1
|
Vatanpour V, Tuncay G, Teber OO, Paziresh S, Tavajohi N, Koyuncu İ. Introducing the SNW-1 Covalent Organic Framework to the Polyamide Layer of the TFC-RO Membrane with Enhanced Permeability and Desalination Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65194-65210. [PMID: 39539192 DOI: 10.1021/acsami.4c14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study investigates the synthesis and characterization of Schiff base network-1 (SNW-1) covalent organic framework (COF) nanomaterials and their application in the fabrication of thin-film nanocomposite (TFN) membranes. The embedding of SNW-1 COF in reverse osmosis (RO) membranes with a polysulfone (PSf) substrate was done using the interfacial polymerization method. The result of the study demonstrated that the porous and hydrophilic structure of the COF increased the hydrophilic properties of the produced RO membranes. When the COF was embedded with a concentration of 0.02 wt %, the hydrophilicity of the RO membrane was higher than that of the other membranes, with a contact angle value of 45.2°. Pure water flux, saline solution flux, and humic acid (HA)/sodium chloride (NaCl) foulant solution flux were measured to determine the membrane performance, and it was found that as the COF ratio increased, the fluxes increased up to a certain concentration rate. The RO membrane with a SNW-1 concentration of 0.005 wt % had the highest values of pure water flux and saline solution flux with high salt rejection (34.2 and 32.2 LMH, 97.1%, respectively) and was the most resistant membrane against fouling. This study presents the potential of the SNW-1 COF with precise design capabilities and controlled unique properties as an additive for desalination applications.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Gizem Tuncay
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Oğuz Orhun Teber
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Naser Tavajohi
- Department of Chemistry, Umeå University, Umeå 90187, Sweden
| | - İsmail Koyuncu
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
2
|
Suresh K, Nambikkattu J, Kaleekkal NJ, Lawrence KD. Custom-designed 3D printed feed spacers and TFN membranes with MIL-101(Fe) for water recovery by forward osmosis. ENVIRONMENTAL TECHNOLOGY 2024; 45:3778-3790. [PMID: 37368861 DOI: 10.1080/09593330.2023.2231142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
In this work, a dual-pronged approach- (i) novel thin-film nanocomposite polyether sulfone (PES) membrane with MIL-101 (Fe) and (ii) 3D printed spacers were explored to enhance water recovery by forward osmosis. The concentration of PES, pore former, draw solution, and MIL-101(Fe) was optimised for maximum pure water flux (PWF) and minimum specific reverse solute flux (SRSF). The best membrane exhibited a PWF of 7.52 Lm-2 h-1 and an SRSF of 0.33 ± 0.03 gL-1 using 1.5 M NaCl and DI water feed. The M22 membrane with the diamond-type spacer demonstrated a PWF of 2.53 Lm-2 h-1 and SRSF of 0.75 gL-1 for emulsified oily wastewater feed. The novel spacer design imparted significant turbulence to the feed flow and a lower foulant resistance of 1.3 m-1 as compared to the ladder type (1.5 m-1) or commercial spacer (1.7 m-1). This arrangement could recover 19% pure water within 12 h of operation (98% oil rejection) with a ∼ 94% flux recovery after hydraulic wash.
Collapse
Affiliation(s)
- K Suresh
- Department of Mechanical Engineering, National Institute of Technology Calicut, India
| | - Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology (NITC), Calicut, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology (NITC), Calicut, India
| | - K Deepak Lawrence
- Department of Mechanical Engineering, National Institute of Technology Calicut, India
| |
Collapse
|
3
|
Tayel A, Abdelaal AB, Esawi AMK, Ramadan AR. Thin-Film Nanocomposite (TFN) Membranes for Water Treatment Applications: Characterization and Performance. MEMBRANES 2023; 13:membranes13050477. [PMID: 37233538 DOI: 10.3390/membranes13050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Thin-film nanocomposite (TFN) membranes have been widely investigated for water treatment applications due to their promising performance in terms of flux, salt rejection, and their antifouling properties. This review article provides an overview of the TFN membrane characterization and performance. It presents different characterization techniques that have been used to analyze these membranes and the nanofillers within them. The techniques comprise structural and elemental analysis, surface and morphology analysis, compositional analysis, and mechanical properties. Additionally, the fundamentals of membrane preparation are also presented, together with a classification of nanofillers that have been used so far. The potential of TFN membranes to address water scarcity and pollution challenges is significant. This review also lists examples of effective TFN membrane applications for water treatment. These include enhanced flux, enhanced salt rejection, antifouling, chlorine resistance, antimicrobial properties, thermal stability, and dye removal. The article concludes with a synopsis of the current status of TFN membranes and future perspectives.
Collapse
Affiliation(s)
- Amr Tayel
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed B Abdelaal
- Department of Chemistry, McGill University, 845 Rue Sherbrooke O, Montreal, QC H3A 0G4, Canada
| | - Amal M K Esawi
- Department of Mechanical Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Adham R Ramadan
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| |
Collapse
|
4
|
Shamsabadipour A, Pourmadadi M, Rashedi H, Yazdian F, Navaei-Nigjeh M. Nanoemulsion carriers of porous γ-alumina modified by polyvinylpyrrolidone and carboxymethyl cellulose for pH-sensitive delivery of 5-fluorouracil. Int J Biol Macromol 2023; 233:123621. [PMID: 36773864 DOI: 10.1016/j.ijbiomac.2023.123621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
5-Fluorouracil (5-FU) is a cytotoxic drug with a low half-life. These features can cause some problems such as burst drug release and numerous side effects. In the present study, a pH-sensitive nanocomposite of polyvinylpyrrolidone (PVP)/carboxymethyl cellulose (CMC)/γ-alumina developed by using water in oil in water (W/O/W) double emulsion method. The fabricated emulsion has been employed as the 5-FU carrier to investigate its effects on drug half-life, side effects, drug loading efficiency (DLE), and drug entrapment efficiency (DEE). Analyzing the FTIR and XRD indicated the successful loading of 5-FU into the nanocarrier and affirmed the synthesized nanocomposite's chemical bonding and crystalline features. Furthermore, by using DLS and Zeta potential assessment, size and undersize distribution, as well as the stability of the drug-loaded nanocomposite were determined, which demonstrated the monodisperse and stable nanoparticles. Moreover, the nanocomposites with spherical shapes and homogeneous surfaces were shown in FE-SEM, which indicated good compatibility for the constituents of the nanocomposites. Moreover, by employing BET analysis the porosity has been investigated. Drug release pattern was studied, which indicated a controlled drug release behavior with above 96 h drug retention. Besides, the loading and entrapment efficiencies were obtained 44 % and 86 %, respectively. Furthermore, the curve fitting technique has been employed and the predominant release mechanism has been determined to evaluate the best-fitted kinetic models. MTT assay and flow cytometry assessment has been carried out to investigate the cytotoxic effects of the fabricated drug-loaded nanocomposite on MCF-7 and normal cells. The results showed enhanced cytotoxicity and late apoptosis for the PVP/CMC/γ-alumina/5-FU. Based on the MTT assay outcomes on normal cell lines (L929), which indicated above 90 % cell viability, the biocompatibility and biosafety of the synthesized nanocarrier have been confirmed. Moreover, due to the porosity of the PVP/CMC/γ-alumina, this nanocarrier can exploit from high specific surface area and be more sensitive to environmental conditions such as pH. These outcomes propose that the novel pH-sensitive PVP/CMC/γ-alumina nanocomposite can be a potential candidate for drug delivery applications, especially for cancer therapy.
Collapse
Affiliation(s)
- Amin Shamsabadipour
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Perry LA, Chew NGP, Grzebyk K, Cay-Durgun P, Lind ML, Sitaula P, Soukri M, Coronell O. Correlating the Role of Nanofillers with Active Layer Properties and Performance of Thin-Film Nanocomposite Membranes. DESALINATION 2023; 550:116370. [PMID: 37274380 PMCID: PMC10237506 DOI: 10.1016/j.desal.2023.116370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thin-film nanocomposite (TFN) membranes are emerging water-purification membranes that could provide enhanced water permeance with similar solute removal over traditional thin-film composite (TFC) membranes. However, the effects of nanofiller incorporation on active layer physico-chemical properties have not been comprehensively studied. Accordingly, we aimed to understand the correlation between nanofillers, active layer physico-chemical properties, and membrane performance by investigating whether observed performance differences between TFN and control TFC membranes correlated with observed differences in physico-chemical properties. The effects of nanofiller loading, surface area, and size on membrane performance, along with active layer physico-chemical properties, were characterized in TFN membranes incorporated with Linde Type A (LTA) zeolite and zeolitic imidazole framework-8 (ZIF-8). Results show that nanofiller incorporation up to ~0.15 wt% resulted in higher water permeance and unchanged salt rejection, above which salt rejection decreased 0.9-25.6% and 26.1-48.3% for LTA-TFN and ZIF-8-TFN membranes, respectively. Observed changes in active layer physico-chemical properties were generally unsubstantial and did not explain observed changes in TFN membrane performance. Therefore, increased water permeance in TFN membranes could be due to preferential water transport through porous structures of nanofillers or along polymer-nanofiller interfaces. These findings offer new insights into the development of high-performance TFN membranes for water/ion separations.
Collapse
Affiliation(s)
- Lamar A. Perry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
- Curriculum in Applied Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Nick Guan Pin Chew
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Kasia Grzebyk
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Pinar Cay-Durgun
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Mary Laura Lind
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Paban Sitaula
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC 27709-2194, USA
| | - Mustapha Soukri
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC 27709-2194, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
6
|
Kausar A, Ahmad I, Maaza M, Eisa MH. State-of-the-Art of Polymer/Fullerene C 60 Nanocomposite Membranes for Water Treatment: Conceptions, Structural Diversity and Topographies. MEMBRANES 2022; 13:27. [PMID: 36676834 PMCID: PMC9864887 DOI: 10.3390/membranes13010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
To secure existing water resources is one of the imposing challenges to attain sustainability and ecofriendly world. Subsequently, several advanced technologies have been developed for water treatment. The most successful methodology considered so far is the development of water filtration membranes for desalination, ion permeation, and microbes handling. Various types of membranes have been industrialized including nanofiltration, microfiltration, reverse osmosis, and ultrafiltration membranes. Among polymeric nanocomposites, nanocarbon (fullerene, graphene, and carbon nanotubes)-reinforced nanomaterials have gained research attention owing to notable properties/applications. Here, fullerene has gained important stance amid carbonaceous nanofillers due to zero dimensionality, high surface areas, and exceptional physical properties such as optical, electrical, thermal, mechanical, and other characteristics. Accordingly, a very important application of polymer/fullerene C60 nanocomposites has been observed in the membrane sector. This review is basically focused on talented applications of polymer/fullerene nanocomposite membranes in water treatment. The polymer/fullerene nanostructures bring about numerous revolutions in the field of high-performance membranes because of better permeation, water flux, selectivity, and separation performance. The purpose of this pioneering review is to highlight and summarize current advances in the field of water purification/treatment using polymer and fullerene-based nanocomposite membranes. Particular emphasis is placed on the development of fullerene embedded into a variety of polymer membranes (Nafion, polysulfone, polyamide, polystyrene, etc.) and effects on the enhanced properties and performance of the resulting water treatment membranes. Polymer/fullerene nanocomposite membranes have been developed using solution casting, phase inversion, electrospinning, solid phase synthesis, and other facile methods. The structural diversity of polymer/fullerene nanocomposites facilitates membrane separation processes, especially for valuable or toxic metal ions, salts, and microorganisms. Current challenges and opportunities for future research have also been discussed. Future research on these innovative membrane materials may overwhelm design and performance-related challenging factors.
Collapse
Affiliation(s)
- Ayesha Kausar
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Ishaq Ahmad
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
| | - M. H. Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| |
Collapse
|
7
|
Shahbabaei M, Tang T. Molecular modeling of thin-film nanocomposite membranes for reverse osmosis water desalination. Phys Chem Chem Phys 2022; 24:29298-29327. [PMID: 36453147 DOI: 10.1039/d2cp03839k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The scarcity of freshwater resources is a major global challenge causedby population and economic growth. Water desalination using a reverse osmosis (RO) membrane is a promising technology to supply potable water from seawater and brackish water. The advancement of RO desalination highly depends on new membrane materials. Currently, the RO technology mainly relies on polyamide thin-film composite (TFC) membranes, which suffer from several drawbacks (e.g., low water permeability, permeability-selectivity tradeoff, and low fouling resistance) that hamper their real-world applications. Nanoscale fillers with specific characteristics can be used to improve the properties of TFC membranes. Embedding nanofillers into TFC membranes using interfacial polymerization allows the creation of thin-film nanocomposite (TFNC) membranes, and has become an emerging strategy in the fabrication of high-performance membranes for advanced RO water desalination. To achieve optimal design, it is indispensable to search for reliable methods that can provide fast and accurate predictions of the structural and transport properties of the TFNC membranes. However, molecular understanding of permeability-selectivity characteristics of nanofillers remains limited, partially due to the challenges in experimentally exploring microscopic behaviors of water and salt ions in confinement. Molecular modeling and simulations can fill this gap by generating molecular-level insights into the effects of nanofillers' characteristics (e.g., shape, size, surface chemistry, and density) on water permeability and ion selectivity. In this review, we summarize molecular simulations of a diverse range of nanofillers including nanotubes (carbon nanotubes, boron nitride nanotubes, and aquaporin-mimicking nanochannels) and nanosheets (graphene, graphene oxide, boron nitride sheets, molybdenum disulfide, metal and covalent organic frameworks) for water desalination applications. These simulations reveal that water permeability and salt rejection, as the major factors determining the desalination performance of TFNC membranes, significantly depend on the size, topology, density, and chemical modifications of the nanofillers. Identifying their influences and the physicochemical processes behind, via molecular modeling, is expected to yield important insights for the fabrication and optimization of the next generation high-performance TFNC membranes for RO water desalination.
Collapse
Affiliation(s)
- Majid Shahbabaei
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Samavati Z, Samavati A, Goh PS, Ismail AF, Abdullah MS. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Sharma U, Pandey R, Basu S, Saravanan P. Facile monomer interlayered MOF based thin film nanocomposite for efficient arsenic separation. CHEMOSPHERE 2022; 309:136634. [PMID: 36202371 DOI: 10.1016/j.chemosphere.2022.136634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The thin film nanocomposites (TFN) based membranes are sensitive to the synergy between the polymer and nanoparticles. TFN incorporating metal-organic frameworks (MOFs) have shown tremendous enhancement in permeability. This study investigates alternate MOF positioning during TFC fabrication for a highly selective membrane. Co-Zn-based mixed metal-organic framework (mMOF) was interlayered between m-phenylenediamine (MPD) and trimesoyl chloride (TMC) to form a polyamide (PA) selective layer. The practiced method conveniently allowed exact loading of mMOF and thus prevented the loss. Owing to the mMOF's placement between MPD and TMC, an increase in PA cross-linking was observed. The mMOF-MPD monomer compatibility allowed homogeneous distribution and formation of a defect-free PA layer. The surface morphology showed a more pronounced formation of leaves-like features due to interfacial degassing. Neutral solute-based filtration tests determined mean pore size, probability distribution, and MWCO. The incorporation of mMOF led to formation of additional nanochannels in the membrane surface. The perm-selectivity studies performed on a dead-end filtration unit resulted in 94% As5+ retention with 2.5 times higher permeance than the control. The current study pronounced the viability of the monomer interlayer method to form a highly selective TFN for water separation and related applications.
Collapse
Affiliation(s)
- Uttkarshni Sharma
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| | - Rohit Pandey
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| | - Subhankar Basu
- Department of Applied Science and Humanities, National Institute of Advanced Manufacturing Technology Ranchi, Jharkhand 834003, India.
| | - Pichiah Saravanan
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
10
|
Review on Thin-film Nanocomposite Membranes with Various Quantum Dots for Water Treatments. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Lejarazu-Larrañaga A, Landaburu-Aguirre J, Senán-Salinas J, Ortiz JM, Molina S. Thin Film Composite Polyamide Reverse Osmosis Membrane Technology towards a Circular Economy. MEMBRANES 2022; 12:membranes12090864. [PMID: 36135883 PMCID: PMC9502371 DOI: 10.3390/membranes12090864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 05/31/2023]
Abstract
It is estimated that Reverse Osmosis (RO) desalination will produce, by 2025, more than 2,000,000 end-of-life membranes annually worldwide. This review examines the implementation of circular economy principles in RO technology through a comprehensive analysis of the RO membrane life cycle (manufacturing, usage, and end-of-life management). Future RO design should incorporate a biobased composition (biopolymers, recycled materials, and green solvents), improve the durability of the membranes (fouling and chlorine resistance), and facilitate the recyclability of the modules. Moreover, proper membrane maintenance at the usage phase, attained through the implementation of feed pre-treatment, early fouling detection, and membrane cleaning methods can help extend the service time of RO elements. Currently, end-of-life membranes are dumped in landfills, which is contrary to the waste hierarchy. This review analyses up to now developed alternative valorisation routes of end-of-life RO membranes, including reuse, direct and indirect recycling, and energy recovery, placing a special focus on emerging indirect recycling strategies. Lastly, Life Cycle Assessment is presented as a holistic methodology to evaluate the environmental and economic burdens of membrane recycling strategies. According to the European Commission's objectives set through the Green Deal, future perspectives indicate that end-of-life membrane valorisation strategies will keep gaining increasing interest in the upcoming years.
Collapse
Affiliation(s)
| | | | - Jorge Senán-Salinas
- BETA Tech. Center, University of Vic-Central University of Catalonia, Ctra. de Roda, 70, 08500 Vic, Spain
| | - Juan Manuel Ortiz
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
| | - Serena Molina
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
12
|
Borpatra Gohain M, Karki S, Yadav D, Yadav A, Thakare NR, Hazarika S, Lee HK, Ingole PG. Development of Antifouling Thin-Film Composite/Nanocomposite Membranes for Removal of Phosphate and Malachite Green Dye. MEMBRANES 2022; 12:membranes12080768. [PMID: 36005683 PMCID: PMC9414074 DOI: 10.3390/membranes12080768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 05/26/2023]
Abstract
Nowadays polymer-based thin film nanocomposite (TFN) membrane technologies are showing key interest to improve the separation properties. TFN membranes are well known in diverse fields but developing highly improved TFN membranes for the removal of low concentration solutions is the main challenge for the researchers. Application of functional nanomaterials, incorporated in TFN membranes provides better performance as permeance and selectivity. The polymer membrane-based separation process plays an important role in the chemical industry for the isolation of products and recovery of different important types of reactants. Due to the reduction in investment, less operating costs and safety issues membrane methods are mainly used for the separation process. Membranes do good separation of dyes and ions, yet their separation efficiency is challenged when the impurity is in low concentration. Herewith, we have developed, UiO-66-NH2 incorporated TFN membranes through interfacial polymerization between piperazine (PIP) and trimesoyl chloride (TMC) for separating malachite green dye and phosphate from water in their low concentration. A comparative study between thin-film composite (TFC) and TFN has been carried out to comprehend the benefit of loading nanoparticles. To provide mechanical strength to the polyamide layer ultra-porous polysulfone support was made through phase inversion. As a result, outstanding separation values of malachite green (MG) 91.90 ± 3% rejection with 13.32 ± 0.6 Lm-2h-1 flux and phosphate 78.36 ± 3% rejection with 22.22 ± 1.1 Lm-2h-1 flux by TFN membrane were obtained. The antifouling tendency of the membranes was examined by using bovine serum albumin (BSA)-mixed feed and deionized water, the study showed a good ~84% antifouling tendency of TFN membrane with a small ~14% irreversible fouling. Membrane's antibacterial test against E. coli. and S. aureus. also revealed that the TFN membrane possesses antibacterial activity as well. We believe that the present work is an approach to obtaining good results from the membranes under tricky conditions.
Collapse
Affiliation(s)
- Moucham Borpatra Gohain
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sachin Karki
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Archana Yadav
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Neha R. Thakare
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Swapnali Hazarika
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Hyung Keun Lee
- Technology Research Institute, QuantumCat Co., Ltd., Daejeon 34028, Korea
| | - Pravin G. Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
13
|
Moreira CG, Santos HG, Bila DM, da Fonseca FV. Assessment of fouling mechanisms on reverse osmosis (RO) membrane during permeation of 17α-ethinylestradiol (EE2) solutions. ENVIRONMENTAL TECHNOLOGY 2022; 43:3084-3096. [PMID: 33843467 DOI: 10.1080/09593330.2021.1916087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Fouling mechanisms are mainly caused by the deposition of organic compounds that reduce the removal efficiency on reverse osmosis (RO) membranes. It can be described by mathematical models. The aim of this study was to evaluate the membrane fouling and rejection mechanisms when aqueous solutions containing 17α-ethinylestradiol (EE2) in different concentrations are permeated at 5 and 10 bar in a bench-scale dead-end RO system. Adsorption tests were performed and the fouling mechanism was assessed by Hermia's model for solutions of EE2 at concentrations typically found in the environment (µg L-1). Fourier transform infrared spectroscopy (FTIR) has indicated the presence of EE2 on the fouled membrane surface. Membrane rejection of EE2 ranged from 90% to 98% and the main rejection mechanism was size exclusion at all experimental conditions. However, for the higher concentration of EE2 permeated at 5 and 10 bar, adsorption of 7 and 32 mg m-2, respectively, also took place. The rejection was influenced by fouling and concentration polarisation. Fouled membranes present higher rejection of hydrophobic neutral compounds and the concentration polarisation reduces rejection. Hermia's model demonstrated that the permeation values fitted better the standard blocking filtration and cake filtration equations for describing fouling mechanism. This study showed that fouling also occurs in the TFC RO membrane after permeation of EE2, which corroborates with studies using other pollutants.
Collapse
Affiliation(s)
- Carolina G Moreira
- School of Chemistry, Federal University of Rio de Janeiro. Av. Athos da Silveira Ramos, Rio de Janeiro, Brazil
| | - Henrique G Santos
- School of Chemistry, Federal University of Rio de Janeiro. Av. Athos da Silveira Ramos, Rio de Janeiro, Brazil
| | - Daniele M Bila
- Engineering College, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana V da Fonseca
- School of Chemistry, Federal University of Rio de Janeiro. Av. Athos da Silveira Ramos, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Li Q, Zhao A, Zhang N, Li X, Zhang X, Wang Y, Zhao L, Zong L, Cui W, Deng H, Dou X, Al-Hada NM. Semi-aromatic polyamide membrane incorporated with yolk-shell mesoporous hybrid nanospheres for ultrahigh permeability and improving comprehensive property. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Hu P, Yuan B, Jason Niu Q, Wang N, Zhao S, Cui J, Jiang J. In situ assembled zeolite imidazolate framework nanocrystals hybrid thin film nanocomposite membranes for brackish water desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Forward osmosis performance of thin film composite membrane composed of electrospun polysulfone fiber coated by Fe3O4/fCNT-embedded polyamide active layer. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1135-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Economic and Reliability Assessment of Hybrid PRO-RO Desalination Systems Using Brine for Salinity Gradient Energy Production. SUSTAINABILITY 2022. [DOI: 10.3390/su14063328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The energy requirements for desalination have made it an expensive process, however, it is still a viable and cost-effective means of water purification amidst freshwater scarcity. The management and disposal of brine is an external and extra desalination cost due to the effect of brine on the environment. The integration of Pressure Retarded Osmosis (PRO) with the Reverse Osmosis (RO) technique as modelled in this paper enhances brine management. The brine is fed back into the PRO unit to create a salinity gradient for water transfer via membrane and generate salinity gradient energy. The hybrid desalination model is designed to be powered by grid-tied offshore wind power. The use of wind power, a clean, renewable energy source devoid of carbon emission, as the main power source to drive the RO unit reduces the cost and effect of carbon emissions from the grid. The proposed model is assessed using Levelized cost of energy (LCOE), Annualized cost of the system (ACS), and cost of water (COW) as economic matrices. In contrast, loss of energy probability is used as a reliability matrix. Obtained results show a LCOE of 1.11 $/kW, ACW of $110,456, COW of 0.13 $/m3, loss of energy probability of 0.341, a low total carbon emissions of 193,323 kgCO2-e, and zero brine production. Results show that the proposed model is economically viable, technically reliable, environmentally friendly, and generally sustainable.
Collapse
|
18
|
Khoo YS, Lau WJ, Liang YY, Karaman M, Gürsoy M, Ismail AF. Eco-friendly surface modification approach to develop thin film nanocomposite membrane with improved desalination and antifouling properties. J Adv Res 2022; 36:39-49. [PMID: 35127163 PMCID: PMC8802863 DOI: 10.1016/j.jare.2021.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/01/2022] Open
Abstract
Introduction Nanomaterials aggregation within polyamide (PA) layer of thin film nanocomposite (TFN) membrane is found to be a common issue and can negatively affect membrane filtration performance. Thus, post-treatment on the surface of TFN membrane is one of the strategies to address the problem. Objective In this study, an eco-friendly surface modification technique based on plasma enhanced chemical vapour deposition (PECVD) was used to deposit hydrophilic acrylic acid (AA) onto the PA surface of TFN membrane with the aims of simultaneously minimizing the PA surface defects caused by nanomaterials incorporation and improving the membrane surface hydrophilicity for reverse osmosis (RO) application. Methods The TFN membrane was first synthesized by incorporating 0.05 wt% of functionalized titania nanotubes (TNTs) into its PA layer. It was then subjected to 15-s plasma deposition of AA monomer to establish extremely thin hydrophilic layer atop PA nanocomposite layer. PECVD is a promising surface modification method as it offers rapid and solvent-free functionalization for the membranes. Results The findings clearly showed that the sodium chloride rejection of the plasma-modified TFN membrane was improved with salt passage reduced from 2.43% to 1.50% without significantly altering pure water flux. The AA-modified TFN membrane also exhibited a remarkable antifouling property with higher flux recovery rate (>95%, 5-h filtration using 1000 mg/L sodium alginate solution) compared to the unmodified TFN membrane (85.8%), which is mainly attributed to its enhanced hydrophilicity and smoother surface. Furthermore, the AA-modified TFN membrane also showed higher performance stability throughout 12-h filtration period. Conclusion The deposition of hydrophilic material on the TFN membrane surface via eco-friendly method is potential to develop a defect-free TFN membrane with enhanced fouling resistance for improved desalination process.
Collapse
Affiliation(s)
- Ying Siew Khoo
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Yong Yeow Liang
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mustafa Karaman
- Department of Chemical Engineering, Konya Technical University, Konya 42075, Turkey
| | - Mehmet Gürsoy
- Department of Chemical Engineering, Konya Technical University, Konya 42075, Turkey
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
19
|
Zarshenas K, Dou H, Habibpour S, Yu A, Chen Z. Thin Film Polyamide Nanocomposite Membrane Decorated by Polyphenol-Assisted Ti 3C 2T x MXene Nanosheets for Reverse Osmosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1838-1849. [PMID: 34936329 DOI: 10.1021/acsami.1c16229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transition-metal carbides (MXenes), multifunctional 2D materials, have caught the interest of researchers in the fabrication of high-performance nanocomposite membranes. However, several issues regarding MXenes still remain unresolved, including low ambient stability; facile restacking and agglomeration; and poor compatibility and processability. To address the aforementioned challenges, we proposed a facile, green, and cost-efficient approach for coating a stable layer of plant-derived polyphenol tannic acid (TA) on the surface of MXene (Ti3C2Tx) nanosheets. Then, high-performance reverse osmosis polyamide thin film nanocomposite (RO-PA-TFN) membranes were fabricated by the incorporation of modified MXene (Ti3C2Tx-TA) nanosheets in the polyamide selective layer through interfacial polymerization. The strong negative charge and hydrophilic multifunctional properties of TA not only boosted the chemical compatibility between Ti3C2Tx MXene nanosheets and the polyamide matrix to overcome the formation of nonselective voids but also generated a tight network with selective interfacial pathways for efficient monovalent salt rejection and water permeation. In comparison to the neat thin film composite membrane, the optimum TFN (Ti3C2Tx-TA) membrane with a loading of 0.008 wt % nanofiller revealed a 1.4-fold enhancement in water permeability, a well-maintained high NaCl rejection rate of 96% in a dead-end process, and enhanced anti-fouling tendency. This research offers a facile way for the development of modified MXene nanosheets to be successfully integrated into the polyamide-selective layer to improve the performance and fouling resistance of TFN membranes.
Collapse
Affiliation(s)
- Kiyoumars Zarshenas
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Saeed Habibpour
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
20
|
Ng ZC, Lau WJ, Wong KC, Al-Ghouti MA, Ismail AF. Improving properties of thin film nanocomposite membrane through polyethyleneimine intermediate layer: A parametric study. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Yang G, Zhang Z, Yin C, Shi X, Wang Y. Polyamide membranes enabled by covalent organic framework nanofibers for efficient reverse osmosis. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guanghui Yang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| | - Congcong Yin
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| | - Yong Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| |
Collapse
|
22
|
Chew YT, Yong WF. Recent advances of thin film nanocomposite membranes: Effects of shape/structure of nanomaterials and interfacial polymerization methods. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Carbon quantum dots (CQDs) and polyethyleneimine (PEI) layer-by-layer (LBL) self-assembly PEK-C-based membranes with high forward osmosis performance. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review. WATER 2021. [DOI: 10.3390/w13101369] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reverse osmosis is the leading technology for desalination of brackish water and seawater, important for solving the growing problems of fresh water supply. Thermal technologies such as multi-effect distillation and multi-stage flash distillation still comprise an important portion of the world’s desalination capacity. They consume substantial amounts of energy, generally obtained from fossil fuels, due to their low efficiency. Hybridization is a strategy that seeks to reduce the weaknesses and enhance the advantages of each element that makes it up. This paper introduces a review of the most recent publications on hybridizations between reverse osmosis and thermal desalination technologies, as well as their integration with renewable energies as a requirement to decarbonize desalination processes. Different configurations provide improvements in key elements of the system to reduce energy consumption, brine production, and contamination, while improving product quality and production rate. A combination of renewable sources and use of energy and water storage systems allow for improving the reliability of hybrid systems.
Collapse
|
25
|
Progress of Interfacial Polymerization Techniques for Polyamide Thin Film (Nano)Composite Membrane Fabrication: A Comprehensive Review. Polymers (Basel) 2020; 12:polym12122817. [PMID: 33261079 PMCID: PMC7760071 DOI: 10.3390/polym12122817] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023] Open
Abstract
In this paper, we review various novel/modified interfacial polymerization (IP) techniques for the fabrication of polyamide (PA) thin film composite (TFC)/thin film nanocomposite (TFN) membranes in both pressure-driven and osmotically driven separation processes. Although conventional IP technique is the dominant technology for the fabrication of commercial nanofiltration (NF) and reverse osmosis (RO) membranes, it is plagued with issues of low membrane permeability, relatively thick PA layer and susceptibility to fouling, which limit the performance. Over the past decade, we have seen a significant growth in scientific publications related to the novel/modified IP techniques used in fabricating advanced PA-TFC/TFN membranes for various water applications. Novel/modified IP lab-scale studies have consistently, so far, yielded promising results compared to membranes made by conventional IP technique, in terms of better filtration efficiency (increased permeability without compensating solute rejection), improved chemical properties (crosslinking degree), reduced surface roughness and the perfect embedment of nanomaterials within selective layers. Furthermore, several new IP techniques can precisely control the thickness of the PA layer at sub-10 nm and significantly reduce the usage of chemicals. Despite the substantial improvements, these novel IP approaches have downsides that hinder their extensive implementation both at the lab-scale and in manufacturing environments. Herein, this review offers valuable insights into the development of effective IP techniques in the fabrication of TFC/TFN membrane for enhanced water separation.
Collapse
|