1
|
Naik CC, Kamat DP, Gaonkar SK. Assessment of the catalytic and biological potential of yttrium and samarium-modified copper ferrite nanomaterials. Int J Biol Macromol 2024; 268:131752. [PMID: 38657936 DOI: 10.1016/j.ijbiomac.2024.131752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
The present study reports the preparation of crystalline and nanosized copper ferrite (CuFe2O4), Y3+ substituted CuFe2O4 (CuFe1.95Y0.05O4), and Sm3+ substituted CuFe2O4 (CuFe1.95Sm0.05O4) using a simple co-precipitation method. The XRD analysis confirmed the formation of the cubic spinel phase, while XPS studies validated the presence of Cu and Fe in 2+ and 3+ oxidation states respectively. Transmission electron microscopy (TEM) analysis revealed the nanoparticles with a diameter in the range of 10-60 nm. The introduction of fractional amounts of Y3+ and Sm3+ ions in the CuFe2O4 lattice enhanced the reduction of 4-nitrophenol, attributed to decreased particle size facilitating the reduction process. In the case of antimicrobial activity, Candida albican was found to be maximally sensitive to CuFe2O4 and CuFe1.95Y0.05O4, while Pseudomonas aeruginosa was inhibited by CuFe1.95Sm0.05O4. Moreover, a maximum of 61.9 ± 1.91 % anti-Pseudomonas biofilm activity and 75.7 ± 1.28 % DPPH radical scavenging activity was observed for CuFe1.95Y0.05O4 at 200 μg/ml concentration. The improvement in biological activities was attributed to the reduced particle size, crystal structure modification, and increased stability of the CuFe2O4 lattice with substitution. The enhancement in catalytic and biological performance highlighted the effectiveness of minimal Y3+ and Sm3+ concentrations in modulating the properties of CuFe2O4 nanomaterials.
Collapse
Affiliation(s)
- Chandan C Naik
- Department of Chemistry, Dhempe College of Arts & Science, Miramar, Panaji, Goa 403001, India.
| | - Durga P Kamat
- Department of Chemistry, Dhempe College of Arts & Science, Miramar, Panaji, Goa 403001, India
| | - Sanket K Gaonkar
- Department of Microbiology, P.E.S's R.S.N College of Arts and Science, Farmagudi, Ponda, Goa, India
| |
Collapse
|
2
|
Zhang G, Chen G, Dong M, Nie J, Ma G. Multifunctional Bacterial Cellulose/Covalent Organic Framework Composite Membranes with Antifouling and Antibacterial Properties for Dye Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37377346 DOI: 10.1021/acsami.3c05074] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Covalent organic frameworks (COFs) have a wide application prospect in wastewater treatment because of their unique structure and properties; however, the preparation of pure COF membranes remains a great challenge by reason of the insolubility and unprocessability of COF powders formed at high temperature and high pressure. In this study, a continuous and defect-free bacterial cellulose/covalent organic framework composite membrane was prepared by using bacterial cellulose (BC) and a porphyrin-based COF with their unique structures and hydrogen bonding forces. The dye rejection rate of this composite membrane toward methyl green and congo red was up to 99%, and the permeance was about 195 L m-2 h-1 bar-1. It showed excellent stability under different pH conditions, long-time filtration, and cyclic experimental conditions. In addition, the hydrophilicity and surface negativity of the BC/COF composite membrane made it have certain antifouling performance, and the flux recovery rate can reach 93.72%. More importantly, the composite membrane exhibited excellent antibacterial properties due to the doping of the porphyrin-based COF, and the survival rates of both Escherichia coli and Staphylococcus aureus were less than 1% after exposure to visible light. The self-supporting BC/COF composite membrane synthesized by this strategy also has outstanding antifouling and antibacterial properties, in addition to excellent dye separation effects, which greatly broaden the application of COF materials in water treatment.
Collapse
Affiliation(s)
- Guomeng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Nature Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guangkai Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Nature Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mei Dong
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Nature Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guiping Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Nature Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
3
|
Falah S, Ghorbani M, Ahmadpour J. Photocatalytic degradation of anionic and cationic dyes over PPy/CuFe2O4 nanocomposite under visible-light and bactericidal action. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Evaluation of antifouling/biofouling ability of a novel MIL101(Cr)/PES composite membrane for acetate wastewater treatment in MBR application. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
5
|
Fabrication and evaluation of a photocatalytic membrane based on Sb2O3/CBO composite for improvement of dye removal efficiency. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Synthesis, Characterization and Potent Antibacterial Activity of Metal-Substituted Spinel Ferrite Nanoparticles. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Hassanzadeh H, Abedini R, Ghorbani M. CO 2 Separation over N 2 and CH 4 Light Gases in Sorbitol-Modified Poly(ether- block-amide) (Pebax 2533) Membrane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hossein Hassanzadeh
- Enhanced Oil Recovery (EOR) and Gas Processing Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 4714873113 Babol, Iran
| | - Reza Abedini
- Enhanced Oil Recovery (EOR) and Gas Processing Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 4714873113 Babol, Iran
| | - Mohsen Ghorbani
- Polymer Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 4714873113 Babol, Iran
| |
Collapse
|