim
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Sangita Ahmed
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
4
|
Shi C, Zeng S, Gao X, Hussain M, He M, Niu X, Wei C, Yang R, Lan M, Xie Y, Wang Z, Wu G, Tang P. Complete Genome Sequence Analysis of Bacillus subtilis MC4-2 Strain That against Tobacco Black Shank Disease. Int J Genomics 2024; 2024:8846747. [PMID: 38567257 PMCID: PMC10985647 DOI: 10.1155/2024/8846747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
The MC4-2 bacterium strain was isolated and purified from the Periplaneta americana intestine as a biocontrol agent with good antagonistic effect against the pathogens of a soil-borne disease called tobacco black shank. The MC4-2 strain was found to have good broad-spectrum inhibition by plate stand-off test. Based on 16S rRNA and gyrB genes, ANI analysis, and other comparative genomics methods, it was determined that the MC4-2 strain was Bacillus subtilis. The complete genome sequence showed that the genome size was 4,076,630 bp, the average GC content was 43.78%, and the total number of CDSs was 4,207. Genomic prediction analysis revealed that a total of 145 genes were annotated by the CAZy, containing mainly GH and CE enzymes that break down carbohydrates such as glucose, chitin, starch, and alginate, and a large number of enzymes involved in glycosylation were present. A total of ten secondary metabolite clusters were predicted, six clusters of which were annotated as surfactin, bacillaene, fengycin, bacillibactin, subtilosin A, and bacilysin. The present investigation found the biological control mechanism of B. subtilis MC4-2, which provides a strong theoretical basis for the best use of this strain in biological control methods and provides a reference for the subsequent development of agents of this bacterium.
Collapse
Affiliation(s)
- Chunlan Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shuquan Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mehboob Hussain
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mingchuan He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xurong Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Congcong Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Rui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yonghui Xie
- Yunnan Tobacco Company Kunming Company, Kunming 650201, China
| | - Zhijiang Wang
- Yunnan Tobacco Company Kunming Company, Kunming 650201, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Yan L, Li G, Liang Y, Tan M, Fang J, Peng J, Li K. Co-production of surfactin and fengycin by Bacillus subtilis BBW1542 isolated from marine sediment: a promising biocontrol agent against foodborne pathogens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:563-572. [PMID: 38327855 PMCID: PMC10844157 DOI: 10.1007/s13197-023-05864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 02/09/2024]
Abstract
Pathogenic bacteria contaminations and related diseases in food industries is an urgent issue to solve. The present study aimed to explore natural food biopreservatives from microorganisms. Using dilution-plate method, a strain BBW1542 with antimicrobial activities against various foodborne pathogenic bacteria was isolated from the seabed silt of Beibu Gulf, which was identified as Bacillus subtilis by the morphological observation and 16S rDNA sequences. The antimicrobial substances of B. subtilis BBW1542 exhibited an excellent stability under cool/heat treatment, UV irradiation, acid/alkali treatment, and protease hydrolysis. The genome sequencing analysis and antiSMASH prediction indicated that B. subtilis BBW1542 contained the gene cluster encoding lipopeptides and bacteriocin subtilosin A. MALDI-TOF-MS analysis showed that the lipopeptides from B. subtilis BBW1542 contained C14 and C15 surfactin homologues, together with fengycin homologues of C18 fengycin A/C16 fengycin B and C19 fengycin A/C17 fengycin B. In silico analysis showed that an eight-gene (sboA-albABCDEFG) operon was involved in the biosynthesis of subtilosin A in B. subtilis BBW1542, and the encoded subtilosin A presented an evident closed-loop structure containing 35 amino acids with a molecular weight of 3425.94 Da. Overall, the antagonistic B. subtilis BBW1542 displayed significant resource value and offered a promising alternative in development of food biopreservation. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05864-3.
Collapse
Affiliation(s)
- Luqi Yan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Ganghui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Yingyin Liang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 China
| | - Jianhao Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Jieying Peng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 China
| |
Collapse
|
6
|
Chen T, Zhang Z, Li W, Chen J, Chen X, Wang B, Ma J, Dai Y, Ding H, Wang W, Long Y. Biocontrol potential of Bacillus subtilis CTXW 7-6-2 against kiwifruit soft rot pathogens revealed by whole-genome sequencing and biochemical characterisation. Front Microbiol 2022; 13:1069109. [PMID: 36532498 PMCID: PMC9751376 DOI: 10.3389/fmicb.2022.1069109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 09/05/2023] Open
Abstract
Soft rot causes significant economic losses in the kiwifruit industry. This study isolated strain CTXW 7-6-2 from healthy kiwifruit tissue; this was a gram-positive bacterium that produced the red pigment pulcherrimin. The phylogenetic tree based on 16S ribosomal RNA, gyrA, rpoB, and purH gene sequences identified CTXW 7-6-2 as a strain of Bacillus subtilis. CTXW 7-6-2 inhibited hyphal growth of pathogenic fungi that cause kiwifruit soft rot, namely, Botryosphaeria dothidea, Phomopsis sp., and Alternaria alternata, by 81.76, 69.80, and 32.03%, respectively. CTXW 7-6-2 caused the hyphal surface to become swollen and deformed. Volatile compounds (VOC) produced by the strain inhibited the growth of A. alternata and Phomopsis sp. by 65.74 and 54.78%, respectively. Whole-genome sequencing revealed that CTXW 7-6-2 possessed a single circular chromosome of 4,221,676 bp that contained 4,428 protein-coding genes, with a guanine and cytosine (GC) content of 43.41%. Gene functions were annotated using the National Center for Biotechnology Information (NCBI) non-redundant protein, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups of proteins, Gene Ontology, Pathogen-Host Interactions, Carbohydrate-Active enZYmes, and Rapid Annotations using Subsystem Technology databases, revealing non-ribosomal pathways associated with antifungal mechanisms, biofilm formation, chemotactic motility, VOC 3-hydroxy-2-butanone, cell wall-associated enzymes, and synthesis of various secondary metabolites. antiSMASH analysis predicted that CTXW 7-6-2 can produce the active substances bacillaene, bacillibactin, subtilosin A, bacilysin, and luminmide and has four gene clusters of unknown function. Quantitative real-time PCR (qRT-PCR) analysis verified that yvmC and cypX, key genes involved in the production of pulcherrimin, were highly expressed in CTXW 7-6-2. This study elucidates the mechanism by which B. subtilis strain CTXW 7-6-2 inhibits pathogenic fungi that cause kiwifruit soft rot, suggesting the benefit of further studying its antifungal active substances.
Collapse
Affiliation(s)
- Tingting Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Zhuzhu Zhang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Wenzhi Li
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Jia Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Xuetang Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Bince Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Jiling Ma
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Yunyun Dai
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Haixia Ding
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
- Department of Plant Pathology, Guizhou University, Guiyang, China
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
- Teaching Experimental Factory, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Bacteriocin Production by Bacillus Species: Isolation, Characterization, and Application. Probiotics Antimicrob Proteins 2022; 14:1151-1169. [PMID: 35881232 DOI: 10.1007/s12602-022-09966-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a problem that has been increasing lately; therefore, it is important to find new alternatives to treat infections induced by pathogens that cannot be eliminated with available products. Small antimicrobial peptides (AMPs) known as bacteriocin could be an alternative to antibiotics because they have shown to be effective against a great number of multidrug-resistant microbes. In addition to its high specificity against microbial pathogens and its low cytotoxicity against human cells, most bacteriocin present tolerance to enzyme degradation and stability to temperature and pH alterations. Bacteriocins are small peptides with a great diversity of structures and functions; however, their mechanisms of action are still not well understood. In this review, bacteriocin produced by Bacillus species will be described, especially its mechanisms of action, culture conditions used to improve its production and state-of-the-art methodologies applied to identify them. Bacteriocin utilization as food preservatives and as new molecules to treat cancer also will be discussed.
Collapse
|
8
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
9
|
Alajlani MM. Characterization of subtilosin gene in wild type Bacillus spp. and possible physiological role. Sci Rep 2022; 12:10521. [PMID: 35732659 PMCID: PMC9217942 DOI: 10.1038/s41598-022-13804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
In a designed study to screen for antimicrobial exhibiting bacteria using molecular aspects, Bacillus species were considered to investigate antibiotic biosynthesis genes. 28 bacterial strains and 3 induced mutants were screened for the presence of subtilosin gene (sbo) and subtilosin through PCR and Mass spectrometry respectively. Sbo gene was detected in 16 out of 28 Bacillus strains. The results from gene sequences deliberated by multiple sequence alignments revealed high-level homology to the sequences of the sbo-alb gene locus of B. subtilis 168 and the other limited reported strains. Hence, this report provided additional strains to support the idea of subtilosin gene predominance amongst Bacillus strains isolated from environment and to find different species containing homologous genes, furthermore the utilization of its conserved region as a means of identifying Bacillus spp. that produce subtilosin. This is the first report to confirm the detection of subtilosin production from B. amyloliquefaciens.
Collapse
Affiliation(s)
- Muaaz Mutaz Alajlani
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany.
| |
Collapse
|
10
|
Alajlani MM. Characterization of subtilosin gene in wild type Bacillus spp. and possible physiological role. Sci Rep 2022; 12:10521. [DOI: https:/doi.org/10.1038/s41598-022-13804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 08/08/2023] Open
Abstract
AbstractIn a designed study to screen for antimicrobial exhibiting bacteria using molecular aspects, Bacillus species were considered to investigate antibiotic biosynthesis genes. 28 bacterial strains and 3 induced mutants were screened for the presence of subtilosin gene (sbo) and subtilosin through PCR and Mass spectrometry respectively. Sbo gene was detected in 16 out of 28 Bacillus strains. The results from gene sequences deliberated by multiple sequence alignments revealed high-level homology to the sequences of the sbo-alb gene locus of B. subtilis 168 and the other limited reported strains. Hence, this report provided additional strains to support the idea of subtilosin gene predominance amongst Bacillus strains isolated from environment and to find different species containing homologous genes, furthermore the utilization of its conserved region as a means of identifying Bacillus spp. that produce subtilosin. This is the first report to confirm the detection of subtilosin production from B. amyloliquefaciens.
Collapse
|
11
|
To HTA, Chhetri V, Settachaimongkon S, Prakitchaiwattana C. Stress tolerance-Bacillus with a wide spectrum bacteriocin as an alternative approach for food bio-protective culture production. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Kamali M, Guo D, Naeimi S, Ahmadi J. Perception of Biocontrol Potential of Bacillus inaquosorum KR2-7 against Tomato Fusarium Wilt through Merging Genome Mining with Chemical Analysis. BIOLOGY 2022; 11:biology11010137. [PMID: 35053135 PMCID: PMC8773019 DOI: 10.3390/biology11010137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary Bacillus is a bacterial genus that is widely used as a promising alternative to chemical pesticides due to its protective activity toward economically important plant pathogens. Fusarium wilt of tomato is a serious fungal disease limiting tomato production worldwide. Recently, the newly isolated B. inaquosorum strain KR2-7 considerably suppressed Fusarium wilt of tomato plants. The present study was performed to perceive potential direct and indirect biocontrol mechanisms implemented by KR2-7 against this disease through genome and chemical analysis. The potential direct biocontrol mechanisms of KR2-7 were determined through the identification of genes involved in the synthesis of antibiotically active compounds suppressing tomato Fusarium wilt. Furthermore, the indirect mechanisms of this bacterium were perceived through recognizing genes that contributed to the resource acquisition or modulation of plant hormone levels. This is the first study that aimed at the modes of actions of B. inaquosorum against Fusarium wilt of tomatoes and the results strongly indicate that strain KR2-7 could be a good candidate for microbial biopesticide formulations to be used for biological control of plant diseases and plant growth promotion. Abstract Tomato Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (Fol), is a destructive disease that threatens the agricultural production of tomatoes. In the present study, the biocontrol potential of strain KR2-7 against Fol was investigated through integrated genome mining and chemical analysis. Strain KR2-7 was identified as B. inaquosorum based on phylogenetic analysis. Through the genome mining of strain KR2-7, we identified nine antifungal and antibacterial compound biosynthetic gene clusters (BGCs) including fengycin, surfactin and Bacillomycin F, bacillaene, macrolactin, sporulation killing factor (skf), subtilosin A, bacilysin, and bacillibactin. The corresponding compounds were confirmed through MALDI-TOF-MS chemical analysis. The gene/gene clusters involved in plant colonization, plant growth promotion, and induced systemic resistance were also identified in the KR2-7 genome, and their related secondary metabolites were detected. In light of these results, the biocontrol potential of strain KR2-7 against tomato Fusarium wilt was identified. This study highlights the potential to use strain KR2-7 as a plant-growth promotion agent.
Collapse
Affiliation(s)
- Maedeh Kamali
- College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China;
| | - Dianjing Guo
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-3943-6298
| | - Shahram Naeimi
- Department of Biological Control Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran 19858-13111, Iran;
| | - Jafar Ahmadi
- Department of Genetics and Plant Breeding, Imam Khomeini International University, Qazvin 34149-16818, Iran;
| |
Collapse
|
13
|
Daba GM, Elnahas MO, Elkhateeb WA. Beyond biopreservatives, bacteriocins biotechnological applications: History, current status, and promising potentials. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Genomic and Metabolomic Insights into Secondary Metabolites of the Novel Bacillus halotolerans Hil4, an Endophyte with Promising Antagonistic Activity against Gray Mold and Plant Growth Promoting Potential. Microorganisms 2021; 9:microorganisms9122508. [PMID: 34946110 PMCID: PMC8704346 DOI: 10.3390/microorganisms9122508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
The endophytic bacterial strain Hil4 was isolated from leaves of the medicinal plant Hypericum hircinum. It exhibited antifungal activity against Botrytis cinerea and a plethora of plant growth promoting traits in vitro. Whole genome sequencing revealed that it belongs to Bacillus halotolerans and possesses numerous secondary metabolite biosynthetic gene clusters and genes involved in plant growth promotion, colonization, and plant defense elicitation. The Mojavensin cluster was present in the genome, making this strain novel among plant-associated B. halotolerans strains. Extracts of secreted agar-diffusible compounds from single culture secretome extracts and dual cultures with B. cinerea were bioactive and had the same antifungal pattern on TLC plates after bioautography. UHPLC-HRMS analysis of the single culture secretome extract putatively annotated the consecutively produced antimicrobial substances and ISR elicitors. The isolate also proved efficient in minimizing the severity of gray mold post-harvest disease on table grape berries, as well as cherry tomatoes. Finally, it positively influenced the growth of Arabidopsis thaliana Col-0 and Solanum lycopersicum var. Chondrokatsari Messinias after seed biopriming in vitro. Overall, these results indicate that the B. halotolerans strain Hil4 is a promising novel plant growth promoting and biocontrol agent, and can be used in future research for the development of biostimulants and/or biological control agents.
Collapse
|
15
|
Cao L, Do T, Link AJ. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J Ind Microbiol Biotechnol 2021; 48:6121428. [PMID: 33928382 PMCID: PMC8183687 DOI: 10.1093/jimb/kuab005] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products remain a critical source of medicines and drug leads. One of the most rapidly growing superclasses of natural products is RiPPs: ribosomally synthesized and posttranslationally modified peptides. RiPPs have rich and diverse bioactivities. This review highlights examples of the molecular mechanisms of action that underly those bioactivities. Particular emphasis is placed on RiPP/target interactions for which there is structural information. This detailed mechanism of action work is critical toward the development of RiPPs as therapeutics and can also be used to prioritize hits in RiPP genome mining studies.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
16
|
Chen Y, Wang J, Li G, Yang Y, Ding W. Current Advancements in Sactipeptide Natural Products. Front Chem 2021; 9:595991. [PMID: 34095082 PMCID: PMC8172795 DOI: 10.3389/fchem.2021.595991] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing class of natural products that benefited from genome sequencing technology in the past two decades. RiPPs are widely distributed in nature and show diverse chemical structures and rich biological activities. Despite the various structural characteristic of RiPPs, they follow a common biosynthetic logic: a precursor peptide containing an N-terminal leader peptide and a C-terminal core peptide; in some cases,a follower peptide is after the core peptide. The precursor peptide undergoes a series of modification, transport, and cleavage steps to form a mature natural product with specific activities. Sactipeptides (Sulfur-to-alpha carbon thioether cross-linked peptides) belong to RiPPs that show various biological activities such as antibacterial, spermicidal and hemolytic properties. Their common hallmark is an intramolecular thioether bond that crosslinks the sulfur atom of a cysteine residue to the α-carbon of an acceptor amino acid, which is catalyzed by a rSAM enzyme. This review summarizes recent achievements concerning the discovery, distribution, structural elucidation, biosynthesis and application prospects of sactipeptides.
Collapse
Affiliation(s)
- Yunliang Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, China
| | - Jinxiu Wang
- Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guoquan Li
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, China
| | - Yunpeng Yang
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Investigating the action of the microalgal pigment marennine on Vibrio splendidus by in vivo 2H and 31P solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183642. [PMID: 34000261 DOI: 10.1016/j.bbamem.2021.183642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022]
Abstract
This work investigates the potential probiotic effect of marennine - a natural pigment produced by the diatom Haslea ostrearia - on Vibrio splendidus. These marine bacteria are often considered a threat for aquaculture; therefore, chemical antibiotics can be required to reduce bacterial outbreaks. In vivo2H solid-state NMR was used to probe the effects of marennine on the bacterial membrane in the exponential and stationary phases. Comparisons were made with polymyxin B (PxB) - an antibiotic used in aquaculture and known to interact with Gram(-) bacteria membranes. We also investigated the effect of marennine using 31P solid-state NMR on model membranes. Our results show that marennine has little effect on phospholipid headgroups dynamics, but reduces the acyl chain fluidity. Our data suggest that the two antimicrobial agents perturb V. splendidus membranes through different mechanisms. While PxB would alter the bacterial outer and inner membranes, marennine would act through a membrane stiffening mechanism, without affecting the bilayer integrity. Our study proposes this microalgal pigment, which is harmless for humans, as a potential treatment against vibriosis.
Collapse
|
18
|
Travers W, Kelleher F. Studies of the highly potent lantibiotic peptide nisin Z in aqueous solutions of salts and biological buffer components. Biophys Chem 2021; 274:106603. [PMID: 33945991 DOI: 10.1016/j.bpc.2021.106603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
The lantibiotic nisin, usually used as a 2.5%w/w in NaCl and milk solids, has activity against a wide range of Gram-positive bacteria, especially food-borne pathogens, and has been used as a food preservative for decades without the development of significant resistance. It has been reported that the high purity (>95%) nisin Z form has activity against the Gram-negative speciesE. coli, which is significantly reduced in the presence of NaCl. This current study examined, by1H NMR spectroscopy, the effects of NaCl, and a range of other salts, on the observed aqueous solution1H NMR spectra of nisin Z in the pH 3-4 range, where nisin Z has its maximum stability. Nisin's mechanism of action involves binding to the polyoxygenated pyrophosphate moiety of lipid II, and in acidic solution the positively charged C-terminus region is reported to interact with the negative sulfate groups of SDS micelles, so the study was extended to include a number of polyoxygenated anions commonly used as buffers in many biological assays. In general, the biggest changes found were in the chemical shifts of protons in the hydrophobic N-terminus region, rather than the more polar C-terminus region. The effects seen on the addition of the salts (cations and anions) were not just an overall non-specific ionic strength effect, as different salts caused different effects, in an unpredictive manner. Similarly, the polyoxygenated anions behaved differently and not predictably, and neither the cations/anions, or polyoxygenated anions, constitute a Hofmeister or inverse Hofmeister series.
Collapse
Affiliation(s)
- Wayne Travers
- Molecular Design & Synthesis Group, Centre of Applied Science for Health, TU Dublin Tallaght, Dublin D24 FKT9, Ireland
| | - Fintan Kelleher
- Molecular Design & Synthesis Group, Centre of Applied Science for Health, TU Dublin Tallaght, Dublin D24 FKT9, Ireland.
| |
Collapse
|
19
|
Huang F, Teng K, Liu Y, Cao Y, Wang T, Ma C, Zhang J, Zhong J. Bacteriocins: Potential for Human Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5518825. [PMID: 33936381 PMCID: PMC8055394 DOI: 10.1155/2021/5518825] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Due to the challenges of antibiotic resistance to global health, bacteriocins as antimicrobial compounds have received more and more attention. Bacteriocins are biosynthesized by various microbes and are predominantly used as food preservatives to control foodborne pathogens. Now, increasing researches have focused on bacteriocins as potential clinical antimicrobials or immune-modulating agents to fight against the global threat to human health. Given the broad- or narrow-spectrum antimicrobial activity, bacteriocins have been reported to inhibit a wide range of clinically pathogenic and multidrug-resistant bacteria, thus preventing the infections caused by these bacteria in the human body. Otherwise, some bacteriocins also show anticancer, anti-inflammatory, and immune-modulatory activities. Because of the safety and being not easy to cause drug resistance, some bacteriocins appear to have better efficacy and application prospects than existing therapeutic agents do. In this review, we highlight the potential therapeutic activities of bacteriocins and suggest opportunities for their application.
Collapse
Affiliation(s)
- Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yanhong Cao
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| |
Collapse
|
20
|
Venkatasamy V, Durairaj R, Karuppaiah P, Sridhar A, Kamaraj SK, Ramasamy T. An In Silico Evaluation of Molecular Interaction Between Antimicrobial Peptide Subtilosin A of Bacillus subtilis with Virulent Proteins of Aeromonas hydrophila. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10203-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Genome mining and UHPLC-QTOF-MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2. BMC Genomics 2020; 21:767. [PMID: 33153447 PMCID: PMC7643408 DOI: 10.1186/s12864-020-07160-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
Background Bacillus subtilis strain NCD-2 is an excellent biocontrol agent against plant soil-borne diseases and shows broad-spectrum antifungal activities. This study aimed to explore some secondary metabolite biosynthetic gene clusters and related antimicrobial compounds in strain NCD-2. An integrative approach combining genome mining and structural identification technologies using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-MS/MS), was adopted to interpret the chemical origins of metabolites with significant biological activities. Results Genome mining revealed nine gene clusters encoding secondary metabolites with predicted functions, including fengycin, surfactin, bacillaene, subtilosin, bacillibactin, bacilysin and three unknown products. Fengycin, surfactin, bacillaene and bacillibactin were successfully detected from the fermentation broth of strain NCD-2 by UHPLC-QTOF-MS/MS. The biosynthetic gene clusters of bacillaene, subtilosin, bacillibactin, and bacilysin showed 100% amino acid sequence identities with those in B. velezensis strain FZB42, whereas the identities of the surfactin and fengycin gene clusters were only 83 and 92%, respectively. Further comparison revealed that strain NCD-2 had lost the fenC and fenD genes in the fengycin biosynthetic operon. The biosynthetic enzyme-related gene srfAB for surfactin was divided into two parts. Bioinformatics analysis suggested that FenE in strain NCD-2 had a similar function to FenE and FenC in strain FZB42, and that FenA in strain NCD-2 had a similar function to FenA and FenD in strain FZB42. Five different kinds of fengycins, with 26 homologs, and surfactin, with 4 homologs, were detected from strain NCD-2. To the best of our knowledge, this is the first report of a non-typical gene cluster related to fengycin synthesis. Conclusions Our study revealed a number of gene clusters encoding antimicrobial compounds in the genome of strain NCD-2, including a fengycin synthetic gene cluster that might be unique by using genome mining and UHPLC–QTOF–MS/MS. The production of fengycin, surfactin, bacillaene and bacillibactin might explain the biological activities of strain NCD-2. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07160-2.
Collapse
|
22
|
Mo T, Ji X, Yuan W, Mandalapu D, Wang F, Zhong Y, Li F, Chen Q, Ding W, Deng Z, Yu S, Zhang Q. Thuricin Z: A Narrow‐Spectrum Sactibiotic that Targets the Cell Membrane. Angew Chem Int Ed Engl 2019; 58:18793-18797. [DOI: 10.1002/anie.201908490] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/19/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tianlu Mo
- Department of ChemistryFudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of ChemistryFudan University Shanghai 200433 China
| | - Wei Yuan
- Department of ChemistryFudan University Shanghai 200433 China
| | - Dhanaraju Mandalapu
- Department of ChemistryFudan University Shanghai 200433 China
- Institute of Mass SpectrometrySchool of Material Science and Chemical EngineeringNingbo University Ningbo Zhejiang 315211 China
| | - Fangting Wang
- Department of ChemistryFudan University Shanghai 200433 China
| | - Yuting Zhong
- Department of ChemistryFudan University Shanghai 200433 China
| | - Fuyou Li
- Department of ChemistryFudan University Shanghai 200433 China
| | - Qin Chen
- Department of ChemistryFudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 China
| | - Shaoning Yu
- Institute of Mass SpectrometrySchool of Material Science and Chemical EngineeringNingbo University Ningbo Zhejiang 315211 China
| | - Qi Zhang
- Department of ChemistryFudan University Shanghai 200433 China
| |
Collapse
|
23
|
Raheem N, Straus SK. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Front Microbiol 2019; 10:2866. [PMID: 31921046 PMCID: PMC6927293 DOI: 10.3389/fmicb.2019.02866] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
The antibiotic crisis has led to a pressing need for alternatives such as antimicrobial peptides (AMPs). Recent work has shown that these molecules have great potential not only as antimicrobials, but also as antibiofilm agents, immune modulators, anti-cancer agents and anti-inflammatories. A better understanding of the mechanism of action (MOA) of AMPs is an important part of the discovery of more potent and less toxic AMPs. Many models and techniques have been utilized to describe the MOA. This review will examine how biological assays and biophysical methods can be utilized in the context of the specific antibacterial and antibiofilm functions of AMPs.
Collapse
Affiliation(s)
- Nigare Raheem
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Suzana K Straus
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Mo T, Ji X, Yuan W, Mandalapu D, Wang F, Zhong Y, Li F, Chen Q, Ding W, Deng Z, Yu S, Zhang Q. Thuricin Z: A Narrow‐Spectrum Sactibiotic that Targets the Cell Membrane. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tianlu Mo
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Wei Yuan
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Dhanaraju Mandalapu
- Department of Chemistry Fudan University Shanghai 200433 China
- Institute of Mass Spectrometry School of Material Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 China
| | - Fangting Wang
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Yuting Zhong
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Fuyou Li
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Qin Chen
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Shaoning Yu
- Institute of Mass Spectrometry School of Material Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
25
|
Stein T. Oxygen-Limiting Growth Conditions and Deletion of the Transition State Regulator Protein Abrb in Bacillus subtilis 6633 Result in an Increase in Subtilosin Production and a Decrease in Subtilin Production. Probiotics Antimicrob Proteins 2019; 12:725-731. [DOI: 10.1007/s12602-019-09547-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2019; 42:805-828. [PMID: 30085042 DOI: 10.1093/femsre/fuy033] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria use various strategies to compete in an ecological niche, including the production of bacteriocins. Bacteriocins are ribosomally synthesized antibacterial peptides, and it has been postulated that the majority of Gram-positive bacteria produce one or more of these natural products. Bacteriocins can be used in food preservation and are also considered as potential alternatives to antibiotics. The majority of bacteriocins from Gram-positive bacteria had been traditionally divided into two major classes, namely lantibiotics, which are post-translationally modified bacteriocins, and unmodified bacteriocins. The last decade has seen an expanding number of ribosomally synthesized and post-translationally modified peptides (RiPPs) in Gram-positive bacteria that have antibacterial activity. These include linear azol(in)e-containing peptides, thiopeptides, bottromycins, glycocins, lasso peptides and lipolanthines. In addition, the three-dimensional (3D) structures of a number of modified and unmodified bacteriocins have been elucidated in recent years. This review gives an overview on the structural variety of bacteriocins from Gram-positive bacteria. It will focus on the chemical and 3D structures of these peptides, and their interactions with receptors and membranes, structure-function relationships and possible modes of action.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
27
|
Li Q, Liao S, Zhi H, Xing D, Xiao Y, Yang Q. Characterization and sequence analysis of potential biofertilizer and biocontrol agent Bacillus subtilis strain SEM-9 from silkworm excrement. Can J Microbiol 2019; 65:45-58. [DOI: 10.1139/cjm-2018-0350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fusarium wilt is a devastating soil-borne disease caused mainly by highly host-specific formae speciales of Fusarium oxysporum. Antagonistic microorganisms play a very important role in Fusarium wilt control, and the isolation of potential biocontrol strains is becoming more and more important. We isolated a bacterial strain (SEM-9) from the high-temperature stage of silkworm excrement composting, which had a marked ability to solubilize phosphorus, promote the growth and increase the yield of the small Chinese cabbage, and which also exhibited considerable antagonistic effect towards Fusarium sambucinum and other fungi. The result of physiological and biochemical analyses, as well as genome sequencing, showed that SEM-9 was a strain of Bacillus subtilis. Through genome annotation and analysis, it was found that SEM-9 contained genes related to the regulation of biofilm formation, which may play an important role in colonization, and gene clusters encoding the biosynthesis of antimicrobials, such as surfactin, bacilysin, fengycin, and subtilosin-A. The production of such antifungal compounds may constitute the basis of the mode-of-action of SEM-9 against Fusarium spp. These data suggested that the SEM-9 strain has potential as both a biofertilizer and a biocontrol agent, with the potential to manage Fusarium wilt disease in crops.
Collapse
Affiliation(s)
- Qingrong Li
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Sentai Liao
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
| | - Huyu Zhi
- Guangdong Geolong Biotechnology Co. Ltd., ZhuHai 519000, P.R. China
| | - Dongxu Xing
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Yang Xiao
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Qiong Yang
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| |
Collapse
|
28
|
Vasilchenko AS, Valyshev AV. Pore-forming bacteriocins: structural–functional relationships. Arch Microbiol 2018; 201:147-154. [DOI: 10.1007/s00203-018-1610-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/19/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
|
29
|
Edlund A, Yang Y, Yooseph S, He X, Shi W, McLean JS. Uncovering complex microbiome activities via metatranscriptomics during 24 hours of oral biofilm assembly and maturation. MICROBIOME 2018; 6:217. [PMID: 30522530 PMCID: PMC6284299 DOI: 10.1186/s40168-018-0591-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 11/06/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Dental plaque is composed of hundreds of bacterial taxonomic units and represents one of the most diverse and stable microbial ecosystems associated with the human body. Taxonomic composition and functional capacity of mature plaque is gradually shaped during several stages of community assembly via processes such as co-aggregation, competition for space and resources, and by bacterially produced reactive agents. Knowledge on the dynamics of assembly within complex communities is very limited and derives mainly from studies composed of a limited number of bacterial species. To fill current knowledge gaps, we applied parallel metagenomic and metatranscriptomic analyses during assembly and maturation of an in vitro oral biofilm. This model system has previously demonstrated remarkable reproducibility in taxonomic composition across replicate samples during maturation. RESULTS Time course analysis of the biofilm maturation was performed by parallel sampling every 2-3 h for 24 h for both DNA and RNA. Metagenomic analyses revealed that community taxonomy changed most dramatically between three and six hours of growth when pH dropped from 6.5 to 5.5. By applying comparative metatranscriptome analysis we could identify major shifts in overall community activities between six and nine hours of growth when pH dropped below 5.5, as 29,015 genes were significantly up- or down- expressed. Several of the differentially expressed genes showed unique activities for individual bacterial genomes and were associated with pyruvate and lactate metabolism, two-component signaling pathways, production of antibacterial molecules, iron sequestration, pH neutralization, protein hydrolysis, and surface attachment. Our analysis also revealed several mechanisms responsible for the niche expansion of the cariogenic pathogen Lactobacillus fermentum. CONCLUSION It is highly regarded that acidic conditions in dental plaque cause a net loss of enamel from teeth. Here, as pH drops below 5.5 pH to 4.7, we observe blooms of cariogenic lactobacilli, and a transition point of many bacterial gene expression activities within the community. To our knowledge, this represents the first study of the assembly and maturation of a complex oral bacterial biofilm community that addresses gene level functional responses over time.
Collapse
Affiliation(s)
- Anna Edlund
- Genomic Medicine Group, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92137, USA.
| | - Youngik Yang
- National Marine Biodiversity Institute of Korea, 75, Jansang-ro 101beon-gil, Janghang-eup, Seocheon-gun, Chungcheongnam-do, 33662, Korea
| | - Shibu Yooseph
- Department of Computer Science, University of Central Florida, 4328 Scorpius Street, Orlando, FL, 32816, USA
| | - Xuesong He
- The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Wenyuan Shi
- The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
30
|
A model for hydrophobic protrusions on peripheral membrane proteins. PLoS Comput Biol 2018; 14:e1006325. [PMID: 30048443 PMCID: PMC6080788 DOI: 10.1371/journal.pcbi.1006325] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 08/07/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022] Open
Abstract
With remarkable spatial and temporal specificities, peripheral membrane proteins bind to biological membranes. They do this without compromising solubility of the protein, and their binding sites are not easily distinguished. Prototypical peripheral membrane binding sites display a combination of patches of basic and hydrophobic amino acids that are also frequently present on other protein surfaces. The purpose of this contribution is to identify simple but essential components for membrane binding, through structural criteria that distinguish exposed hydrophobes at membrane binding sites from those that are frequently found on any protein surface. We formulate the concepts of protruding hydrophobes and co-insertability and have analysed more than 300 families of proteins that are classified as peripheral membrane binders. We find that this structural motif strongly discriminates the surfaces of membrane-binding and non-binding proteins. Our model constitutes a novel formulation of a structural pattern for membrane recognition and emphasizes the importance of subtle structural properties of hydrophobic membrane binding sites. Peripheral membrane proteins bind cellular membranes transiently, and are otherwise soluble proteins. As the interaction between proteins and membranes happens at cellular interfaces they are naturally involved in important interfacial processes such as recognition, signaling and trafficking. Commonly their binding sites are also soluble, and their binding mechanisms poorly understood. This complicates the elaboration of conceptual and quantitative models for peripheral membrane binding and makes binding site prediction difficult. It is therefore of great interest to discover traits that are common between these binding sites and that distinguishes them from other protein surfaces. In this work we identify simple and general structural features that facilitate membrane recognition by soluble proteins. We show that these motifs are highly over-represented on peripheral membrane proteins.
Collapse
|
31
|
Grove TL, Himes PM, Hwang S, Yumerefendi H, Bonanno JB, Kuhlman B, Almo SC, Bowers AA. Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides. J Am Chem Soc 2017; 139:11734-11744. [PMID: 28704043 PMCID: PMC6443407 DOI: 10.1021/jacs.7b01283] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sactipeptides are ribosomally synthesized peptides that contain a characteristic thioether bridge (sactionine bond) that is installed posttranslationally and is absolutely required for their antibiotic activity. Sactipeptide biosynthesis requires a unique family of radical SAM enzymes, which contain multiple [4Fe-4S] clusters, to form the requisite thioether bridge between a cysteine and the α-carbon of an opposing amino acid through radical-based chemistry. Here we present the structure of the sactionine bond-forming enzyme CteB, from Clostridium thermocellum ATCC 27405, with both SAM and an N-terminal fragment of its peptidyl-substrate at 2.04 Å resolution. CteB has the (β/α)6-TIM barrel fold that is characteristic of radical SAM enzymes, as well as a C-terminal SPASM domain that contains two auxiliary [4Fe-4S] clusters. Importantly, one [4Fe-4S] cluster in the SPASM domain exhibits an open coordination site in absence of peptide substrate, which is coordinated by a peptidyl-cysteine residue in the bound state. The crystal structure of CteB also reveals an accessory N-terminal domain that has high structural similarity to a recently discovered motif present in several enzymes that act on ribosomally synthesized and post-translationally modified peptides (RiPPs), known as a RiPP precursor peptide recognition element (RRE). This crystal structure is the first of a sactionine bond forming enzyme and sheds light on structures and mechanisms of other members of this class such as AlbA or ThnB.
Collapse
Affiliation(s)
- Tyler L. Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Paul M. Himes
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Sungwon Hwang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Hayretin Yumerefendi
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
32
|
Müller A, Klöckner A, Schneider T. Targeting a cell wall biosynthesis hot spot. Nat Prod Rep 2017; 34:909-932. [PMID: 28675405 DOI: 10.1039/c7np00012j] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: up to 2017History points to the bacterial cell wall biosynthetic network as a very effective target for antibiotic intervention, and numerous natural product inhibitors have been discovered. In addition to the inhibition of enzymes involved in the multistep synthesis of the macromolecular layer, in particular, interference with membrane-bound substrates and intermediates essential for the biosynthetic reactions has proven a valuable antibacterial strategy. A prominent target within the peptidoglycan biosynthetic pathway is lipid II, which represents a particular "Achilles' heel" for antibiotic attack, as it is readily accessible on the outside of the cytoplasmic membrane. Lipid II is a unique non-protein target that is one of the structurally most conserved molecules in bacterial cells. Notably, lipid II is more than just a target molecule, since sequestration of the cell wall precursor may be combined with additional antibiotic activities, such as the disruption of membrane integrity or disintegration of membrane-bound multi-enzyme machineries. Within the membrane bilayer lipid II is likely organized in specific anionic phospholipid patches that form a particular "landing platform" for antibiotics. Nature has invented a variety of different "lipid II binders" of at least 5 chemical classes, and their antibiotic activities can vary substantially depending on the compounds' physicochemical properties, such as amphiphilicity and charge, and thus trigger diverse cellular effects that are decisive for antibiotic activity.
Collapse
Affiliation(s)
- Anna Müller
- Institute of Pharmaceutical Microbiology, University of Bonn, Bonn, Germany.
| | | | | |
Collapse
|
33
|
Mathur H, Fallico V, O'Connor PM, Rea MC, Cotter PD, Hill C, Ross RP. Insights into the Mode of Action of the Sactibiotic Thuricin CD. Front Microbiol 2017; 8:696. [PMID: 28473822 PMCID: PMC5397516 DOI: 10.3389/fmicb.2017.00696] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/05/2017] [Indexed: 12/28/2022] Open
Abstract
Thuricin CD is a two-component bacteriocin, consisting of the peptides Trnα and Trnβ, and belongs to the newly designated sactibiotic subclass of bacteriocins. While it is clear from studies conducted thus far that it is a narrow-spectrum bacteriocin, requiring the synergistic activity of the two peptides, the precise mechanism of action of thuricin CD has not been elucidated. This study used a combination of flow cytometry and traditional culture-dependent assays to ascertain the effects of the thuricin CD peptides on the morphology, physiology and viability of sensitive Bacillus firmus DPC6349 cells. We show that both Trnα and Trnβ are membrane-acting and cause a collapse of the membrane potential, which could not be reversed even under membrane-repolarizing conditions. Furthermore, the depolarizing action of thuricin CD is accompanied by reductions in cell size and granularity, producing a pattern of physiological alterations in DPC6349 cells similar to those triggered by the pore-forming single-component bacteriocin Nisin A, and two-component lacticin 3147. Taken together, these results lead us to postulate that the lytic activity of thuricin CD involves the insertion of thuricin CD peptides into the membrane of target cells leading to permeabilization due to pore formation and consequent flux of ions across the membrane, resulting in membrane depolarization and eventual cell death.
Collapse
Affiliation(s)
- Harsh Mathur
- Moorepark Food Research CentreCounty Cork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | | | | | - Mary C Rea
- Moorepark Food Research CentreCounty Cork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Paul D Cotter
- Moorepark Food Research CentreCounty Cork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Colin Hill
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| | - R Paul Ross
- Moorepark Food Research CentreCounty Cork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| |
Collapse
|
34
|
Pal I, Brahmkhatri VP, Bera S, Bhattacharyya D, Quirishi Y, Bhunia A, Atreya HS. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle. J Colloid Interface Sci 2016; 483:385-393. [DOI: 10.1016/j.jcis.2016.08.043] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 11/27/2022]
|
35
|
Himes PM, Allen SE, Hwang S, Bowers AA. Production of Sactipeptides in Escherichia coli: Probing the Substrate Promiscuity of Subtilosin A Biosynthesis. ACS Chem Biol 2016; 11:1737-44. [PMID: 27019323 DOI: 10.1021/acschembio.6b00042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sactipeptides are peptide-derived natural products that are processed by remarkable, radical-mediated cysteine sulfur to α-carbon coupling reactions. The resulting sactionine thioether linkages give rise to the unique defined structures and concomitant biological activities of sactipeptides. An E. coli heterologous expression system, based on the biosynthesis of one such sactipeptide, subtilosin A, is described and this expression system is exploited to probe the promiscuity of the subtilosin A sactionine bond-forming enzyme, AlbA. These efforts allowed the facile expression and isolation of a small library of mutant sactipeptides based on the subtilosin A precursor peptide, demonstrating broad substrate promiscuity where none was previously known. Importantly, we show that the positions of the sactionine linkages can be moved, giving rise to new, unnatural sactipeptide structures. E. coli heterologous expression also allowed incorporation of unnatural amino acids into sactipeptides by means of amber-suppression technology, potentially opening up new chemistry and new applications for unnatural sactipeptides.
Collapse
Affiliation(s)
- Paul M. Himes
- Division of Chemical Biology
and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
| | - Scott E. Allen
- Division of Chemical Biology
and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
| | - Sungwon Hwang
- Division of Chemical Biology
and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
| | - Albert A. Bowers
- Division of Chemical Biology
and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
| |
Collapse
|
36
|
Antibacterial Peptides: Opportunities for the Prevention and Treatment of Dental Caries. Probiotics Antimicrob Proteins 2016; 3:68. [PMID: 26781572 DOI: 10.1007/s12602-011-9076-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dental caries is a multifactorial disease that is a growing and costly global health concern. The onset of disease is a consequence of an ecological imbalance within the dental plaque biofilm that favors specific acidogenic and aciduric caries pathogens, namely Streptococcus mutans and Streptococcus sobrinus. It is now recognized by the scientific and medical community that it is neither possible nor desirable to totally eliminate dental plaque. Conversely, the chemical biocides most commonly used for caries prevention and treatment indiscriminately attack all plaque microorganisms. These treatments also suffer from other drawbacks such as bad taste, irritability, and staining. Furthermore, the public demand for safe and natural personal hygiene products continues to rise. Therefore, there are opportunities that exist to develop new strategies for the treatment of this disease. As an alternative to conventional antibiotics, antibacterial peptides have been explored greatly over the last three decades for many different therapeutic uses. There are currently tens of hundreds of antibacterial peptides characterized across the evolutionary spectrum, and among these, many demonstrate physical and/or biological properties that may be suitable for a more targeted approach to the selective control or elimination of putative caries pathogens. Additionally, many peptides, such as nisin, are odorless, colorless, and tasteless and do not cause irritation or staining. This review focuses on antibacterial peptides for their potential role in the treatment and prevention of dental caries and suggests candidates that need to be explored further. Practical considerations for the development of antibacterial peptides as oral treatments are also discussed.
Collapse
|
37
|
Antibacterial Activity of Subtilosin Alone and Combined with Curcumin, Poly-Lysine and Zinc Lactate Against Listeria monocytogenes Strains. Probiotics Antimicrob Proteins 2016; 2:250-7. [PMID: 26781320 DOI: 10.1007/s12602-010-9042-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper, the antibacterial effects of the Bacillus amyloliquefaciens-produced bacteriocin subtilosin, both alone and in combination with curcumin, ε-poly-L-lysine (poly-lysine), or zinc lactate, were examined against Listeria monocytogenes. Results indicated that subtilosin inhibits both of the studied bacterial strains, Scott A (wild-type, nisin sensitive) and NR30 (nisin resistant). However, L. monocytogenes Scott A was more sensitive to subtilosin and pure curcumin. In addition, subtilosin was more active at an acidic pH. Subtilosin in combination with encapsulated curcumin displayed partial synergy against L. monocytogenes ScottA. It also had synergistic activity against both L. monocytogenes Scott A and L. monocytogenes NR30 when combined with zinc lactate. Only an additive effect was observed for subtilosin when combined with non-encapsulated curcumin or poly-lysine against the mentioned strains. Thus, using the combination of subtilosin with curcumin, poly-lysine, or zinc lactate, a lower effective dose can be used to control L. monocytogenes infection. Our findings suggest that subtilosin could be used as alternative bacteriocin to nisin, providing an opportunity to use a novel natural and efficacious biopreservative against L. monocytogenes in food preservation. This is the first report on the effects of the combination of subtilosin with natural antimicrobials on L. monocytogenes.
Collapse
|
38
|
Torres NI, Noll KS, Xu S, Li J, Huang Q, Sinko PJ, Wachsman MB, Chikindas ML. Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiotics Antimicrob Proteins 2016; 5:26-35. [PMID: 23637711 DOI: 10.1007/s12602-012-9123-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study the antiviral properties of the bacteriocin subtilosin against Herpes simplex virus type 1 (HSV-1) and the safety and efficacy of a subtilosin-based nanofiber formulation were determined. High concentrations of subtilosin, the cyclical antimicrobial peptide produced by Bacillus amyloliquefaciens, were virucidal against HSV-1. Interestingly, at non-virucidal concentrations, subtilosin inhibited wild type HSV-1 and aciclovir-resistant mutants in a dose-dependent manner. Although the exact antiviral mechanism is not fully understood, time of addition experiments and western blot analysis suggest that subtilosin does not affect viral multiplication steps prior to protein synthesis. Poly(vinyl alcohol) (PVOH)-based subtilosin nanofibers with a width of 278 nm were produced by the electrospinning process. The retained antimicrobial activity of the subtilosin-based fibers was determined via an agar well diffusion assay. The loading capacity of the fibers was 2.4 mg subtilosin/g fiber, and loading efficiency was 31.6%. Furthermore, the nanofibers with and without incorporated subtilosin were shown to be nontoxic to human epidermal tissues using an in vitro human tissue model. Taking together these results subtilosin-based nanofibers should be further studied as a novel alternative method for treatment and/or control of HSV-1 infection.
Collapse
Affiliation(s)
- Nicolás I Torres
- Laboratorio de Virología. Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Nikiforova OA, Klykov S, Volski A, Dicks LMT, Chikindas ML. Subtilosin A production by Bacillus subtilis KATMIRA1933 and colony morphology are influenced by the growth medium. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1149-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Himeno K, Rosengren KJ, Inoue T, Perez RH, Colgrave ML, Lee HS, Chan LY, Henriques ST, Fujita K, Ishibashi N, Zendo T, Wilaipun P, Nakayama J, Leelawatcharamas V, Jikuya H, Craik DJ, Sonomoto K. Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from Enterococcus faecium. Biochemistry 2015; 54:4863-76. [PMID: 26174911 DOI: 10.1021/acs.biochem.5b00196] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enterocin NKR-5-3B, one of the multiple bacteriocins produced by Enterococcus faecium NKR-5-3, is a 64-amino acid novel circular bacteriocin that displays broad-spectrum antimicrobial activity. Here we report the identification, characterization, and three-dimensional nuclear magnetic resonance solution structure determination of enterocin NKR-5-3B. Enterocin NKR-5-3B is characterized by four helical segments that enclose a compact hydrophobic core, which together with its circular backbone impart high stability and structural integrity. We also report the corresponding structural gene, enkB, that encodes an 87-amino acid precursor peptide that undergoes a yet to be described enzymatic processing that involves adjacent cleavage and ligation of Leu(24) and Trp(87) to yield the mature (circular) enterocin NKR-5-3B.
Collapse
Affiliation(s)
- Kohei Himeno
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | - Tomoko Inoue
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Rodney H Perez
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | - Koji Fujita
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Naoki Ishibashi
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Takeshi Zendo
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Pongtep Wilaipun
- ⊥Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Jiro Nakayama
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Vichien Leelawatcharamas
- @Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Hiroyuki Jikuya
- #Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | - Kenji Sonomoto
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.,#Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
41
|
Algburi A, Volski A, Chikindas ML. Natural antimicrobials subtilosin and lauramide arginine ethyl ester synergize with conventional antibiotics clindamycin and metronidazole against biofilms of Gardnerella vaginalis but not against biofilms of healthy vaginal lactobacilli. Pathog Dis 2015; 73:ftv018. [PMID: 25838136 DOI: 10.1093/femspd/ftv018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2015] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to evaluate the ability of clindamycin and metronidazole to synergize with natural antimicrobials against biofilms of bacterial vaginosis (BV)-associated Gardnerella vaginalis. Minimum bactericidal concentrations for biofilm cells (MBCs-B) were determined for each antimicrobial. The MBCs-B of lauramide arginine ethyl ester (LAE), subtilosin, clindamycin and metronidazole were 50, 69.5, 20 and 500 μg mL(-1), respectively. A checkerboard assay and isobologram were used to analyze the type of interactions between these antimicrobials. The combination of metronidazole with natural antimicrobials did not inhibit planktonic lactobacilli. Clindamycin with either LAE or with subtilosin was inhibitory for planktonic but not for biofilm-associated lactobacilli. All tested antimicrobial combinations were inhibitory for BV-associated Mobiluncus curtisii and Peptostreptococcus anaerobius. LAE and subtilosin synergized with clindamycin and metronidazole against biofilms of G. vaginalis but not biofilm-associated vaginal lactobacilli. The biofilms of BV-associated pathogens can be controlled by synergistically acting combinations of conventional antibiotics and natural antimicrobials which will help better management of current antibiotics, especially considering robust bacterial resistance. Our findings create a foundation for a new strategy in the effective control of vaginal infections.
Collapse
Affiliation(s)
- Ammar Algburi
- Department of Biochemistry and Microbiology, Rutgers State University, New Brunswick, NJ 08901, USA Department of Microbiology, Veterinary College, Diyala University, Baqubah, Iraq
| | - Anna Volski
- School of Arts and Science, Rutgers State University, New Brunswick, NJ 08901, USA
| | - Michael L Chikindas
- School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08901, USA
| |
Collapse
|
42
|
|
43
|
Wang G, Feng G, Snyder AB, Manns DC, Churey JJ, Worobo RW. Bactericidal thurincin H causes unique morphological changes in Bacillus cereus F4552 without affecting membrane permeability. FEMS Microbiol Lett 2014; 357:69-76. [PMID: 24891232 DOI: 10.1111/1574-6968.12486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/25/2014] [Indexed: 11/29/2022] Open
Abstract
Thurincin H is an antilisterial bacteriocin produced by Bacillus thuringiensis SF361. It exhibits inhibitory activity against a wide range of Gram-positive foodborne pathogens and spoilage bacteria including Listeria monocytogenes, B. cereus, and B. subtilis. This hydrophobic, anionic bacteriocin folds into a hairpin structure maintained by four pairs of unique sulfur to α-carbon thioether bonds. As its hydrophobicity and structure are quite different from most archived bacteriocins, this study aimed to elucidate its mode of action and compare it with the mechanisms of other well-characterized bacteriocins. The results indicated that, although bactericidal to B. cereus F4552, thurincin H did not lead to optical density reduction or detectable changes in cell membrane permeability. B. cereus F4552 imaged by scanning electron microscopy after treatment with thurincin H at 32 × MIC showed regular rod-shaped cells, while only cells treated with thurincin H at the elevated levels of 256 × MIC showed loss of cell integrity and rigidity. Both concentrations caused greater than 99% of cell viability reduction. In contrast, nisin caused significant cell membrane permeability at concentration as low as 2 × MIC. These results indicated a difference in the mode of action for thurincin H compared with the generalized pore-forming mechanism of many lantibiotics, such as nisin.
Collapse
Affiliation(s)
- Gaoyan Wang
- Department of Food Science, Cornell University, Geneva, NY, USA
| | | | | | | | | | | |
Collapse
|
44
|
Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis. Curr Opin Chem Biol 2013; 17:605-12. [DOI: 10.1016/j.cbpa.2013.06.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/03/2013] [Accepted: 06/25/2013] [Indexed: 11/19/2022]
|
45
|
Yang X, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis. Chemistry 2013; 19:7662-77. [PMID: 23666908 DOI: 10.1002/chem.201300401] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Indexed: 11/08/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with a high degree of structural diversity and a wide variety of bioactivities. Understanding the biosynthetic machinery of these RiPPs will benefit the discovery and development of new molecules with potential pharmaceutical applications. In this Concept article, we discuss the features of the biosynthetic pathways to different RiPP classes, and propose mechanisms regarding recognition of the precursor peptide by the post-translational modification enzymes. We propose that the leader peptides function as allosteric regulators that bind the active form of the biosynthetic enzymes in a conformational selection process. We also speculate how enzymes that generate polycyclic products of defined topologies may have been selected for during evolution.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, USA
| | | |
Collapse
|
46
|
Isolation and characterization of an antimicrobial substance from Bacillus subtilis BY08 antagonistic to Bacillus cereus and Listeria monocytogenes. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0098-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013; 30:108-60. [PMID: 23165928 DOI: 10.1039/c2np20085f] [Citation(s) in RCA: 1552] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
Collapse
Affiliation(s)
- Paul G Arnison
- Prairie Plant Systems Inc, Botanical Alternatives Inc, Suite 176, 8B-3110 8th Street E, Saskatoon, SK, S7H 0W2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Antimicrobial peptides (AMPs) provide a primordial source of immunity, conferring upon eukaryotic cells resistance against bacteria, protozoa, and viruses. Despite a few examples of anionic peptides, AMPs are usually relatively short positively charged polypeptides, consisting of a dozen to about a hundred amino acids, and exhibiting amphipathic character. Despite significant differences in their primary and secondary structures, all AMPs discovered to date share the ability to interact with cellular membranes, thereby affecting bilayer stability, disrupting membrane organization, and/or forming well-defined pores. AMPs selectively target infectious agents without being susceptible to any of the common pathways by which these acquire resistance, thereby making AMPs prime candidates to provide therapeutic alternatives to conventional drugs. However, the mechanisms of AMP actions are still a matter of intense debate. The structure-function paradigm suggests that a better understanding of how AMPs elicit their biological functions could result from atomic resolution studies of peptide-lipid interactions. In contrast, more strict thermodynamic views preclude any roles for three-dimensional structures. Indeed, the design of selective AMPs based solely on structural parameters has been challenging. In this chapter, we will focus on selected AMPs for which studies on the corresponding AMP-lipid interactions have helped reach an understanding of how AMP effects are mediated. We will emphasize the roles of both liquid- and solid-state NMR spectroscopy for elucidating the mechanisms of action of AMPs.
Collapse
|
49
|
Kim SY, Lee NK, Han EJ, Paik HD. Characterization of subtilin KU43 Produced by Bacillus subtilis KU43 isolated from traditional Korean fermented foods. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0188-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
50
|
Lanz ND, Booker SJ. Identification and function of auxiliary iron-sulfur clusters in radical SAM enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1196-212. [PMID: 22846545 DOI: 10.1016/j.bbapap.2012.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 11/27/2022]
Abstract
Radical SAM (RS) enzymes use a 5'-deoxyadenosyl 5'-radical generated from a reductive cleavage of S-adenosyl-l-methionine to catalyze over 40 distinct reaction types. A distinguishing feature of these enzymes is a [4Fe-4S] cluster to which each of three iron ions is ligated by three cysteinyl residues most often located in a Cx(3)Cx(2)C motif. The α-amino and α-carboxylate groups of SAM anchor the molecule to the remaining iron ion, which presumably facilitates its reductive cleavage. A subset of RS enzymes contains additional iron-sulfur clusters, - which we term auxiliary clusters - most of which have unidentified functions. Enzymes in this subset are involved in cofactor biosynthesis and maturation, post-transcriptional and post-translational modification, enzyme activation, and antibiotic biosynthesis. The additional clusters in these enzymes have been proposed to function in sulfur donation, electron transfer, and substrate anchoring. This review will highlight evidence supporting the presence of multiple iron-sulfur clusters in these enzymes as well as their predicted roles in catalysis. This article is part of a special issue entitled: Radical SAM enzymes and radical enzymology.
Collapse
Affiliation(s)
- Nicholas D Lanz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|