1
|
Bi J, Xing S, Shan G, Zhao Y, Ji Z, Zhu D, Hao H. Electro-intensified simultaneous decontamination of coexisting pollutants in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166949. [PMID: 37696408 DOI: 10.1016/j.scitotenv.2023.166949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The treatment of wastewater has become increasingly challenging as a result of its growing complexity. To achieve synergistic removal of coexisting pollutants in wastewater, one promising approach involves the integration of electric fields. We conducted a comprehensive literature review to explore the potential of integrating electric fields and developing efficient electro-intensified simultaneous decontamination systems for wastewater containing coexisting pollutants. The review focused on comprehending the applications and mechanisms of these systems, with a particular emphasis on the deliberate utilization of positive and negative charges. After analyzing the advantages, disadvantages, and application efficacy of these systems, we observed electro-intensified systems exhibit flexible potential through their rational combination, allowing for an expanded range of applications in addressing simultaneous decontamination challenges. Unlike the reviews focusing on single elimination, this work aims to provide guidance in addressing the environmental problems resulting from the coexistence of hazardous contaminants.
Collapse
Affiliation(s)
- Jingtao Bi
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Siyang Xing
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingying Zhao
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhiyong Ji
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, TX 77005, United States
| | - Hongxun Hao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Liu Y, Wang H, Cui Y, Chen N. Removal of Copper Ions from Wastewater: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3885. [PMID: 36900913 PMCID: PMC10001922 DOI: 10.3390/ijerph20053885] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Copper pollution of the world's water resources is becoming increasingly serious and poses a serious threat to human health and aquatic ecosystems. With reported copper concentrations in wastewater ranging from approximately 2.5 mg/L to 10,000 mg/L, a summary of remediation techniques for different contamination scenarios is essential. Therefore, it is important to develop low-cost, feasible, and sustainable wastewater removal technologies. Various methods for the removal of heavy metals from wastewater have been extensively studied in recent years. This paper reviews the current methods used to treat Cu(II)-containing wastewater and evaluates these technologies and their health effects. These technologies include membrane separation, ion exchange, chemical precipitation, electrochemistry, adsorption, and biotechnology. Thus, in this paper, we review the efforts and technological advances made so far in the pursuit of more efficient removal and recovery of Cu(II) from industrial wastewater and compare the advantages and disadvantages of each technology in terms of research prospects, technical bottlenecks, and application scenarios. Meanwhile, this study points out that achieving low health risk effluent through technology coupling is the focus of future research.
Collapse
Affiliation(s)
- Yongming Liu
- Shandong Provincial Geo-Mineral Engineering Co., Ltd., Jinan 250013, China
| | - Haishuang Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yuanyuan Cui
- Shandong Geological Exploration Institute of China Geology and Mine Bureau, Jinan 250013, China
| | - Nan Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
3
|
Inaba T, Yamaguchi M, Taniguchi A, Sato Y, Aoyagi T, Hori T, Inoue H, Fujita M, Iwata M, Iwata Y, Habe H. Evaluation of dye decolorization using anaerobic granular sludge from an expanded granular sludge bed based on spectrometric and microbiome analyses. J GEN APPL MICROBIOL 2023; 68:242-247. [PMID: 35691891 DOI: 10.2323/jgam.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The decolorization of 11 dyes by granular sludge from an anaerobic expanded granular sludge bed (EGSB) reactor was evaluated. Biological decolorization of Reactive Red 21, 23, and 180, and Reactive Yellow 15, 17, and 23 in model textile wastewater was observed for the first time after a 7-day incubation (over 94% decolorization). According to the sequencing analysis of 16S rRNA gene amplicons from EGSB granular sludge, the operational taxonomic unit related to Paludibacter propionicigenes showed the highest increase in relative abundance ratios in the presence of dyes (7.12 times on average over 11 dyes) compared to those without dyes.
Collapse
Affiliation(s)
- Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Mami Yamaguchi
- Textile Technology Center, Ehime Institute of Industrial Technology
| | | | - Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hiroyuki Inoue
- Textile Technology Center, Ehime Institute of Industrial Technology
| | - Masahiko Fujita
- Textile Technology Center, Ehime Institute of Industrial Technology
| | | | | | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
4
|
Wan Y, Liu J, Pi F, Wang J. Advances on removal of organophosphorus pesticides with electrochemical technology. Crit Rev Food Sci Nutr 2022; 63:8850-8867. [PMID: 35426753 DOI: 10.1080/10408398.2022.2062586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Widespread use of organophosphorus pesticides (OPs), especially superfluous and unreasonable use, had brought huge harm to the environment and food chain. It is because only a small part of the pesticides sprayed reached the target, and the rest slid across the soil, causing pollution of groundwater and surface water resources. These pesticides accumulate in the environment, causing environmental pollution. Therefore, in recent years, the control and degradation of OPs have become a public spotlight and research hotspot. Due to its unique advantages such as versatility, environmental compatibility, controllability, and cost-effectiveness compatibility, electrochemical technology has become one of the most promising methods for degradation of OPs. The fundamental knowledge about electrochemical degradation on OPs was introduced in this review. Then, a comprehensive overview of four main types of practical electrochemical technologies to degrade pesticides were presented and evaluated. The knowledge contained herein should conduce to better understand the degradation of pesticides by electrochemical technology, and better exploit the degradation of pesticides in the environment and food. Overall, the objective of this review is to provide comprehensive guidance for rational design and application of electrochemical technology in the degradation of OPs for the safety of the environment and food chain in the future.
Collapse
Affiliation(s)
- Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Jiahua Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| |
Collapse
|
5
|
Cutroneo L, Capello M, Domi A, Consani S, Lamare P, Coyle P, Bertin V, Dornic D, Reboa A, Geneselli I, Anghinolfi M. Microplastics in the abyss: a first investigation into sediments at 2443-m depth (Toulon, France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9375-9385. [PMID: 35001272 DOI: 10.1007/s11356-021-17997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Plastic and microplastic pollutions are known to be widespread across the planet in all types of environments. However, relatively little about microplastic quantities in the deeper areas of the oceans is known, due to the difficulty to reach these environments. In this work, we present an investigation of microplastic (<5 mm) distribution performed in the bottom sediments of the abyssal plain off the coast and the canyon of Toulon (France). Four samples of deep-sea sediment were collected at the depth of 2443 m during the sea operations carried out by the French oceanographic cruises for the KM3NeT project. The chemical and physical characterisation of the sediment was carried out, and items were extracted from sediments by density separation and analysed by optical microscope and µRaman spectroscopy. Results show microplastics in the deep-sea sediments with a concentration of about 80 particles L-1, confirming the hypothesis of microplastics spread to abyssal sediments in the Mediterranean Sea.
Collapse
Affiliation(s)
- Laura Cutroneo
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy
| | - Marco Capello
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy.
| | - Alba Domi
- DIFI, University of Genoa, Via Dodecaneso, 33, 16146, Genoa, Italy
- National Institute for Nuclear Physics, 33 Via Dodecaneso, I-16146, Genoa, Italy
| | - Sirio Consani
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy
| | - Patrick Lamare
- Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
| | - Paschal Coyle
- Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
| | - Vincent Bertin
- Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
| | - Damien Dornic
- Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
| | - Anna Reboa
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy
| | - Irene Geneselli
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy
| | - Marco Anghinolfi
- DIFI, University of Genoa, Via Dodecaneso, 33, 16146, Genoa, Italy
- National Institute for Nuclear Physics, 33 Via Dodecaneso, I-16146, Genoa, Italy
| |
Collapse
|
6
|
Sun W, Liu D, Zhang M. Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2108-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Wei Z, Kang X, Xu S, Zhou X, Jia B, Feng Q. Electrochemical oxidation of Rhodamine B with cerium and sodium dodecyl benzene sulfonate co-modified Ti/PbO2 electrodes: Preparation, characterization, optimization, application. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.09.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Al-Saady FA, Abbar AH. Simultaneous Removal of Cadmium and Copper from a Binary Solution by Cathodic Deposition Using a Spiral-Wound Woven Wire Meshes Packed Bed Rotating Cylinder Electrode. J ELECTROCHEM SCI TE 2021. [DOI: 10.33961/jecst.2019.00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Optimization of copper removal from wastewater by fly ash using central composite design of Response surface methodology. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03892-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Tang SY, Qiu YR. Removal of copper(II) ions from aqueous solutions by complexation–ultrafiltration using rotating disk membrane and the shear stability of PAA–Cu complex. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Electrochemical oxidation of acid orange 7 dye with Ce, Nd, and Co-modified PbO 2 electrodes: Preparation, characterization, optimization, and mineralization. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|