1
|
Steponavičiūtė M, Majee D, Zhao B, Ungur L, Presolski S. Expanding the Molecular Switches Toolbox: Photoreloadable Dithienylethene Mechanophores. Angew Chem Int Ed Engl 2025; 64:e202422549. [PMID: 39931751 PMCID: PMC12015393 DOI: 10.1002/anie.202422549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Molecular switches are often thought of as nanoscopic equivalents to the electrical buttons and knobs ubiquitous in everyday life. However, mechanical force is rarely used to reversibly trigger rearrangements at the atomic scale, due to the difficulty in selectively breaking certain bonds, while keeping others intact. Here, we introduce two new mechanophores based on dithienylethene (DTE), which can be toggled between two states by ultraviolet light and sonication. Attaching various lengths of poly(ϵ-caprolactone) either to the 2,2' or the 5,5' positions of the DTE core allowed us to study the kinetics of its mechanochemical cycloreversion. We employed computational methods to understand the root causes of the observed mechano-regiochemical differences. Lastly, we show that our best performing DTE-polymer conjugate can undergo numerous switching cycles by the alternating action of electromagnetic radiation and mechanical force.
Collapse
Affiliation(s)
- Medeina Steponavičiūtė
- Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore4 Engineering Drive 4Singapore117585
| | - Debashis Majee
- Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore4 Engineering Drive 4Singapore117585
| | - Bisheng Zhao
- Department of Chemistry, National University of Singapore3 Engineering Drive 3Singapore117543
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore3 Engineering Drive 3Singapore117543
| | - Stanislav Presolski
- Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore4 Engineering Drive 4Singapore117585
- Yale-NUS College16 College Avenue WestSingapore138527
| |
Collapse
|
2
|
Xu D, Liu W, Tian S, Qian H. Versatile Mechanochemical Reactions Via Tailored Force Transmission in Mechanophores. Angew Chem Int Ed Engl 2025; 64:e202415353. [PMID: 39520081 DOI: 10.1002/anie.202415353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In polymer mechanochemistry, regulating the intrinsic mechanical reactivity of a mechanophore offers extensive opportunities in material science, enabling the development of hierarchical and multifunctional polymer-based materials. Recent advances have focused on innovating various types of mechanophores with inherent reactivity (e.g. regioselectivity and stereoselectivity). However, little attention has been given to modulating their reactivity by tailoring force transmission within mechanophores. Here, we introduce a novel approach through the implementation of a cyclic pulling geometry into an anthracene-maleimide (AM) mechanophore. This approach manipulates force transmission within the mechanophore and effectively regulates its reactivity from 0.0160 min-1 to 0.00133 min-1, achieving up to a 12-fold change. Mechanochemical coupling analysis indicates that the split force transmission along ring chains contributes to the significant difference in mechanochemical reactivity. By leveraging the distinct force transmission pathways within cyclic and linear AM mechanophores, we covalently integrate them with a spiropyran mechanophore to design tandem mechanophore systems for hierarchical mechanochemical activation. These findings highlight the efficacy and versatility of the cyclic pulling strategy in modulating mechanophore reactivity, providing valuable insights for the design of tunable multifunctional polymer-based materials.
Collapse
Affiliation(s)
- Deao Xu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200438
| | - Wenjie Liu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200438
| | - Shijia Tian
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200438
| | - Hai Qian
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200438
| |
Collapse
|
3
|
Trzeciak K, Dudek MK, Potrzebowski MJ. Mechanochemical Transformations of Pharmaceutical Cocrystals: Polymorphs and Coformer Exchange. Chemistry 2024; 30:e202402683. [PMID: 39384536 DOI: 10.1002/chem.202402683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Transformations of solid samples under solvent-free or minimal solvent conditions set the future trend and define a modern strategy for the production of new materials. Of the various technologies tested in recent years, the mechanochemical approach seems to be the most promising for economic and ecological reasons. The aim of this review article is to present the current state of art in solid state research on binary systems, which have found numerous applications in the pharmaceutical and materials science industries. This article is divided into three sections. In the first part, we describe the new equipment improvements, which include the innovative application of thermo-mechanochemistry, sono-mechanochemistry, photo-mechanochemistry, electro-mechanochemistry, as well as resonant acoustic mixing (RAM), and transformation under high-speed sample spinning ("SpeedMixing"). A brief description of techniques dedicated to ex-situ and in-situ studies of progress and the mechanism of solid matter transformation (PXRD, FTIR, Raman and NMR spectroscopy) is presented. In the second section, we discuss the problem of cocrystal polymorphism highlighting the issue related with correlation between mechanochemical parameters (time, temperature, energy, molar ratio, solvent used as a liquid assistant, surface energy, crystal size, crystal shape) and preference for the formation of requested polymorph. The last part is devoted to the description of the processes of coformer exchange in binary systems forced by mechanical and/or thermal stimuli. The influence of the thermodynamic factor on the selection of the best-suited partner for the formation of a two-component stable structure is presented.
Collapse
Affiliation(s)
- Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
4
|
Hertel R, Raisch M, Walter M, Reiter G, Sommer M. Mechanistically Different Mechanochromophores Enable Calibration and Validation of Molecular Forces in Glassy Polymers and Elastomeric Networks. Angew Chem Int Ed Engl 2024; 63:e202409369. [PMID: 39136230 PMCID: PMC11586691 DOI: 10.1002/anie.202409369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Indexed: 10/18/2024]
Abstract
Sterically distorted donor-acceptor π-systems, termed DA springs, can be progressively planarized under mechanical load causing a bathochromic shift of the photoluminescence (PL) spectrum. By combining theory and experiment, we here use a simple linear force calibration for two different conformational mechanochromophores to determine molecular forces in polymers from the mechanochromic shift in PL wavelength during multiple uniaxial tensile tests. Two systems are used, i) a highly entangled linear glassy polyphenylene and ii) a covalent elastomeric polydimethylsiloxane network. The mean forces estimated by this method are validated using known threshold forces for the mechanochemical ring-opening reactions of two different spiropyran force probes. The agreement between both approaches underlines that these DA springs provide the unique opportunity for the online monitoring of local molecular forces present in diverse polymer matrices.
Collapse
Affiliation(s)
- Raphael Hertel
- Department of Polymer ChemistryInstitute for ChemistryChemnitz University of TechnologyStr. der Nationen 6209111ChemnitzGermany
| | - Maximilian Raisch
- Department of Polymer ChemistryInstitute for ChemistryChemnitz University of TechnologyStr. der Nationen 6209111ChemnitzGermany
| | - Michael Walter
- FIT Freiburg Center for Interactive Materials and Bioinspired TechnologiesAlbert-Ludwig-University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Günter Reiter
- Institute of PhysicsAlbert-Ludwig-University of FreiburgHermann-Herder-Str. 379104FreiburgGermany
| | - Michael Sommer
- Department of Polymer ChemistryInstitute for ChemistryChemnitz University of TechnologyStr. der Nationen 6209111ChemnitzGermany
| |
Collapse
|
5
|
Zhang H, Diesendruck CE. Mechanochemical Diversity in Block Copolymers. Chemistry 2024; 30:e202402632. [PMID: 39102406 DOI: 10.1002/chem.202402632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Covalent polymer chains are known to undergo mechanochemical events when subjected to mechanical forces. Such force-coupled reactions, like C-C bond scission in homopolymers, typically occur in a non-selective manner but with a higher probability at the mid-chain. In contrast, block copolymers (BCPs), composed of two or more chemically distinct chains linked by covalent bonds, have recently been shown to exhibit significantly different mechanochemical reactivities and selectivities. These differences may be attributable to the atypical conformations adopted by their chains, compared to the regular random coil. Beyond individual molecules, when BCPs self-assemble into ordered aggregates in solution, the non-covalent interactions between the chains lead to meaningful acceleration in the activation of embedded force-sensitive motifs. Furthermore, the microphase segregation of BCPs in bulk creates periodically dispersed polydomains, locking the blocks in specific conformations which have also been shown to affect their mechanochemical reactivity, with different morphologies influencing reactivity to varying extents. This review summarizes the studies of mechanochemistry in BCPs over the past two decades, from the molecular level to assemblies, and up to bulk materials.
Collapse
Affiliation(s)
- Hang Zhang
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
6
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
7
|
Liu R, He X, Liu T, Wang X, Wang Q, Chen X, Lian Z. Organic Reactions Enabled by Mechanical Force-Induced Single Electron Transfer. Chemistry 2024; 30:e202401376. [PMID: 38887819 DOI: 10.1002/chem.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Mechanochemical reactions, achieved through milling, grinding, or other mechanical actions, have emerged as a solvent-free alternative to traditional solution-based chemistry. Mechanochemistry not only provides the opportunity to eliminate bulk solvent use, reducing waste generation, but also unveils a new reaction strategy which enables the realization of reactions previously inaccessible in solution. While the majority of organic reactions facilitated by mechanical force traditionally follow two-electron transfer pathways similar to their solution-based counterparts, the field of mechanochemically induced single-electron transfer (SET) reactions has witnessed rapid development. This review outlines examples of mechanochemical reactions facilitated by the SET process, focusing on the reagents that initiate SET, thereby positioning mechanochemistry as a burgeoning field within the realm of single-electron chemistry.
Collapse
Affiliation(s)
- Ruoxuan Liu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Xiaochun He
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Tianfen Liu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Xiaohong Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Qingqing Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Xinzhou Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| |
Collapse
|
8
|
Sun PB, Pomfret MN, Elardo MJ, Suresh A, Rentería-Gómez Á, Lalisse RF, Keating S, Chen C, Hilburg SL, Chakma P, Wu Y, Bell RC, Rowan SJ, Gutierrez O, Golder MR. Molecular Ball Joints: Mechanochemical Perturbation of Bullvalene Hardy-Cope Rearrangements in Polymer Networks. J Am Chem Soc 2024; 146:19229-19238. [PMID: 38961828 DOI: 10.1021/jacs.4c04401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The solution-state fluxional behavior of bullvalene has fascinated physical organic and supramolecular chemists alike. Little effort, however, has been put into investigating bullvalene applications in bulk, partially due to difficulties in characterizing such dynamic systems. To address this knowledge gap, we herein probe whether bullvalene Hardy-Cope rearrangements can be mechanically perturbed in bulk polymer networks. We use dynamic mechanical analysis to demonstrate that the activation barrier to the glass transition process is significantly elevated for bullvalene-containing materials relative to "static" control networks. Furthermore, bullvalene rearrangements can be mechanically perturbed at low temperatures in the glassy region; such behavior facilitates energy dissipation (i.e., increased hysteresis energy) and polymer chain alignment to stiffen the material (i.e., increased Young's modulus) under load. Computational simulations corroborate our work that showcases bullvalene as a reversible "low-force" covalent mechanophore in the modulation of viscoelastic behavior.
Collapse
Affiliation(s)
- Peiguan B Sun
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Meredith N Pomfret
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Matthew J Elardo
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Adhya Suresh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Remy F Lalisse
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sheila Keating
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Chuqiao Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Shayna L Hilburg
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98115, United States
| | - Progyateg Chakma
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Yunze Wu
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Rowina C Bell
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Matthew R Golder
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| |
Collapse
|
9
|
Xie H, Wang J, Lou Z, Hu L, Segawa S, Kang X, Wu W, Luo Z, Kwok RTK, Lam JWY, Zhang J, Tang BZ. Mechanochemical Fabrication of Full-Color Luminescent Materials from Aggregation-Induced Emission Prefluorophores for Information Storage and Encryption. J Am Chem Soc 2024; 146:18350-18359. [PMID: 38937461 PMCID: PMC11240258 DOI: 10.1021/jacs.4c02954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
The development of luminescent materials via mechanochemistry embodies a compelling yet intricate frontier within materials science. Herein, we delineate a methodology for the synthesis of brightly luminescent polymers, achieved by the mechanochemical coupling of aggregation-induced emission (AIE) prefluorophores with generic polymers. An array of AIE moieties tethered to the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical are synthesized as prefluorophores, which initially exhibit weak fluorescence due to intramolecular quenching. Remarkably, the mechanical coupling of these prefluorophores with macromolecular radicals, engendered through ball milling of generic polymers, leads to substantial augmentation of fluorescence within the resultant polymers. We meticulously evaluate the tunable emission of the AIE-modified polymers, encompassing an extensive spectrum from the visible to the near-infrared region. This study elucidates the potential of such materials in stimuli-responsive systems with a focus on information storage and encryption displays. By circumventing the complexity inherent to the conventional synthesis of luminescent polymers, this approach contributes a paradigm to the field of AIE-based polymers with implications for advanced technological applications.
Collapse
Affiliation(s)
- Huilin Xie
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Jingchun Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Zhenchen Lou
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lianrui Hu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Shinsuke Segawa
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Xiaowo Kang
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Weijun Wu
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zhi Luo
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianquan Zhang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
10
|
Ofodum NM, Qi Q, Chandradat R, Warfle T, Lu X. Advancing Dynamic Polymer Mechanochemistry through Synergetic Conformational Gearing. J Am Chem Soc 2024; 146:17700-17711. [PMID: 38888499 DOI: 10.1021/jacs.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Harnessing mechanical force to modulate material properties and enhance biomechanical functions is essential for advancing smart materials and bioengineering. Polymer mechanochemistry provides an emerging toolkit for exploring unconventional chemical transformations and modulating molecular structures through mechanical force. One of the key challenges is developing innovative force-sensing mechanisms for precise and in situ force detection. This study introduces mDPAC, a dynamic and sensitive mechanophore, demonstrating its mechanochromic properties through synergetic conformational gearing. Its unique mechanoresponsive mechanism is based on the simultaneous conformational synergy between its phenazine and phenyl moieties, facilitated by a worm-gear-like structure. We confirm mDPAC's complex mechanochemical response and elucidate its mechanotransduction mechanism through our experimental data and comprehensive simulations. The compatibility of mDPAC with hydrogels is particularly notable, highlighting its potential for applications in aqueous biological environments as a dynamic force sensor. Moreover, mDPAC's multicolored mechanochromic responses facilitate direct force sensing and visual detection, paving the way for precise and real-time mechanical force sensing in bulk materials.
Collapse
Affiliation(s)
- Nnamdi M Ofodum
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Qingkai Qi
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Richard Chandradat
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Theodore Warfle
- Department of Chemical and Biomolecular Engineering, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Xiaocun Lu
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| |
Collapse
|
11
|
Chen L, Nixon R, De Bo G. Force-controlled release of small molecules with a rotaxane actuator. Nature 2024; 628:320-325. [PMID: 38600268 PMCID: PMC11006608 DOI: 10.1038/s41586-024-07154-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 02/02/2024] [Indexed: 04/12/2024]
Abstract
Force-controlled release of small molecules offers great promise for the delivery of drugs and the release of healing or reporting agents in a medical or materials context1-3. In polymer mechanochemistry, polymers are used as actuators to stretch mechanosensitive molecules (mechanophores)4. This technique has enabled the release of molecular cargo by rearrangement, as a direct5,6 or indirect7-10 consequence of bond scission in a mechanophore, or by dissociation of cage11, supramolecular12 or metal complexes13,14, and even by 'flex activation'15,16. However, the systems described so far are limited in the diversity and/or quantity of the molecules released per stretching event1,2. This is due to the difficulty in iteratively activating scissile mechanophores, as the actuating polymers will dissociate after the first activation. Physical encapsulation strategies can be used to deliver a larger cargo load, but these are often subject to non-specific (that is, non-mechanical) release3. Here we show that a rotaxane (an interlocked molecule in which a macrocycle is trapped on a stoppered axle) acts as an efficient actuator to trigger the release of cargo molecules appended to its axle. The release of up to five cargo molecules per rotaxane actuator was demonstrated in solution, by ultrasonication, and in bulk, by compression, achieving a release efficiency of up to 71% and 30%, respectively, which places this rotaxane device among the most efficient release systems achieved so far1. We also demonstrate the release of three representative functional molecules (a drug, a fluorescent tag and an organocatalyst), and we anticipate that a large variety of cargo molecules could be released with this device. This rotaxane actuator provides a versatile platform for various force-controlled release applications.
Collapse
Affiliation(s)
- Lei Chen
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Robert Nixon
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Guillaume De Bo
- Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
12
|
Bhuiyan FH, Li YS, Kim SH, Martini A. Shear-activation of mechanochemical reactions through molecular deformation. Sci Rep 2024; 14:2992. [PMID: 38316829 PMCID: PMC10844542 DOI: 10.1038/s41598-024-53254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Mechanical stress can directly activate chemical reactions by reducing the reaction energy barrier. A possible mechanism of such mechanochemical activation is structural deformation of the reactant species. However, the effect of deformation on the reaction energetics is unclear, especially, for shear stress-driven reactions. Here, we investigated shear stress-driven oligomerization reactions of cyclohexene on silica using a combination of reactive molecular dynamics simulations and ball-on-flat tribometer experiments. Both simulations and experiments captured an exponential increase in reaction yield with shear stress. Elemental analysis of ball-on-flat reaction products revealed the presence of oxygen in the polymers, a trend corroborated by the simulations, highlighting the critical role of surface oxygen atoms in oligomerization reactions. Structural analysis of the reacting molecules in simulations indicated the reactants were deformed just before a reaction occurred. Quantitative evidence of shear-induced deformation was established by comparing bond lengths in cyclohexene molecules in equilibrium and prior to reactions. Nudged elastic band calculations showed that the deformation had a small effect on the transition state energy but notably increased the reactant state energy, ultimately leading to a reduction in the energy barrier. Finally, a quantitative relationship was developed between molecular deformation and energy barrier reduction by mechanical stress.
Collapse
Affiliation(s)
- Fakhrul H Bhuiyan
- Department of Mechanical Engineering, University of California Merced, 5200 N. Lake Road, Merced, CA, 95343, USA
| | - Yu-Sheng Li
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California Merced, 5200 N. Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
13
|
Chang HC, Liang MC, Luc VS, Davis C, Chang CC. Mechanochemical Reactivity of a 1,2,4-Triazoline-3,5-dione-Anthracene Diels-Alder Adduct. Chem Asian J 2024; 19:e202300850. [PMID: 37938167 DOI: 10.1002/asia.202300850] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023]
Abstract
Force-responsive molecules that produce fluorescent moieties under stress provide a means for stress-sensing and material damage assessment. In this work, we report a mechanophore based on Diels-Alder adduct TAD-An of 4,4'-(4,4'-diphenylmethylene)-bis-(1,2,4-triazoline-3,5-dione) and initiator-substituted anthracene that can undergo retro-Diels-Alder (rDA) reaction by pulsed ultrasonication and compressive activation in bulk materials. The influence of having C-N versus C-C bonds at the sites of bond scission is elucidated by comparing the relative mechanical strength of TAD-An to another Diels-Alder adduct MAL-An obtained from maleimide and anthracene. The susceptibility to undergo rDa reaction correlates well with bond energy, such that C-N bond containing TAD-An degrades faster C-C bond containing MAL-An because C-N bond is weaker than C-C bond. Specifically, the results from polymer degradation kinetics under pulsed ultrasonication shows that polymer containing TAD-An has a rate constant of 1.59×10-5 min-1 , while MAL-An (C-C bond) has a rate constant of 1.40×10-5 min-1 . Incorporation of TAD-An in a crosslinked polymer network demonstrates the feasibility to utilize TAD-An as an alternative force-responsive probe to visualize mechanical damage where fluorescence can be "turned-on" due to force-accelerated retro-Diels-Alder reaction.
Collapse
Affiliation(s)
- Hao-Chun Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, No. 1001, Daxue Rd. East Dist., Hsinchu City, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Min-Chieh Liang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, No. 1001, Daxue Rd. East Dist., Hsinchu City, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Van-Sieu Luc
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, No. 1001, Daxue Rd. East Dist., Hsinchu City, 300093, Taiwan
- Sustainable Chemical Science and Technology (SCST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, 11529, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chelsea Davis
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, 19716, U.S.A
| | - Chia-Chih Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, No. 1001, Daxue Rd. East Dist., Hsinchu City, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
14
|
Cai Y, Binder WH. Triggered Crosslinking of Main-Chain Enediyne Polyurethanes via Bergman Cyclization. Macromol Rapid Commun 2023; 44:e2300440. [PMID: 37877520 DOI: 10.1002/marc.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Crosslinking chemistries occupy an important position in polymer modification with a particular importance when triggered in response to external stimuli. Enediyne (EDY) moieties are used as functional entities in this work, known to undergo a pericyclic Bergman cyclization (BC) to induce a triggered crosslinking of polyurethanes (PU) via the intermediately formed diradicals. Diamino-EDYs, where the distance between the enyne-moieties is known to be critical to induce a BC, are placed repetitively as main-chain structural elements in isophorone-based PUs to induce reinforcement upon heating, compression, or stretching. A 7-day compression under room temperature results in a ≈69% activation of the BC, together with the observation of an increase in tensile strength by 62% after 25 stretching cycles. The occurrence of BC is further proven by the decreased exothermic values in differential scanning calorimetry, together with characteristic peaks of the formed benzene moieties via IR spectroscopy. Purely heat-induced crosslinking contributes to 191% of the maximum tensile strength in comparison to the virgin PU. The BC herein forms an excellent crosslinking strategy, triggered by heat or force in PU materials.
Collapse
Affiliation(s)
- Yue Cai
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle (Saale), Germany
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle (Saale), Germany
| |
Collapse
|
15
|
Xuan M, Fan J, Khiêm VN, Zou M, Brenske KO, Mourran A, Vinokur R, Zheng L, Itskov M, Göstl R, Herrmann A. Polymer Mechanochemistry in Microbubbles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305130. [PMID: 37494284 DOI: 10.1002/adma.202305130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Polymer mechanochemistry is a promising technology to convert mechanical energy into chemical functionality by breaking covalent and supramolecular bonds site-selectively. Yet, the mechanochemical reaction rates of covalent bonds in typically used ultrasonication setups lead to reasonable conversions only after comparably long sonication times. This can be accelerated by either increasing the reactivity of the mechanoresponsive moiety or by modifying the encompassing polymer topology. Here, a microbubble system with a tailored polymer shell consisting of an N2 gas core and a mechanoresponsive disulfide-containing polymer network is presented. It is found that the mechanochemical activation of the disulfides is greatly accelerated using these microbubbles compared to commensurate solid core particles or capsules filled with liquid. Aided by computational simulations, it is found that low shell thickness, low shell stiffness and crosslink density, and a size-dependent eigenfrequency close to the used ultrasound frequency maximize the mechanochemical yield over the course of the sonication process.
Collapse
Affiliation(s)
- Mingjun Xuan
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Jilin Fan
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Vu Ngoc Khiêm
- Department of Continuum Mechanics, RWTH Aachen University, Eilfschornsteinstr. 18, 52062, Aachen, Germany
| | - Miancheng Zou
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Kai-Oliver Brenske
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Ahmed Mourran
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Rostislav Vinokur
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Lifei Zheng
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Mikhail Itskov
- Department of Continuum Mechanics, RWTH Aachen University, Eilfschornsteinstr. 18, 52062, Aachen, Germany
| | - Robert Göstl
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Andreas Herrmann
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
16
|
Shi Z, Hu Y, Li X. Polymer mechanochemistry in drug delivery: From controlled release to precise activation. J Control Release 2023; 365:S0168-3659(23)00703-4. [PMID: 39491171 DOI: 10.1016/j.jconrel.2023.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Controlled drug delivery systems that can respond to mechanical force offer a unique solution for on-demand activation and release under physiological conditions. Compression, tension, and shear forces encompass the most commonly utilized mechanical stimuli for controlled drug activation and release. While compression and tension forces have been extensively explored for designing mechanoresponsive drug release systems through object deformation, ultrasound (US) holds advantages in achieving spatiotemporally controlled drug release from micro-/nanocarriers such as microbubbles, liposomes, and micelles. Unlike light-based methods, the US bypasses drawbacks such as phototoxicity and limited tissue penetration. Conventional US-triggered drug release primarily relies on heat-induced phase transitions or chemical transformations in the nano-/micro-scale range. In contrast, the cutting-edge approach of "Sonopharmacology" leverages polymer mechanochemistry, where US-induced shear force activates latent sites containing active pharmaceutical ingredients incorporated into polymer chains more readily than other bonds within the polymeric structure. This article provides a brief overview of controlled drug release systems based on compression and tension, followed by recent significant studies on drug activation using the synergistic effects of US and polymer mechanochemistry. The remaining challenges and potential future directions in this subfield are also discussed. PROGRESS AND POTENTIAL: The precise spatiotemporal control of drug activity using exogenous signals holds great promise for achieving precise disease treatment with minimal side effects. Ultrasound, known for its safety, has found widespread application in clinical settings and offers adjustable tissue penetration depth and drug release control. However, challenges persist in achieving precise control over drug activity using ultrasound. In recent years, ultrasound-induced drug release utilizing the principle of polymer mechanochemistry (Sonopharmacology) has made significant progress and demonstrated its potential in achieving precise drug activation and release. These systems enable drug release at the sub-molecular level, allowing for selective control over drug activation. Sonopharmacology offers a unique advantage by integrating both chemical and biomedical perspectives, positioning it as a promising field with broad implications in polymer chemistry, nanoscience and technology, and pharmaceutics. This review article aims to examine recent advancements in ultrasound-triggered drug activation systems based on polymeric materials and with an focus on polymer mechanochemistry, identify remaining challenges, and propose potential perspectives in this rapidly evolving field. By providing a comprehensive understanding of the progress and potential of sonopharmacology, this article aims to guide future research and inspire the development of innovative drug delivery systems that offer enhanced selectivity and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiyuan Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China.
| | - Xin Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China.
| |
Collapse
|
17
|
He X, Tian Y, O’Neill RT, Xu Y, Lin Y, Weng W, Boulatov R. Coumarin Dimer Is an Effective Photomechanochemical AND Gate for Small-Molecule Release. J Am Chem Soc 2023; 145:23214-23226. [PMID: 37821455 PMCID: PMC10603814 DOI: 10.1021/jacs.3c07883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Indexed: 10/13/2023]
Abstract
Stimulus-responsive gating of chemical reactions is of considerable practical and conceptual interest. For example, photocleavable protective groups and gating mechanophores allow the kinetics of purely thermally activated reactions to be controlled optically or by mechanical load by inducing the release of small-molecule reactants. Such release only in response to a sequential application of both stimuli (photomechanochemical gating) has not been demonstrated despite its unique expected benefits. Here, we describe computational and experimental evidence that coumarin dimers are highly promising moieties for realizing photomechanochemical control of small-molecule release. Such dimers are transparent and photochemically inert at wavelengths >300 nm but can be made to dissociate rapidly under tensile force. The resulting coumarins are mechanochemically and thermally stable, but rapidly release their payload upon irradiation. Our DFT calculations reveal that both strain-free and mechanochemical kinetics of dimer dissociation are highly tunable over an unusually broad range of rates by simple substitution. In head-to-head dimers, the phenyl groups act as molecular levers to allow systematic and predictable variation in the force sensitivity of the dissociation barriers by choice of the pulling axis. As a proof-of-concept, we synthesized and characterized the reactivity of one such dimer for photomechanochemically controlled release of aniline and its application for controlling bulk gelation.
Collapse
Affiliation(s)
- Xiaojun He
- Department
of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yancong Tian
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Robert T. O’Neill
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Yuanze Xu
- Department
of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yangju Lin
- Department
of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wengui Weng
- Department
of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Roman Boulatov
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| |
Collapse
|
18
|
Dong B, Guo Y, Yang J, Yang X, Wang L, Huang D. Turbulence induced shear controllable synthesis of nano FePO 4 irregularly-shaped particles in a counter impinging jet flow T-junction reactor assisted by ultrasound irradiation. ULTRASONICS SONOCHEMISTRY 2023; 99:106590. [PMID: 37690262 PMCID: PMC10498309 DOI: 10.1016/j.ultsonch.2023.106590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/17/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
FePO4 (FP) particles with a mesoporous structure amalgamated by nanoscale primary crystals were controllably prepared using an ultrasound-intensified turbulence T-junction microreactor (UTISR). The use of this type of reaction system can effectively enhance the micro-mixing and remarkably improve the mass transfer and chemical reaction rates. Consequently, the synergistic effects of the impinging streams and ultrasonic irradiation on the formation of mesoporous structure of FP nanoparticles have been systematically investigated through experimental validation and CFD simulation. The results revealed that the FP particles with a mesoporous structure can be well synthesised by precisely controlling the operation parameters by applying ultrasound irradiation with the input power in the range of 0-900 W and the impinging stream volumetric flow rate in the range of 17.15-257.22 mL·min-1. The findings obtained from the experimental observation and CFD modelling has clearly indicated that there exists a strong correlation between the particle size, morphology, and the local turbulence shear. The application of ultrasonic irradiation can effectively intensify the local turbulence shear in the reactor even at low Reynolds number based on the impinging stream diameter (Re < 2000), leading to an effective reduction in the particle size (from 273.48 to 56.1 nm) and an increase in the specific surface area (from 21.97 to 114.97 m2·g-1) of FP samples. The FPirregularly-shaped particles prepared by UTISR exhibited a mesoporous structure with a particle size of 56.10 nm, a specific surface area of 114.97 m2·g-1and a total pore adsorption volume of 0.570 cm3·g-1 when the volumetric flow rate and ultrasound power are 85.74 mL·min-1and 600 W, respectively.
Collapse
Affiliation(s)
- Bin Dong
- Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, University Park, Ningbo 315100, PR China; Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 210009, PR China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yanqing Guo
- Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, University Park, Ningbo 315100, PR China
| | - Jie Yang
- School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xiaogang Yang
- Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, University Park, Ningbo 315100, PR China.
| | - LuLu Wang
- Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, University Park, Ningbo 315100, PR China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 210009, PR China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
19
|
Yang F, Geng T, Shen H, Kou Y, Xiao G, Zou B, Chen Y. Mechanochemical Release of Fluorophores from a "Flex-activated" Mechanophore. Angew Chem Int Ed Engl 2023; 62:e202308662. [PMID: 37565546 DOI: 10.1002/anie.202308662] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
Optical force probes that can release force-dependent and visualized signals with minimal changes in the polymer main chains under mechanical load are highly sought after but currently limited. In this study, we introduce a flex-activated mechanophore (FA) based on the Diels-Alder adduct of anthracene and dimethyl acetylenedicarboxylatea that exhibits turn-on mechanofluorescence. We demonstrate that when FA is incorporated into polymer networks or in its crystalline state, it can release fluorescent anthracenes through a retro-Diels-Alder mechanochemical reaction under compression or hydrostatic high pressure, respectively. The flex-activated mechanism of FA is successfully confirmed. Furthermore, we systematically modulate the force delivered to the mechanophore by varying the crosslinking density of the networks and the applied macroscopic pressures. This modulation leads to incremental increases in mechanophore activation, successive release of anthracenes, and quantitative enhancement of fluorescence intensity. The exceptional potential of FA as a sensitive force probe in different bulk states is highlighted, benefiting from its unique flex-activated mode with highly emissive fluorophore releasing. Overall, this report enriches our understanding of the structures and functions of flex-activated mechanophores and polymeric materials.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian, 351100, P. R. China
| | - Ting Geng
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Hang Shen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yan Kou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Yulan Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
20
|
O'Neill RT, Boulatov R. Experimental quantitation of molecular conditions responsible for flow-induced polymer mechanochemistry. Nat Chem 2023; 15:1214-1223. [PMID: 37430105 DOI: 10.1038/s41557-023-01266-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Fragmentation of macromolecular solutes in rapid flows is of considerable fundamental and practical importance. The sequence of molecular events preceding chain fracture is poorly understood, because such events cannot be visualized directly but must be inferred from changes in the bulk composition of the flowing solution. Here we describe how analysis of same-chain competition between fracture of a polystyrene chain and isomerization of a chromophore embedded in its backbone yields detailed characterization of the distribution of molecular geometries of mechanochemically reacting chains in sonicated solutions. In our experiments the overstretched (mechanically loaded) chain segment grew and drifted along the backbone on the same timescale as, and in competition with, the mechanochemical reactions. Consequently, only <30% of the backbone of a fragmenting chain is overstretched, with both the maximum force and the maximum reaction probabilities located away from the chain centre. We argue that quantifying intrachain competition is likely to be mechanistically informative for any flow fast enough to fracture polymer chains.
Collapse
Affiliation(s)
| | - Roman Boulatov
- Department of Chemistry, University of Liverpool, Liverpool, UK.
| |
Collapse
|
21
|
Rennekamp B, Karfusehr C, Kurth M, Ünal A, Monego D, Riedmiller K, Gryn'ova G, Hudson DM, Gräter F. Collagen breaks at weak sacrificial bonds taming its mechanoradicals. Nat Commun 2023; 14:2075. [PMID: 37045839 PMCID: PMC10097693 DOI: 10.1038/s41467-023-37726-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Collagen is a force-bearing, hierarchical structural protein important to all connective tissue. In tendon collagen, high load even below macroscopic failure level creates mechanoradicals by homolytic bond scission, similar to polymers. The location and type of initial rupture sites critically decide on both the mechanical and chemical impact of these micro-ruptures on the tissue, but are yet to be explored. We here use scale-bridging simulations supported by gel electrophoresis and mass spectrometry to determine breakage points in collagen. We find collagen crosslinks, as opposed to the backbone, to harbor the weakest bonds, with one particular bond in trivalent crosslinks as the most dominant rupture site. We identify this bond as sacrificial, rupturing prior to other bonds while maintaining the material's integrity. Also, collagen's weak bonds funnel ruptures such that the potentially harmful mechanoradicals are readily stabilized. Our results suggest this unique failure mode of collagen to be tailored towards combatting an early onset of macroscopic failure and material ageing.
Collapse
Affiliation(s)
- Benedikt Rennekamp
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Christoph Karfusehr
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstrasse 29, 69120, Heidelberg, Germany
- Physics Department and ZNN, Technical University Munich, Coulombwall 4a, 85748, Garching, Germany
| | - Markus Kurth
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120, Heidelberg, Germany
| | - Aysecan Ünal
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Debora Monego
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
| | - Kai Riedmiller
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
| | - Ganna Gryn'ova
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120, Heidelberg, Germany
| | - David M Hudson
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120, Heidelberg, Germany.
- Max Planck School Matter to Life, Jahnstrasse 29, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Metze F, Sant S, Meng Z, Klok HA, Kaur K. Swelling-Activated, Soft Mechanochemistry in Polymer Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3546-3557. [PMID: 36848262 PMCID: PMC10018775 DOI: 10.1021/acs.langmuir.2c02801] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/26/2023] [Indexed: 06/12/2023]
Abstract
Swelling in polymer materials is a ubiquitous phenomenon. At a molecular level, swelling is dictated by solvent-polymer interactions, and has been thoroughly studied both theoretically and experimentally. Favorable solvent-polymer interactions result in the solvation of polymer chains. For polymers in confined geometries, such as those that are tethered to surfaces, or for polymer networks, solvation can lead to swelling-induced tensions. These tensions act on polymer chains and can lead to stretching, bending, or deformation of the material both at the micro- and macroscopic scale. This Invited Feature Article sheds light on such swelling-induced mechanochemical phenomena in polymer materials across dimensions, and discusses approaches to visualize and characterize these effects.
Collapse
|
23
|
Ma Y, Sugawara K, Ishigaki Y, Sun K, Suzuki T, Kawai S. Strain-Sensitive On-Surface Ladderization by Non-Dehydrogenative Heterocyclization. Chemistry 2023; 29:e202203622. [PMID: 36539358 DOI: 10.1002/chem.202203622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
On-surface cyclodehydrogenation recently became an important reaction to planarize π-conjugated molecules and oligomers. However, the high-activation barrier to cleave the C-H bond often requires high-temperature annealing, consequently restricting structures of precursor molecules and/or leading to random fusion at their edges. Here, we present a synthesis of pyrrolopyrrole-bridged ladder oligomers from 11,11,12,12-tetrabromo-1,4,5,8-tetraaza-9,10-anthraquinodimethane molecules on Ag(111) with bond-resolved scanning tunnelling microscopy. This non-dehydrogenative cyclization between pyrazine and ethynylene/cumulene groups has a low-activation barrier for forming intermediary dimeric oligomer containing dipyrazinopyrrolopyrrolopyrazine units, thus giving new insight into the strain-sensitive in ladder-oligomer formation.
Collapse
Affiliation(s)
- Yujing Ma
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| | - Kazuma Sugawara
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Kewei Sun
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Shigeki Kawai
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| |
Collapse
|
24
|
Mallah D, Mirjalili BBF. A green protocol ball milling synthesis of dihydropyrano[2,3-c]pyrazole using nano-silica/aminoethylpiperazine as a metal-free catalyst. BMC Chem 2023; 17:10. [PMID: 36870991 PMCID: PMC9985283 DOI: 10.1186/s13065-023-00934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Ball mill is an effective, and green method for the synthesis of heterocyclic compounds in very good yields. This method is a simple, economical, and environmentally friendly process. In this work, an efficient approach for the synthesis of pyranopyrazoles (PPzs) using ball milling and metal-free nano-catalyst (Nano-silica/aminoethylpiperazine), under solvent-free conditions was reported. RESULTS The new nano-catalyst silica/aminoethylpiperazine was prepared by immobilization of 1-(2-aminoethyl)piperazine on nano-silica chloride. The structure of the prepared nano-catalyst was identified by FT-IR, FESEM, TGA, EDX, EDS-map, XRD, and pH techniques. This novel nano-catalyst was used for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives under ball milling and solvent-free conditions. CONCLUSIONS Unlike other pyranopyrazoles synthesis reactions, this method has advantages including short reaction time (5-20 min), room temperature, and relatively high efficiency, which makes this protocol very attractive for the synthesis of pyranopyrazoles derivatives.
Collapse
Affiliation(s)
- Dina Mallah
- grid.413021.50000 0004 0612 8240Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran.
| |
Collapse
|
25
|
Colouring by force. Nat Chem 2023; 15:303-305. [PMID: 36797325 DOI: 10.1038/s41557-023-01142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
26
|
Sugita H, Lu Y, Aoki D, Otsuka H, Mikami K. Theoretical and Experimental Investigations of Stable Arylfluorene-Based Radical-Type Mechanophores. Chemistry 2023; 29:e202203249. [PMID: 36575130 DOI: 10.1002/chem.202203249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Radical-type mechanophores (RMs) can undergo homolytic cleavage of their central C-C bonds upon exposure to mechanical forces, which affords radical species. Understanding the characteristics of these radical species allows bespoke mechanoresponsive materials to be designed and developed. The thermal stability of the central C-C bonds and the oxygen tolerance of the generated radical species are crucial characteristics that determine the functions and applicability of such RM-containing mechanoresponsive materials. In this paper, we report the synthesis and characterization of two series of arylfluorene-based RM derivatives, that is, 9,9'-bis(5-methyl-2-pyridyl)-9,9'-bifluorene (BPyF) and 9,9'-bis(4,6-diphenyl-2-triazyl)-9,9'-bifluorene (BTAF). BPyF and BTAF derivatives were synthesized without generating any peroxides initially, albeit that BPyF slowly converted to the corresponding peroxide in solution. DFT calculations revealed the importance of the thermodynamic stability and the values of the α-SOMO levels of the corresponding radical species for their thermal stability and oxygen tolerance. Furthermore, the mechanochromism of BTAF was demonstrated by ball-milling a BTAF-centered polymer, which was synthesized by atom-transfer radical polymerization (ATRP).
Collapse
Affiliation(s)
- Hajime Sugita
- Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa, 252-1193, Japan.,Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yi Lu
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Koichiro Mikami
- Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa, 252-1193, Japan
| |
Collapse
|
27
|
Sonu KP, Zhou L, Biswas S, Klier J, Balazs AC, Emrick T, Peyton SR. Strain-Stiffening Hydrogels with Dynamic, Secondary Cross-Linking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2659-2666. [PMID: 36752594 DOI: 10.1021/acs.langmuir.2c03117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels are water-swollen, typically soft networks useful as biomaterials and in other fields of biotechnology. Hydrogel networks capable of sensing and responding to external perturbations, such as light, temperature, pH, or force, are useful across a wide range of applications requiring on-demand cross-linking or dynamic changes. Thus far, although mechanophores have been described as strain-sensitive reactive groups, embedding this type of force-responsiveness into hydrogels is unproven. Here, we synthesized multifunctional polymers that combine a hydrophilic zwitterion with permanently cross-linking alkenes, and dynamically cross-linking disulfides. From these polymers, we created hydrogels that contain irreversible and strong thiol-ene cross-links and reversible disulfide cross-links, and they stiffened in response to strain, increasing hundreds of kPa in modulus under compression. We examined variations in polymer composition and used a constitutive model to determine how to balance the number of thiol-ene vs disulfide cross-links to create maximally force-responsive networks. These strain-stiffening hydrogels represent potential biomaterials that benefit from the mechanoresponsive behavior needed for emerging applications in areas such as tissue engineering.
Collapse
Affiliation(s)
- K P Sonu
- Department of Chemical Engineering, University of Massachusetts, 240 Thatcher Way, Life Sciences Laboratory N531, Amherst, Massachusetts 01003, United States
| | - Le Zhou
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Santidan Biswas
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - John Klier
- Department of Chemical, Biological and Materials Engineering, University of Oklahoma, Carson Engineering Center, Room 107, Norman, Oklahoma 73019-0631, United States
| | - Anna C Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts, 240 Thatcher Way, Life Sciences Laboratory N531, Amherst, Massachusetts 01003, United States
| |
Collapse
|
28
|
Watabe T, Otsuka H. Swelling-induced Mechanochromism in Multinetwork Polymers. Angew Chem Int Ed Engl 2023; 62:e202216469. [PMID: 36524463 DOI: 10.1002/anie.202216469] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
We report a novel and versatile approach to achieving swelling-induced mechanochemistry using a multinetwork (MN) strategy that enables polymer networks to repeatedly swell with monomers and solvents. The isotropic expansion of the first network (FN) provides sufficient force to drive the mechanochemical scission of a radical-based mechanophore, difluorenylsuccinonitrile (DFSN). Although prompt recombination generally occurs in such highly mobile environments, the resulting pink radicals are kinetically stabilized in the gels, probably due to limited diffusion in the extended polymer chains. Moreover, the DFSN embedded in the isotropically strained chain exhibits increased thermal reactivity, which can be reasonably explained by an entropic contribution of the FN to the dissociation. The utility of the MN polymers is demonstrated not only in terms of swelling-force-induced network modification, but also in the context of tunable reactivity of the dissociative unit through proper design of the hierarchical network architecture.
Collapse
Affiliation(s)
- Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
29
|
Dini VA, Gradone A, Villa M, Gingras M, Focarete ML, Ceroni P, Gualandi C, Bergamini G. A high-sensitivity long-lifetime phosphorescent RIE additive to probe free volume-related phenomena in polymers. Chem Commun (Camb) 2023; 59:1465-1468. [PMID: 36651351 DOI: 10.1039/d2cc05908h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The photophysical behaviour of phosphorescent rigidification-induced emission (RIE) dyes is highly affected by their micro- and nanoenvironment. The lifetime measure of RIE dyes dispersed in polymers represents an effective approach to gain valuable information on polymer free volume and thus develop materials potentially able to self-monitor physical ageing and mechanical stresses.
Collapse
Affiliation(s)
- Valentina Antonia Dini
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| | - Alessandro Gradone
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy. .,CNR Institute for microelectronics and microsystems, Via Gobetti 101, 40129, Bologna, Italy.
| | - Marco Villa
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| | - Marc Gingras
- Aix Marseille Univ, CNRS, CINAM, Marseille, France
| | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy. .,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum - Università di Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - Paola Ceroni
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy. .,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum - Università di Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy.,Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136, Bologna, Italy
| | - Giacomo Bergamini
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| |
Collapse
|
30
|
Liu Q, Wang X, Hou Y, Cheng Y, Zhang J, Xiao L, Zhao J, Li W. Bio-inspired Hydrogel Actuator with Rapid Self-strengthening Behavior. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
31
|
Lloyd EM, Vakil JR, Yao Y, Sottos NR, Craig SL. Covalent Mechanochemistry and Contemporary Polymer Network Chemistry: A Marriage in the Making. J Am Chem Soc 2023; 145:751-768. [PMID: 36599076 DOI: 10.1021/jacs.2c09623] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past 20 years, the field of polymer mechanochemistry has amassed a toolbox of mechanophores that translate mechanical energy into a variety of functional responses ranging from color change to small-molecule release. These productive chemical changes typically occur at the length scale of a few covalent bonds (Å) but require large energy inputs and strains on the micro-to-macro scale in order to achieve even low levels of mechanophore activation. The minimal activation hinders the translation of the available chemical responses into materials and device applications. The mechanophore activation challenge inspires core questions at yet another length scale of chemical control, namely: What are the molecular-scale features of a polymeric material that determine the extent of mechanophore activation? Further, how do we marry advances in the chemistry of polymer networks with the chemistry of mechanophores to create stress-responsive materials that are well suited for an intended application? In this Perspective, we speculate as to the potential match between covalent polymer mechanochemistry and recent advances in polymer network chemistry, specifically, topologically controlled networks and the hierarchical material responses enabled by multi-network architectures and mechanically interlocked polymers. Both fundamental and applied opportunities unique to the union of these two fields are discussed.
Collapse
Affiliation(s)
- Evan M Lloyd
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - Jafer R Vakil
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Yunxin Yao
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Nancy R Sottos
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States.,Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| |
Collapse
|
32
|
Zhang H, Diesendruck CE. Off-center Mechanophore Activation in Block Copolymers. Angew Chem Int Ed Engl 2023; 62:e202213980. [PMID: 36394518 PMCID: PMC10108114 DOI: 10.1002/anie.202213980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Block copolymers (BCPs) are used in numerous applications in modern materials science. Yet, like homopolymers, BCPs can undergo covalent bond scission when mechanically stressed (mechanochemistry), which could lead to unexpected consequences in such applications. BCPs' heterogeneity may affect force transduction, perhaps changing force distribution and localization. To verify this, a gem-dichlorocyclopropane (gDCC) embedded linear chain is prepared and extended with a poly(methyl methacrylate) block. When stressed in solution, the mechanochemical ring-opening of gDCC is accelerated compared to homopolymers, even though the mechanophores are at the chain ends. Moreover, a higher mechanophore activation selectivity is obtained. These results indicate that mechanochemical response outside, and even far from the chain center is quite prominent in BCPs, and that forces along the polymer chain can efficiently activate multi-mechanophores regions, even when far from the polymer midchain.
Collapse
Affiliation(s)
- Hang Zhang
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyHaifa3200008Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
33
|
Yoo K, Lee GS, Lee HW, Kim BS, Kim JG. Mechanochemical solid-state vinyl polymerization with anionic initiator. Faraday Discuss 2023; 241:413-424. [PMID: 36124991 DOI: 10.1039/d2fd00080f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mechanochemistry has been extended to various polymer syntheses to achieve efficiency, greenness, and new products. However, many fundamental polymerization reactions have not been explored, although anionic polymerization of vinyl compounds has been pursued under mechanochemical conditions. Two solid monomers, 4-biphenyl methacrylate and 4-vinyl biphenyl, representing methacrylate and styrenic classes, respectively, were reacted with secondary butyl lithium under high-speed ball-milling. The alkyl-anion-promoted polymerization process was established by excluding radical initiation and producing the expected polymers with good efficiency. However, the generally expected features of anionic polymerization, such as molecular weight control and narrow dispersity, were not observed. Analysis of the milling parameters, reaction monitoring, and microstructural analysis revealed that the mechanism of the mechanochemical process differs from that of conventional anionic polymerizations. The mechanical force fractured the newly formed polymer chains via anionic initiation and generated macroradicals, which participated in the polymerization process. The anionic process governs the initiation step and the radical process becomes dominant during the propagation step.
Collapse
Affiliation(s)
- Kwangho Yoo
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea. .,Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Gue Seon Lee
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Hyo Won Lee
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
34
|
Hertel R, Maftuhin W, Walter M, Sommer M. Conformer Ring Flip Enhances Mechanochromic Performance of ansa-Donor-Acceptor-Donor Mechanochromic Torsional Springs. J Am Chem Soc 2022; 144:21897-21907. [PMID: 36414534 DOI: 10.1021/jacs.2c06712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mechanochromophores based on conformational changes of donor-acceptor-donor (DAD) springs allow sensing of forces acting on polymer chains by monotonic changes of absorbance or photoluminescence (PL) wavelength. Here, we identify a series of thiophene (D)-flanked quinoxalines (A) as molecular torsional springs for force sensing in bulk polymers at room temperature. The mode of DAD linkage to the polymer matrix and linker rigidity are key parameters that influence the efficacy of force transduction to the DAD spring and thus mechanochromic response, as probed by in situ PL spectroscopy of bulk films during stress-strain experiments. The largest shift of the PL maximum, and thus the highest sensitivity, is obtained from an ansa-DAD spring exhibiting bridged D units and a stiff A linker. Using detailed spectroscopy and density functional theory calculations, we reveal conformer redistribution in the form of a thiophene ring flip as the major part of the overall mechanochromic response. At forces as low as 27 pN at early stages of deformation, the ring flip precedes mechanically induced planarization of the ansa-DAD spring, the latter process producing a PL shift of 21 nm nN-1. Within the stress-strain diagram, the thiophene ring flip and DAD planarization are thus two separated processes that also cause irreversible and reversible mechanochromic responses, respectively, upon sample failure. As the thiophene ring flip requires much smaller forces than planarization of the DAD spring, such micromechanical motion gives access to sensing of tiny forces and expands both sensitivity and the force range of conformational mechanochromophores.
Collapse
Affiliation(s)
- Raphael Hertel
- Institute for Chemistry, Chemnitz University of Technology, Chemnitz09111, Germany
| | - Wafa Maftuhin
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg79110, Germany.,Cluster of Excellence livMatS @ FIT, Freiburg79110, Germany
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg79110, Germany.,Cluster of Excellence livMatS @ FIT, Freiburg79110, Germany.,Fraunhofer IWM, MikroTribologie Centrum μTC, Freiburg79108, Germany
| | - Michael Sommer
- Institute for Chemistry, Chemnitz University of Technology, Chemnitz09111, Germany
| |
Collapse
|
35
|
Yildiz D, Göstl R, Herrmann A. Sonopharmacology: controlling pharmacotherapy and diagnosis by ultrasound-induced polymer mechanochemistry. Chem Sci 2022; 13:13708-13719. [PMID: 36544723 PMCID: PMC9709924 DOI: 10.1039/d2sc05196f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Active pharmaceutical ingredients are the most consequential and widely employed treatment in medicine although they suffer from many systematic limitations, particularly off-target activity and toxicity. To mitigate these effects, stimuli-responsive controlled delivery and release strategies for drugs are being developed. Fueled by the field of polymer mechanochemistry, recently new molecular technologies enabled the emergence of force as an unprecedented stimulus for this purpose by using ultrasound. In this research area, termed sonopharmacology, mechanophores bearing drug molecules are incorporated within biocompatible macromolecular scaffolds as preprogrammed, latent moieties. This review presents the novelties in controlling drug activation, monitoring, and release by ultrasound, while discussing the limitations and challenges for future developments.
Collapse
Affiliation(s)
- Deniz Yildiz
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Robert Göstl
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| |
Collapse
|
36
|
Zhou J, Sathe D, Ciccotelli A, Wang J. Synthesis and mechanochemical inertness of a Zn (
II
) bidipyrrin double helix. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Junfeng Zhou
- School of Polymer Science and Polymer Engineering The University of Akron Akron Ohio USA
| | - Devavrat Sathe
- School of Polymer Science and Polymer Engineering The University of Akron Akron Ohio USA
| | - Andrew Ciccotelli
- School of Polymer Science and Polymer Engineering The University of Akron Akron Ohio USA
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering The University of Akron Akron Ohio USA
| |
Collapse
|
37
|
Wang J, Gao X, Boarino A, Célerse F, Corminboeuf C, Klok HA. Mechanical Acceleration of Ester Bond Hydrolysis in Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015Lausanne, Switzerland
| | - Xiaobin Gao
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015Lausanne, Switzerland
| | - Alice Boarino
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015Lausanne, Switzerland
| | - Frédéric Célerse
- Institute of Chemical Sciences and Engineering and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Laboratory for Computational Molecular Design, 1015Lausanne, Switzerland
| | - Clémence Corminboeuf
- Institute of Chemical Sciences and Engineering and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Laboratory for Computational Molecular Design, 1015Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015Lausanne, Switzerland
| |
Collapse
|
38
|
Evaluating the predictive character of the method of Constrained Geometries Simulate External Force with Density Functional Theory. FORCES IN MECHANICS 2022. [DOI: 10.1016/j.finmec.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Yu Y, Zheng X, Duan C, Craig SL, Widenhoefer RA. Force-Modulated Selectivity of the Rhodium-Catalyzed Hydroformylation of 1-Alkenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yichen Yu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Xujun Zheng
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chenghao Duan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L. Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ross A. Widenhoefer
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
40
|
Wu M, Li Y, Yuan W, De Bo G, Cao Y, Chen Y. Cooperative and Geometry-Dependent Mechanochromic Reactivity through Aromatic Fusion of Two Rhodamines in Polymers. J Am Chem Soc 2022; 144:17120-17128. [PMID: 36070612 DOI: 10.1021/jacs.2c07015] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unique topological features of Piezo proteins underlie the lever-like cellular mechanotransduction mechanism. This knowledge inspires us to seek topological/geometric control of mechanochromophores with unprecedentedly amplified, synergistic changes in polymers to serve as ideal stress probes. Here, by judicious placement of two spirolactam rings into aminobenzopyranoxanthene, a series of stereo- and regio-isomeric rhodamine-like mechanophores are developed. With two labile bonds closely coupled into one rigidified scaffold, these π-fused bis-mechanophores enable mechanochromic polymers, featuring cooperative bond scission, low rupture force (lower than rhodamine), and geometry-controlled ring-opening reactivity. Sonication, single-molecule force spectroscopy experiments, and density functional theory calculations provide insight into the force-color relationship and rationalize how the difference in reactivity of the four isomeric mechanophores is affected by their molecular geometry and thermodynamic equilibrium. Our strategy based on the aromatic fusion of bis-mechanophore promises a modular approach to isomeric mechanophores for cooperative bond scission. Also, important insights into internal and external factors governing tandem mechanochemical reactions are gained.
Collapse
Affiliation(s)
- Mengjiao Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Yuan
- Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
| | - Guillaume De Bo
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Yulan Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
41
|
Lou J, Mooney DJ. Chemical strategies to engineer hydrogels for cell culture. Nat Rev Chem 2022; 6:726-744. [PMID: 37117490 DOI: 10.1038/s41570-022-00420-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Two-dimensional and three-dimensional cell culture systems are widely used for biological studies, and are the basis of the organoid, tissue engineering and organ-on-chip research fields in applications such as disease modelling and drug screening. The natural extracellular matrix of tissues, a complex scaffold with varying chemical and mechanical properties, has a critical role in regulating important cellular functions such as spreading, migration, proliferation and differentiation, as well as tissue morphogenesis. Hydrogels are biomaterials that are used in cell culture systems to imitate critical features of a natural extracellular matrix. Chemical strategies to synthesize and tailor the properties of these hydrogels in a controlled manner, and manipulate their biological functions in situ, have been developed. In this Review, we provide the rational design criteria for predictably engineering hydrogels to mimic the properties of the natural extracellular matrix. We highlight the advances in using biocompatible strategies to engineer hydrogels for cell culture along with recent developments to dynamically control the cellular environment by exploiting stimuli-responsive chemistries. Finally, future opportunities to engineer hydrogels are discussed, in which the development of novel chemical methods will probably have an important role.
Collapse
|
42
|
Baumann C, Willis‐Fox N, Campagna D, Rognin E, Marten P, Daly R, Göstl R. Regiochemical effects for the mechanochemical activation of
9‐π‐extended anthracene‐maleimide Diels–Alder
adducts. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christoph Baumann
- DWI – Leibniz Institute for Interactive Materials Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Aachen Germany
| | - Niamh Willis‐Fox
- Department of Engineering, Institute for Manufacturing University of Cambridge Cambridge UK
| | - Davide Campagna
- DWI – Leibniz Institute for Interactive Materials Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Aachen Germany
| | - Etienne Rognin
- Department of Engineering, Institute for Manufacturing University of Cambridge Cambridge UK
| | - Paul Marten
- DWI – Leibniz Institute for Interactive Materials Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Aachen Germany
| | - Ronan Daly
- Department of Engineering, Institute for Manufacturing University of Cambridge Cambridge UK
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive Materials Aachen Germany
| |
Collapse
|
43
|
Xuan M, Schumacher C, Bolm C, Göstl R, Herrmann A. The Mechanochemical Synthesis and Activation of Carbon-Rich π-Conjugated Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105497. [PMID: 35048569 PMCID: PMC9259731 DOI: 10.1002/advs.202105497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Indexed: 05/14/2023]
Abstract
Mechanochemistry uses mechanical force to break, form, and manipulate chemical bonds to achieve functional transformations and syntheses. Over the last years, many innovative applications of mechanochemistry have been developed. Specifically for the synthesis and activation of carbon-rich π-conjugated materials, mechanochemistry offers reaction pathways that either are inaccessible with other stimuli, such as light and heat, or improve reaction yields, energy consumption, and substrate scope. Therefore, this review summarizes the recent advances in this research field combining the viewpoints of polymer and trituration mechanochemistry. The highlighted mechanochemical transformations include π-conjugated materials as optical force probes, the force-induced release of small dye molecules, and the mechanochemical synthesis of polyacetylene, carbon allotropes, and other π-conjugated materials.
Collapse
Affiliation(s)
- Mingjun Xuan
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| | - Christian Schumacher
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1Aachen52074Germany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1Aachen52074Germany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| |
Collapse
|
44
|
Watabe T, Aoki D, Otsuka H. Polymer-Network Toughening and Highly Sensitive Mechanochromism via a Dynamic Covalent Mechanophore and a Multinetwork Strategy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
45
|
Sha Y, Zhou Z, Zhu M, Luo Z, Xu E, Li X, Yan H. The Mechanochemistry of Carboranes. Angew Chem Int Ed Engl 2022; 61:e202203169. [DOI: 10.1002/anie.202203169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ye Sha
- Department of Chemistry and Material Science College of Science Nanjing Forestry University Nanjing 210037 China
| | - Zhou Zhou
- Department of Chemistry and Material Science College of Science Nanjing Forestry University Nanjing 210037 China
| | - Miao Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Science Nanjing Agricultural University Nanjing 210095 China
| | - Zhenyang Luo
- Department of Chemistry and Material Science College of Science Nanjing Forestry University Nanjing 210037 China
| | - Enhua Xu
- Graduate School of System Informatics Kobe University Kobe 657-8501 Japan
| | - Xiang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Science Nanjing Agricultural University Nanjing 210095 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210023 China
| |
Collapse
|
46
|
Song Y, Ma Z, Zhang W. Manipulation of a Single Polymer Chain: From the Nanomechanical Properties to Dynamic Structure Evolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
47
|
A perspective on the force-induced heterolytic bond cleavage in triarylmethane mechanophores. Synlett 2022. [DOI: 10.1055/a-1854-2131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Triarylmethane derivatives and their corresponding trityl carbocations are among the oldest chemical species synthesized and studied by chemists. The carbocationic platforms are particularly interesting due to their stability, high extinction coefficient, and tunable absorption of light in the visible spectrum, which can be achieved through structural modifications. These stable cations are traditionally obtained through heterolytic cleavage of judiciously designed, parent triarylmethanes by exposure to acids or UV light (λ < 300 nm), and methods based on electrochemistry or radiolysis. Our group has recently discovered that trityl carbocations can be generated also via mechanical stimulation of solid polymer materials featuring triarylmethane units as covalent crosslinks. In this Synpacts contribution, we expand on our previous finding by discussing some intriguing research questions that we aim to tackle in the immediate future.
1 Introduction
2 The development of our first triarylmethane mechanophore
3 The potential reversibility of triarylmethane mechanophores
4 A general molecular platform for force-induced, scissile, homolytic and heterolytic bond cleavage?
5 Conclusion
Collapse
|
48
|
Nishiuchi T, Aibara S, Yamakado T, Kimura R, Saito S, Sato H, Kubo T. Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs. Chemistry 2022; 28:e202200286. [PMID: 35333427 DOI: 10.1002/chem.202200286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Overcrowded ethylenes composed of 10-methyleneanthrone and two bulky aromatic rings contain a twisted carbon-carbon double (C=C) bond as well as a folded anthrone unit. As such, they are unique frustrated aromatic enes (FAEs). Various colored crystals of these FAEs, obtained in different solvents, correspond to multiple metastable conformations of the FAEs with various twist and fold angles of the C=C bond, as well as various dihedral angles of attached aryl units with respect to the C=C bond. The relationships between color and these parameters associated with conformational features around the C=C bond were elucidated in experimental and computational studies. Owing to the fact that they are separated by small energy barriers, the variously colored conformations in the FAE crystal change in response to various external stimuli, such as mechanical grinding, hydrostatic pressure and thermal heating.
Collapse
Affiliation(s)
- Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Seito Aibara
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takuya Yamakado
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Ryo Kimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Shohei Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo, 196-8666, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
49
|
Nishiuchi T, Aibara S, Sato H, Kubo T. Synthesis of π-Extended Thiele’s and Chichibabin’s Hydrocarbons and Effect of the π-Congestion on Conformations and Electronic States. J Am Chem Soc 2022; 144:7479-7488. [PMID: 35426674 PMCID: PMC9136924 DOI: 10.1021/jacs.2c02318] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The
biradicaloid of Chichibabin’s hydrocarbon exits in a
unique thermal equilibrium between closed-shell singlet and open-shell
triplet forms. Conceptually, the incorporation of nonplanar aromatic
groups, such as anthraquinodimethane (AQD), in these species could
bring about stabilization of the individual singlet and triplet spin
biradicaloids by creating a high energy barrier for conformational
interconversion between folded (singlet) and twisted (triplet) forms.
Moreover, this alteration could introduce the possibility of controlling
spin states through conformational changes induced by chemical and
physical processes. Herein, we report the preparation of AQD-containing,
π-extended Thiele’s (A-TH) and Chichibabin’s
(A-CH) hydrocarbons, which have highly π-congested
structures resulting from the presence of bulky 9-anthryl units. The
π-congestion in these substances leads to steric frustration
about carbon–carbon double bonds and creates flexible dynamic
motion with a moderate activation barrier between folded singlet and
twisted triplet states. These constraints make it possible to isolate
the twisted triplet state of A-CH. In addition, simple
mechanical grinding of the folded singlet of A-CH produces
the twisted triplet.
Collapse
Affiliation(s)
- Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Seito Aibara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo 196-8666, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Shen H, Cao Y, Lv M, Sheng Q, Zhang Z. Polymer mechanochemistry for the release of small cargoes. Chem Commun (Camb) 2022; 58:4813-4824. [PMID: 35352709 DOI: 10.1039/d2cc00147k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of force-induced release of small cargoes within polymeric materials has experienced rapid growth over the past decade, not only including achieving diversified functional materials that report force, trigger degradation, activate drugs and release catalysts, but also involving investigations on the interesting force-coupled reactivity of mechanophores, such as ferrocenes. In this highlight article, we review the recent progress on polymer mechanochemistry that releases small cargoes, including small molecules and metal ions. Since mechanophores play a key role in force-responsive materials, we introduce the progress by discussing different types of mechanophores and their mechanochemical reactions for the release of acids, gases, fluorophores, drugs, iron ions, and so on. At the end, we provide our perspectives on the remaining challenges and future targets in this growing field.
Collapse
Affiliation(s)
- Hang Shen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yunzheng Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Miaojiang Lv
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Qinxin Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhengbiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|