1
|
Miao Q, Wang Y, Chen D, Cao N, Pang J. Development of novel ionic covalent organic frameworks composite nanofiltration membranes for dye/salt separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133049. [PMID: 38043428 DOI: 10.1016/j.jhazmat.2023.133049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Covalent organic frameworks (COF) have desirable properties such as high porosity, low mass density, excellent heat resistance and regulatable structure, making them an ideal candidate for membrane material. Traditional methods for preparing covalent organic framework composite membranes, such as interfacial polymerization, vacuum filtration, and covalent organic framework abrasive coating. Stand-alone COF membranes produced by the above methods usually suffer from problems such as poor mechanical properties. Here, we fabricated high performance COF composite membranes by modified casting-precipitation-evaporation method. The designed composite membranes consisted of the ionic COF (iCOF) selective layer and the support layer are applied in dye/salt separation. The high permeability (∼ 68 L h-1 m-2 bar-1), high dyes rejection (97% for Rose Bengal), and low salts rejection (∼ 2.86% for NaCl) are achieved by the iCOF functional layer. The as-prepared composite membranes have a hydrophilic and highly smooth surface, making them have good anti-fouling performance. In addition, the rigid pore structure of iCOF selective layer endows the composite membranes with excellent stability, the composite membranes maintain original structure under high pressure (6 bar) and ultrasonic treatment (16 kHz for 60 min). This work may open up a novel path to fabricate iCOF composite membranes, which exhibit great potential in dye/salt separation.
Collapse
Affiliation(s)
- Qiuyu Miao
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Ying Wang
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Dongru Chen
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Ning Cao
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China.
| | - Jinhui Pang
- Laboratory of High-Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
2
|
Liu L, Wu W, Jin X, Luo X, Wu L. Interfacial Polymerization on Polyethersulfone Ultrafiltration Membrane to Prepare Nanofiltration Layers for Dye Separation. Polymers (Basel) 2023; 15:polym15092018. [PMID: 37177166 PMCID: PMC10181385 DOI: 10.3390/polym15092018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Nanofiltration membranes are of great significance to the treatment of dye wastewater. Interfacial polymerization is a widely used method to fabricate nanofiltration membranes. In this study, the interaction of tannic acid-assisted polyethylene polyamine (PEPA) with terephthalaldehyde (TPAL) was performed on PES ultrafiltration membranes using novel nitrogen-rich amine monomers and relatively less reactive aldehyde-based monomers. A new nanofiltration membrane ((T-P-T)/PES) was prepared by interfacial polymerization. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy were used to analyze the elemental composition, bonding state, and surface morphology of the membrane surface. The effects of the PEPA deposition time, TPAL concentration, interfacial reaction time, and curing time on the nanofiltration layer were investigated. The modified membrane, prepared under optimal conditions, showed strong dye separation ability. The permeation of the modified membrane could reach 68.68 L·m-2·h-1·bar-1, and the rejection of various dyes was above 99%. In addition, the (T-P-T)/PES membrane showed good stability during long-term dye separation.
Collapse
Affiliation(s)
- Lulu Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Weilin Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine, No.492 South Jinxi Road, Huaihua 418000, China
| | - Xiaogang Jin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiong Luo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
3
|
Zhang H, Zhang T, Ding S, Wang X. Development of loose thin film nanofibrous composite nanofiltration membrane with modified g-C3N4 nanosheets barrier layer for efficient separation of salt/dye mixtures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Review on Thin-film Nanocomposite Membranes with Various Quantum Dots for Water Treatments. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Sun W, Zhang N, Li Q, Luo X, Baqiah H, Cui W, Li Z, Deng H. Lignin-based nanofiltration membrane with high permeability, acid-alkali and chlorine resistances toward the removal of multivalent salts and dyes. CHEM LETT 2022. [DOI: 10.1246/cl.220292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wenge Sun
- Chemical Engineering College, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Na Zhang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Qiang Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Xin Luo
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Hussein Baqiah
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Wanling Cui
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Zhen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Huining Deng
- Chemical Engineering College, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
6
|
Wu ZJ, Li HX, Li PP, Xu ZL, Zhan ZM, Wu YZ. Thin-Film Composite Nanofiltration Membrane Modified by Fulvic Acid to Enhance Permeability and Antifouling Performance. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhao-Jun Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hua-Xiang Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ping-Ping Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zi-Ming Zhan
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu-Zhe Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
7
|
Mahdavi H, Zeinalipour N, Heidari AA. Fabrication of
PVDF
mixed matrix nanofiltration membranes incorporated with
TiO
2
nanoparticles and an amphiphilic
PVDF‐g‐PMMA
copolymer. J Appl Polym Sci 2022. [DOI: 10.1002/app.52740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hossein Mahdavi
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | | | - Ali Akbar Heidari
- School of Chemistry, College of Science University of Tehran Tehran Iran
| |
Collapse
|
8
|
Designing durable self-cleaning nanofiltration membranes via sol-gel assisted interfacial polymerization for textile wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Wang W, Sun J, Zhang Y, Zhang Y, Hong G, Moutloali RM, Mamba BB, Li F, Ma J, Shao L. Mussel-inspired tannic acid/polyethyleneimine assembling positively-charged membranes with excellent cation permselectivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153051. [PMID: 35032526 DOI: 10.1016/j.scitotenv.2022.153051] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The extraction of valuable target ions through monovalent cation exchange membranes (MCEMs) has been increasingly attracting in modern energy and environmental fields. However, the separation performance of MCEMs in terms of the permselectivity and cation fluxes, is typically restricted by membrane architecture and applied materials. Recently, mussel-inspired surface modification methods have been deployed in new membrane fabrications with special surface characteristics and functions. Herein, a facile layer-by-layer assembly method was designed to construct a series of de novo positively-charged tannic acid/polyethyleneimine (TA/PEI) membranes containing a negatively-charged support membrane and a TA/PEI selective layer. Notably, the peculiar support membrane with a much dense structure and abundant cation exchange groups can enable our TA/PEI membranes to possess high total cation fluxes. The selective layer with vast positive charges ensures mussel-inspired TA/PEI assembled positively-charged membranes to have a high permselectivity. Most importantly, compared with the separation performance of the state-of-the-art MCEMs, the superior separation performance of our developed new MCEMs at 5 mA·cm-2 and 10 mA·cm-2 is beyond the current "Upper Bound" plot between Na+ flux and the permselectivity (Na+/Mg2+), which opens new avenues for the construction of MCEMs. Furthermore, high purity of Li+ (95.37%) can be obtained through deploying mussel-inspired TA/PEI assembled positively-charged membranes with high permselectivity of Li+/Mg2+ (13.72), proving its great potentials in the field of resource recovery towards sustainability.
Collapse
Affiliation(s)
- Wenguang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jikun Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; School of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yang Zhang
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guanghui Hong
- Center for Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Richard Motlhaletsi Moutloali
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa
| | - Feiran Li
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing and School of Mechatronics Engineering, Harbin Institute of Technology, Xidazhi 92, Harbin 150001, PR China
| | - Jun Ma
- School of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Department of Chemical Engineering, Zhengzhou University, Zhengzhou 450002, China..
| |
Collapse
|
10
|
Feng X, Peng D, Zhu J, Wang Y, Zhang Y. Recent advances of loose nanofiltration membranes for dye/salt separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|