1
|
Nyandoro VO, Ismail EA, Tageldin A, Gafar MA, Peters XQ, Mautsoe R, Omolo CA, Govender T. Potential of nanocarrier-mediated delivery of vancomycin for MRSA infections. Expert Opin Drug Deliv 2025; 22:347-365. [PMID: 39949087 DOI: 10.1080/17425247.2025.2459756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) threatens global health due to its resistance to vancomycin, which is the standard treatment despite limitations, including nephrotoxicity and low intracellular permeability. This necessitates the development of innovative strategies such as nanocarrier-mediated delivery to overcome such limitations. Nanocarriers serve as delivery systems for vancomycin and exhibit inherent antibacterial properties, potentially providing synergism and overcoming MRSA's resistance. Nanocarriers provide sustained release and targeted delivery of vancomycin to the infection site, achieving higher therapeutic concentrations and superior antibacterial activity with reduced doses, which minimizes systemic toxicity. Moreover, leveraging simulations techniques provides more insights on vancomycin-nanocarrier interactions, facilitating the optimization of nanosystems. AREAS COVERED The article discusses the potential of nanocarriers in delivering vancomycin to infection site, reducing systemic toxicity, and potentiating anti-MRSA activity. Additionally, it reviews modeling and simulation studies to provide a deeper understanding of vancomycin-nanocarrier interactions. The literature search included experimental articles from 2017 to 2024, searched in Web of Science, Google scholar, PubMed, and Scopus. EXPERT OPINION Nanocarrier-mediated delivery of vancomycin offers promising approaches to combat MRSA infections by enhancing therapeutic efficacy and reducing systemic toxicity. However, further research is required to optimize these nanoformulations and advance them to clinical trials and practical applications.
Collapse
Affiliation(s)
- Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutics and Pharmaceutical Chemistry, School of Pharmacy, Kabarak University, Kabarak, Kenya
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Relebohile Mautsoe
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy and Health Sciences, Department of Pharmaceutics, United States International University-Africa, Nairobi, Kenya
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Nazli A, Irshad Khan MZ, Rácz Á, Béni S. Acid-sensitive prodrugs; a promising approach for site-specific and targeted drug release. Eur J Med Chem 2024; 276:116699. [PMID: 39089000 DOI: 10.1016/j.ejmech.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Drugs administered through conventional formulations are devoid of targeting and often spread to various undesired sites, leading to sub-lethal concentrations at the site of action and the emergence of undesired effects. Hence, therapeutic agents should be delivered in a controlled manner at target sites. Currently, stimuli-based drug delivery systems have demonstrated a remarkable potential for the site-specific delivery of therapeutic moieties. pH is one of the widely exploited stimuli for drug delivery as several pathogenic conditions such as tumor cells, infectious and inflammatory sites are characterized by a low pH environment. This review article aims to demonstrate various strategies employed in the design of acid-sensitive prodrugs, providing an overview of commercially available acid-sensitive prodrugs. Furthermore, we have compiled the progress made for the development of new acid-sensitive prodrugs currently undergoing clinical trials. These prodrugs include albumin-binding prodrugs (Aldoxorubicin and DK049), polymeric micelle (NC-6300), polymer conjugates (ProLindac™), and an immunoconjugate (IMMU-110). The article encompasses a broad spectrum of studies focused on the development of acid-sensitive prodrugs for anticancer, antibacterial, and anti-inflammatory agents. Finally, the challenges associated with the acid-sensitive prodrug strategy are discussed, along with future directions.
Collapse
Affiliation(s)
- Adila Nazli
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | | | - Ákos Rácz
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | - Szabolcs Béni
- Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary.
| |
Collapse
|
3
|
Khan RT, Sharma V, Khan SS, Rasool S. Prevention and potential remedies for antibiotic resistance: current research and future prospects. Front Microbiol 2024; 15:1455759. [PMID: 39421555 PMCID: PMC11484029 DOI: 10.3389/fmicb.2024.1455759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The increasing threat of antibiotic resistance and shrinking treatment options for infections have pushed mankind into a difficult position. The looming threat of the return of the pre-antibiotic era has caused a sense of urgency to protect and conserve the potency of antibiotic therapy. One of the perverse effects of antibiotic resistance is the dissemination of its causative agents from non-clinically important strains to clinically important strains and vice versa. The popular saying "Prevention is better than cure" is appropriate for tackling antibiotic resistance. On the one hand, new and effective antibiotics are required; on the other hand, better measures for the use of antibiotics, along with increased awareness in the general public related to antibiotic use, are essential. Awareness, especially of appropriate antibiotic use, antibiotic resistance, its dissemination, and potential threats, can help greatly in controlling the use and abuse of antibiotics, and the containment of antibiotic resistance. Antibiotic drugs' effectiveness can be enhanced by producing novel antibiotic analogs or adding adjuvants to current antibiotics. Combinatorial therapy of antibiotics has proven successful in treating multidrug-resistant (MDR) bacterial infections. This review aims to highlight the current global situation of antibiotic resistance and discuss the methods used to monitor, prevent, inhibit, or reverse bacterial resistance mechanisms in the fight against antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | - Shafaq Rasool
- Molecular Biology Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| |
Collapse
|
4
|
Nwabuife JC, Hassan D, Madhaorao Pant A, Devnarain N, Gafar MA, Osman N, Rambharose S, Govender T. Novel vancomycin free base – Sterosomes for combating diseases caused by Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus infections (S. Aureus and MRSA). J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Nazli A, He DL, Liao D, Khan MZI, Huang C, He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv Drug Deliv Rev 2022; 189:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance is a global health issue and a potential risk for society. Antibiotics administered through conventional formulations are devoid of targeting effect and often spread to various undesired body sites, leading to sub-lethal concentrations at the site of action and thus resulting in emergence of resistance, as well as side effects. Moreover, we have a very slim antibiotic pipeline. Drug-delivery systems have been designed to control the rate, time, and site of drug release, and innovative approaches for antibiotic delivery provide a glint of hope for addressing these issues. This review elaborates different delivery strategies and approaches employed to overcome the limitations of conventional antibiotic therapy. These include antibiotic conjugates, prodrugs, and nanocarriers for local and targeted antibiotic release. In addition, a wide range of stimuli-responsive nanocarriers and biological carriers for targeted antibiotic delivery are discussed. The potential advantages and limitations of targeted antibiotic delivery strategies are described along with possible solutions to avoid these limitations. A number of antibiotics successfully delivered through these approaches with attained outcomes and potentials are reviewed.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - David L He
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Dandan Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | | | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
6
|
Gbian DL, Omri A. Lipid-Based Drug Delivery Systems for Diseases Managements. Biomedicines 2022; 10:2137. [PMID: 36140237 PMCID: PMC9495957 DOI: 10.3390/biomedicines10092137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Liposomes are tiny lipid-based vesicles composed of one or more lipid bilayers, which facilitate the encapsulation of hydrophilic, lipophilic, and amphiphilic biological active agents. The description of the physicochemical properties, formulation methods, characteristics, mechanisms of action, and large-scale manufacturing of liposomes as delivery systems are deeply discussed. The benefits, toxicity, and limitations of the use of liposomes in pharmacotherapeutics including in diagnostics, brain targeting, eye and cancer diseases, and in infections are provided. The experimental approaches that may reduce, or even bypass, the use of liposomal drug drawbacks is described. The application of liposomes in the treatment of numerous diseases is discussed.
Collapse
Affiliation(s)
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug and Vaccine Delivery Systems Facility, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
7
|
Mirhaj M, Labbaf S, Tavakoli M, Seifalian A. An Overview on the Recent Advances in the Treatment of Infected Wounds: Antibacterial Wound Dressings. Macromol Biosci 2022; 22:e2200014. [PMID: 35421269 DOI: 10.1002/mabi.202200014] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/20/2022] [Indexed: 11/11/2022]
Abstract
A wound can be surgical, cuts from an operation or due to accident and trauma. The infected wound, as a result of bacteria growth within the damaged skin, interrupts the natural wound healing process and significantly impacts the quality of life. Wound dressing is an important segment of the skincare industry with its economic burden estimated at $ 20.4 billion (in 2021) in the global market. The results of recent clinical trials suggest that the use of modern dressings can be the easiest, most accessible, and most cost-effective way to treat chronic wounds and, hence, holds significant promise. With the sheer number of dressings in the market, the selection of correct dressing is confusing for clinicians and healthcare workers. The aim of this research was to review widely used types of antibacterial wound dressings, as well as emerging products, for their efficiency and mode of action. In this review, we focus on introducing antibiotics and antibacterial nanoparticles as two important and clinically widely used categories of antibacterial agents. The perspectives and challenges for paving the way for future research in this field are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Amelia Seifalian
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Ibrahim UH, Devnarain N, Omolo CA, Mocktar C, Govender T. Biomimetic pH/lipase dual responsive vitamin-based solid lipid nanoparticles for on-demand delivery of vancomycin. Int J Pharm 2021; 607:120960. [PMID: 34333022 DOI: 10.1016/j.ijpharm.2021.120960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/12/2023]
Abstract
In this study, ascorbyl tocopherol succinate (ATS) was designed, synthesized and characterized via FT-IR, HR-MS, H1 NMR and C13 NMR, to simultaneously confer biomimetic and dual responsive properties of an antibiotic nanosystem to enhance their antibacterial efficacy and reduce antimicrobial resistance. Therefore, an in silico-aided design (to mimic the natural substrate of bacterial lipase) was employed to demonstrate the binding potential of ATS to lipase (-32.93 kcal/mol binding free energy (ΔGbind) and bacterial efflux pumps blocking potential (NorA ΔGbind: -37.10 kcal/mol, NorB ΔGbind: -34.46 kcal/mol). ATS bound stronger to lipase than the natural substrate (35 times lower Kd value). The vancomycin loaded solid lipid nanoparticles (VM-ATS-SLN) had a hydrodynamic diameter, zeta potential, polydispersity index and entrapment efficiency of 106.9 ± 1.4 nm, -16.5 ± 0.93 mV, 0.11 ± 0.012 and 61.9 ± 1.31%, respectively. In vitro biocompatibility studies revealed VM-ATS-SLN biosafety and non-haemolytic activity. Significant enhancement in VM release was achieved in response to acidified pH and lipase enzyme, compared to controls. VM-ATS-SLN showed enhanced sustained in vitro antibacterial activity for 5 days, 2-fold greater MRSA biofilm growth inhibition and 3.44-fold reduction in bacterial burden in skin infected mice model compared to bare VM. Therefore, ATS shows potential as a novel multifunctional adjuvant for effective and targeted delivery of antibiotics.
Collapse
Affiliation(s)
- Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P.O. Box 14634-00800, Nairobi, Kenya.
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
9
|
Mat Rani NNI, Mustafa Hussein Z, Mustapa F, Azhari H, Sekar M, Chen XY, Mohd Amin MCI. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Pharm Biopharm 2021; 165:84-105. [PMID: 33974973 DOI: 10.1016/j.ejpb.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Multi antibiotic-resistant bacterial infections are on the rise due to the overuse of antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the pathogens listed under the category of serious threats where vancomycin remains the mainstay treatment despite the availability of various antibacterial agents. Recently, decreased susceptibility to vancomycin from clinical isolates of MRSA has been reported and has drawn worldwide attention as it is often difficult to overcome and leads to increased medical costs, mortality, and longer hospital stays. Development of antibiotic delivery systems is often necessary to improve bioavailability and biodistribution, in order to reduce antibiotic resistance and increase the lifespan of antibiotics. Liposome entrapment has been used as a method to allow higher drug dosing apart from reducing toxicity associated with drugs. The surface of the liposomes can also be designed and enhanced with drug-release properties, active targeting, and stealth effects to prevent recognition by the mononuclear phagocyte system, thus enhancing its circulation time. The present review aimed to highlight the possible targeting strategies of liposomes against MRSA bacteremia systemically while investigating the magnitude of this effect on the minimum inhibitory concentration level.
Collapse
Affiliation(s)
- Nur Najihah Izzati Mat Rani
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Zahraa Mustafa Hussein
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Fahimi Mustapa
- Hospital Batu Gajah Jalan Changkat, 31000 Batu Gajah, Perak, Malaysia
| | - Hanisah Azhari
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Xiang Yi Chen
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Gkartziou F, Giormezis N, Spiliopoulou I, Antimisiaris SG. Nanobiosystems for Antimicrobial Drug-Resistant Infections. NANOMATERIALS 2021; 11:nano11051075. [PMID: 33922004 PMCID: PMC8143556 DOI: 10.3390/nano11051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
The worldwide increased bacterial resistance toward antimicrobial therapeutics has led investigators to search for new therapeutic options. Some of the options currently exploited to treat drug-resistant infections include drug-associated nanosystems. Additionally, the use of bacteriophages alone or in combination with drugs has been recently revisited; some studies utilizing nanosystems for bacteriophage delivery have been already reported. In this review article, we focus on nine pathogens that are the leading antimicrobial drug-resistant organisms, causing difficult-to-treat infections. For each organism, the bacteriophages and nanosystems developed or used in the last 20 years as potential treatments of pathogen-related infections are discussed. Summarizing conclusions and future perspectives related with the potential of such nano-antimicrobials for the treatment of persistent infections are finally highlighted.
Collapse
Affiliation(s)
- Foteini Gkartziou
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
| | - Nikolaos Giormezis
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Iris Spiliopoulou
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| | - Sophia G. Antimisiaris
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| |
Collapse
|
11
|
Gbian DL, Omri A. The Impact of an Efflux Pump Inhibitor on the Activity of Free and Liposomal Antibiotics against Pseudomonas aeruginosa. Pharmaceutics 2021; 13:pharmaceutics13040577. [PMID: 33919624 PMCID: PMC8072581 DOI: 10.3390/pharmaceutics13040577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
The eradication of Pseudomonas aeruginosa in cystic fibrosis patients has become continuously difficult due to its increased resistance to treatments. This study assessed the efficacy of free and liposomal gentamicin and erythromycin, combined with Phenylalanine arginine beta-naphthylamide (PABN), a broad-spectrum efflux pump inhibitor, against P. aeruginosa isolates. Liposomes were prepared and characterized for their sizes and encapsulation efficiencies. The antimicrobial activities of formulations were determined by the microbroth dilution method. Their activity on P. aeruginosa biofilms was assessed, and the effect of sub-inhibitory concentrations on bacterial virulence factors, quorum sensing (QS) signals and bacterial motility was also evaluated. The average diameters of liposomes were 562.67 ± 33.74 nm for gentamicin and 3086.35 ± 553.95 nm for erythromycin, with encapsulation efficiencies of 13.89 ± 1.54% and 51.58 ± 2.84%, respectively. Liposomes and PABN combinations potentiated antibiotics by reducing minimum inhibitory and bactericidal concentrations by 4–32 fold overall. The formulations significantly inhibited biofilm formation and differentially attenuated virulence factor production as well as motility. Unexpectedly, QS signal production was not affected by treatments. Taken together, the results indicate that PABN shows potential as an adjuvant of liposomal macrolides and aminoglycosides in the management of lung infections in cystic fibrosis patients.
Collapse
Affiliation(s)
| | - Abdelwahab Omri
- Correspondence: ; Tel.: +1-705-675-1151-2190; Fax: +1-705-675-4844
| |
Collapse
|
12
|
Thorn CR, Thomas N, Boyd BJ, Prestidge CA. Nano-fats for bugs: the benefits of lipid nanoparticles for antimicrobial therapy. Drug Deliv Transl Res 2021; 11:1598-1624. [PMID: 33675007 DOI: 10.1007/s13346-021-00921-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
Abstract
Bacterial infections are an imminent global healthcare threat evolving from rapidly advancing bacterial defence mechanisms that antibiotics fail to overcome. Antibiotics have been designed for systemic administration to target planktonic bacteria, leading to difficulties in reaching the site of localized bacterial infection and an inability to overcome the biological, chemical and physical barriers of bacteria, including biofilms, intracellular infections and antimicrobial resistance. The amphiphilic, biomimetic and antimicrobial properties of lipids provide a promising toolbox to innovate and advance antimicrobial therapies, overcoming the barriers presented by bacteria in order to directly and effectively treat recalcitrant infections. Nanoparticulate lipid-based drug delivery systems can enhance antibiotic permeation through the chemical and physical barriers of bacterial infections, as well as fuse with bacterial cell membranes, release antibiotics in response to bacteria and act synergistically with loaded antibiotics to enhance the total antimicrobial efficacy. This review explores the barriers presented by bacterial infections that pose bio-pharmaceutical challenges to antibiotics and how different structural and functional mechanisms of lipids can enhance antimicrobial therapies. Different nanoparticulate lipid-based systems are presented as valuable drug delivery systems to advance the efficacy of antibiotics, including liposomes, liquid crystalline nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers and lipid nanocarriers. In summary, liquid crystalline nanoparticles are emerging with the greatest potential for clinical applications and commercial success as an "all-rounder" advanced lipid-based antimicrobial therapy that overcomes the multiple biological, chemical and physical barriers of bacteria.
Collapse
Affiliation(s)
- Chelsea R Thorn
- Clinical and Health Science, University of South Australia, City East Campus, Adelaide, SA, 5000, Australia.,The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia
| | - Nicky Thomas
- Clinical and Health Science, University of South Australia, City East Campus, Adelaide, SA, 5000, Australia.,The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia
| | - Ben J Boyd
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia.,Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia
| | - Clive A Prestidge
- Clinical and Health Science, University of South Australia, City East Campus, Adelaide, SA, 5000, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia.
| |
Collapse
|
13
|
Gbian DL, Omri A. Current and novel therapeutic strategies for the management of cystic fibrosis. Expert Opin Drug Deliv 2021; 18:535-552. [PMID: 33426936 DOI: 10.1080/17425247.2021.1874343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Cystic fibrosis (CF), is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and affects thousands of people throughout the world. Lung disease is the leading cause of death in CF patients. Despite the advances in treatments, the management of CF mainly targets symptoms. Recent CFTR modulators however target common mutations in patients, alleviating symptoms of CF. Unfortunately, there is still no approved treatments for patients with rare mutations to date.Areas covered: This paper reviews current treatments of CF that mitigate symptoms and target genetic defects. The use of gene and drug delivery systems such as viral or non-viral vectors and nano-compounds to enhance CFTR expression and the activity of antimicrobials against chronic pulmonary infections respectively, will also be discussed.Expert opinion: Nano-compounds tackle biological barriers to drug delivery and revitalize antimicrobials, anti-inflammatory drugs and even genes delivery to CF patients. Gene therapy and gene editing are of particular interest because they have the potential to directly target genetic defects. Nanoparticles should be formulated to more specifically target epithelial cells, and biofilms. Finally, the development of more potent gene vectors to increase the duration of gene expression and reduce inflammation is a promising strategy to eventually cure CF.
Collapse
Affiliation(s)
- Douweh Leyla Gbian
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
14
|
Shchelik IS, Sieber S, Gademann K. Green Algae as a Drug Delivery System for the Controlled Release of Antibiotics. Chemistry 2020; 26:16644-16648. [PMID: 32910832 PMCID: PMC7894466 DOI: 10.1002/chem.202003821] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/15/2022]
Abstract
New strategies to efficiently treat bacterial infections are crucial to circumvent the increase of resistant strains and to mitigate side effects during treatment. Skin and soft tissue infections represent one of the areas suffering the most from these resistant strains. We developed a new drug delivery system composed of the green algae, Chlamydomonas reinhardtii, which is generally recognized as safe, to target specifically skin diseases. A two-step functionalization strategy was used to chemically modify the algae with the antibiotic vancomycin. Chlamydomonas reinhardtii was found to mask vancomycin and the insertion of a photocleavable linker was used for the release of the antibiotic. This living drug carrier was evaluated in presence of Bacillus subtilis and, only upon UVA1-mediated release, growth inhibition of bacteria was observed. These results represent one of the first examples of a living organism used as a drug delivery system for the release of an antibiotic by UVA1-irradiation.
Collapse
Affiliation(s)
- Inga S. Shchelik
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Simon Sieber
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Karl Gademann
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
15
|
Devnarain N, Osman N, Fasiku VO, Makhathini S, Salih M, Ibrahim UH, Govender T. Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents-An in-depth review of the last two decades. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1664. [PMID: 32808486 DOI: 10.1002/wnan.1664] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance due to suboptimal targeting and inconsistent antibiotic release at bacterial infection sites has driven the formulation of stimuli-responsive nanocarriers for antibacterial therapy. Unlike conventional nanocarriers, stimuli-responsive nanocarriers have the ability to specifically enhance targeting and drug release profiles. There has been a significant escalation in the design and development of novel nanomaterials worldwide; in particular, intrinsic stimuli-responsive antibiotic nanocarriers, due to their enhanced activity, improved targeted delivery, and superior potential for bacterial penetration and eradication. Herein, we provide an extensive and critical review of pH-, enzyme-, redox-, and ionic microenvironment-responsive nanocarriers that have been reported in literature to date, with an emphasis on the mechanisms of drug release, the nanomaterials used, the nanosystems constructed and the antibacterial efficacy of the nanocarriers. The review also highlights further avenues of research for optimizing their potential and commercialization. This review confirms the potential of intrinsic stimuli-responsive nanocarriers for enhanced drug delivery and antibacterial killing. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nawras Osman
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sifiso Makhathini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Vancomycin-functionalized Eudragit-based nanofibers: Tunable drug release and wound healing efficacy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Eh Suk VR, Chung I, Misran M. Mixed Oleic Acid-Erucic Acid Liposomes as a Carrier for Anticancer Drugs. Curr Drug Deliv 2020; 17:292-302. [PMID: 32039684 DOI: 10.2174/1567201817666200210122933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/09/2019] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Liposomes are mostly known to be prepared from phospholipids and lipids and have a remarkable capacity to encapsulate both lipophobic and lipophilic molecules. However, there is little research on developing fatty acid liposomes for chemotherapy. OBJECTIVE We have successfully prepared mixed fatty acid liposomes from two monounsaturated fatty acids, namely oleic acid and erucic acid, which stabilised by DOPEPEG2000. The Critical Vesicular Concentration (CVC) of liposomes was found to be within 0.09 to 0.21 mmol dm-3, with an average particle size of 400 nm. METHODS Encapsulation of various anticancer drugs such as folinic acid, methotrexate, doxorubicin, or irinotecan resulted in Encapsulation Efficiency (%EE) of up to 90%. Using a 3-(4, 5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the median Inhibitory Concentration (IC50) values of mixed oleic acid-erucic acid encapsulating hydrophilic drugs was remarkably reduced at the end of 24 hours of incubation with the human lung carcinoma cell line A549. RESULTS The results suggest that mixed oleic acid-erucic acid liposomes are a potential new approach to further develop as an alternative vehicle of various drugs for cancer treatment.
Collapse
Affiliation(s)
- Vicit Rizal Eh Suk
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
18
|
Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020; 12:E142. [PMID: 32046289 PMCID: PMC7076477 DOI: 10.3390/pharmaceutics12020142] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Based on the recent reports of World Health Organization, increased antibiotic resistance prevalence among bacteria represents the greatest challenge to human health. In addition, the poor solubility, stability, and side effects that lead to inefficiency of the current antibacterial therapy prompted the researchers to explore new innovative strategies to overcome such resilient microbes. Hence, novel antibiotic delivery systems are in high demand. Nanotechnology has attracted considerable interest due to their favored physicochemical properties, drug targeting efficiency, enhanced uptake, and biodistribution. The present review focuses on the recent applications of organic (liposomes, lipid-based nanoparticles, polymeric micelles, and polymeric nanoparticles), and inorganic (silver, silica, magnetic, zinc oxide (ZnO), cobalt, selenium, and cadmium) nanosystems in the domain of antibacterial delivery. We provide a concise description of the characteristics of each system that render it suitable as an antibacterial delivery agent. We also highlight the recent promising innovations used to overcome antibacterial resistance, including the use of lipid polymer nanoparticles, nonlamellar liquid crystalline nanoparticles, anti-microbial oligonucleotides, smart responsive materials, cationic peptides, and natural compounds. We further discuss the applications of antimicrobial photodynamic therapy, combination drug therapy, nano antibiotic strategy, and phage therapy, and their impact on evading antibacterial resistance. Finally, we report on the formulations that made their way towards clinical application.
Collapse
Affiliation(s)
- Nermin E. Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (N.E.E.); (A.A.)
| | - Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (N.E.E.); (A.A.)
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Sahar B. Hassan
- Department of Clinical pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Mahmoud M. Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University, Minia 61768, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy Sohag University, Sohag 82524, Egypt
| |
Collapse
|
19
|
AB2-type amphiphilic block copolymer containing a pH-cleavable hydrazone linkage for targeted antibiotic delivery. Int J Pharm 2020; 575:118948. [DOI: 10.1016/j.ijpharm.2019.118948] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/01/2019] [Accepted: 12/07/2019] [Indexed: 11/22/2022]
|
20
|
Supramolecular amphiphiles of Beta-cyclodextrin and Oleylamine for enhancement of vancomycin delivery. Int J Pharm 2020; 574:118881. [DOI: 10.1016/j.ijpharm.2019.118881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
|
21
|
Omolo CA, Megrab NA, Kalhapure RS, Agrawal N, Jadhav M, Mocktar C, Rambharose S, Maduray K, Nkambule B, Govender T. Liposomes with pH responsive 'on and off' switches for targeted and intracellular delivery of antibiotics. J Liposome Res 2019; 31:45-63. [PMID: 31663407 DOI: 10.1080/08982104.2019.1686517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
pH responsive drug delivery systems are one of the new strategies to address the spread of bacterial resistance to currently used antibiotics. The aim of this study was to formulate liposomes with 'On' and 'Off'' pH responsive switches for infection site targeting. The vancomycin (VCM) loaded liposomes had sizes below 100 nm, at pH 7.4. The QL-liposomes had a negative zeta potential at pH 7.4 that switched to a positive charge at acidic pH. VCM release from the liposome was quicker at pH 6 than pH 7.4. The OA-QL-liposome showed 4-fold lower MIC at pH 7.4 and 8- and 16-fold lower at pH 6.0 against both MSSA and MRSA compared to the bare drug. OA-QL liposome had a 1266.67- and 704.33-fold reduction in the intracellular infection for TPH-1 macrophage and HEK293 cells respectively. In vivo studies showed that the amount of MRSA recovered from mice treated with formulations was 189.67 and 6.33-fold lower than the untreated and bare VCM treated mice respectively. MD simulation of the QL lipid with the phosphatidylcholine membrane (POPC) showed spontaneous binding of the lipid to the bilayer membrane both electrostatic and Van der Waals interactions contributed to the binding. These studies demonstrated that the 'On' and 'Off' pH responsive liposomes enhanced the activity targeted and intracellular delivery VCM.
Collapse
Affiliation(s)
- Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Pharmacy and Health Sciences, United States International University of Africa, Nairobi, Kenya
| | - Nagia A Megrab
- Department of Pharmaceutics and Industrial Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nikhil Agrawal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahantesh Jadhav
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Division of Emergency Medicine, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Kaminee Maduray
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bongani Nkambule
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
22
|
Walvekar P, Gannimani R, Salih M, Makhathini S, Mocktar C, Govender T. Self-assembled oleylamine grafted hyaluronic acid polymersomes for delivery of vancomycin against methicillin resistant Staphylococcus aureus (MRSA). Colloids Surf B Biointerfaces 2019; 182:110388. [DOI: 10.1016/j.colsurfb.2019.110388] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022]
|
23
|
Osman N, Omolo CA, Gannimani R, Waddad AY, Rambharose S, Mocktar C, Singh S, Parboosing R, Govender T. Novel fatty acid-based pH-responsive nanostructured lipid carriers for enhancing antibacterial delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Makhathini SS, Kalhapure RS, Jadhav M, Waddad AY, Gannimani R, Omolo CA, Rambharose S, Mocktar C, Govender T. Novel two-chain fatty acid-based lipids for development of vancomycin pH-responsive liposomes against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). J Drug Target 2019; 27:1094-1107. [DOI: 10.1080/1061186x.2019.1599380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sifiso S. Makhathini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rahul S. Kalhapure
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy, The University of Texas, El Paso, TX, USA
| | - Mahantesh Jadhav
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ayman Y. Waddad
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ramesh Gannimani
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A. Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Emergency Medicine, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
25
|
Van Giau V, An SSA, Hulme J. Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des Devel Ther 2019; 13:327-343. [PMID: 30705582 PMCID: PMC6342214 DOI: 10.2147/dddt.s190577] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The worldwide misuse of antibiotics and the subsequent rise of multidrug-resistant pathogenic bacteria have prompted a paradigm shift in the established view of antibiotic and bacterial-human relations. The clinical failures of conventional antibiotic therapies are associated with lengthy detection methods, poor penetration at infection sites, disruption of indigenous microflora and high potential for mutational resistance. One of the most promising strategies to improve the efficacy of antibiotics is to complex them with micro or nano delivery materials. Such materials/vehicles can shield antibiotics from enzyme deactivation, increasing the therapeutic effectiveness of the drug. Alternatively, drug-free nanomaterials that do not kill the pathogen but target virulent factors such as adhesins, toxins, or secretory systems can be used to minimize resistance and infection severity. The main objective of this review is to examine the potential of the aforementioned materials in the detection and treatment of antibiotic-resistant pathogenic organisms.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| |
Collapse
|
26
|
Zhou K, Li C, Chen D, Pan Y, Tao Y, Qu W, Liu Z, Wang X, Xie S. A review on nanosystems as an effective approach against infections of Staphylococcus aureus. Int J Nanomedicine 2018; 13:7333-7347. [PMID: 30519018 PMCID: PMC6233487 DOI: 10.2147/ijn.s169935] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic bacteria and hazardous for the health of human beings and livestock globally. The characteristics like biofilm forming, facultative intracellular survival, and growing resistance of S. aureus pose a great challenge to its use in therapy. Nanoparticles are considered as a promising way to overcome the infections’ therapeutic problems caused by S. aureus. In this paper, the present progress and challenges of nanoparticles in the treatment of S. aureus infection are focused on stepwise. First, the survival and infection mechanism of S. aureus are analyzed. Second, the treatment challenges posed by S. aureus are provided, which is followed by the third step including the advantages of nanoparticles in improving the penetration and accumulation ability of their payload antibiotics into cell, inhibiting S. aureus biofilm formation, and enhancing the antibacterial activity against resistant isolates. Finally, the challenges and future perspective of nanoparticles for S. aureus infection therapy are introduced. This review will help the readers to realize that the nanosystems can effectively fight against the S. aureus infection by inhibiting biofilm formation, enhancing intracellular delivery, and improving activity against methicillin-resistant S. aureus and small colony variant phenotypes as well as aim to help researchers looking for more efficient nano-systems to combat the S. aureus infections.
Collapse
Affiliation(s)
- Kaixiang Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| | - Chao Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Xiaofang Wang
- Animal Husbandry and Veterinary Institute of Hebei Province, Baoding, Hebei, China,
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| |
Collapse
|