1
|
Hicks R, Gozal D, Ahmed S, Khalyfa A. Interplay between gut microbiota and exosome dynamics in sleep apnea. Sleep Med 2025; 131:106493. [PMID: 40203611 DOI: 10.1016/j.sleep.2025.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Sleep-disordered breathing (SDB) is characterized by recurrent reductions or interruptions in airflow during sleep, termed hypopneas and apneas, respectively. SDB impairs sleep quality and is linked to substantive health issues including cardiovascular and metabolic disorders, as well as cognitive decline. Recent evidence suggests a link between gut microbiota (GM) composition and sleep apnea. Indeed, GM, a community of microorganisms residing in the gut, has emerged as a potential player in various diseases, and several studies have identified associations between sleep apnea and GM diversity along with shifts in bacterial populations. Additionally, the concept of "leaky gut," a compromised intestinal barrier with potentially increased inflammation, has emerged as another key player in the potential bidirectional relationship between GM and sleep apnea. One of the potential effectors could be extracellular vesicles (EVs) underlying gut-brain communication pathways that are relevant to sleep regulation and function. Thus, therapeutic implications afforded by targeting the GM or exosomes for sleep apnea management have surfaced as promising areas of research. This review explores current understanding of the relationship between GM, exosomes and sleep apnea, highlighting key research dynamics and potential mechanisms. A comprehensive review of the literature was conducted, focusing on studies investigating GM composition, intestinal barrier function and gut-brain communication in relation to sleep apnea.
Collapse
Affiliation(s)
- Rebecca Hicks
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Sarfraz Ahmed
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Abdelnaby Khalyfa
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
2
|
Toraldo DM, Palma Modoni A, Scoditti E, De Nuccio F. Obstructive sleep apnoea as a neuromuscular respiratory disease arising from an excess of central GABAergic neurotransmitters: a new disease model. Front Cell Neurosci 2025; 18:1429570. [PMID: 39835289 PMCID: PMC11743696 DOI: 10.3389/fncel.2024.1429570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Affiliation(s)
- Domenico Maurizio Toraldo
- Respiratory Care Unit, Rehabilitation Department, “V. Fazzi” Hospital, Azienda Sanitaria Locale, San Cesario, Lecce, Italy
| | - Alessandra Palma Modoni
- Respiratory Care Unit, Rehabilitation Department, “V. Fazzi” Hospital, Azienda Sanitaria Locale, San Cesario, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Institute of Clinical Physiology (IFC), Lecce, Italy
| | - Francesco De Nuccio
- Laboratory of Human Anatomy, Department of Experimental Medicine, University of the Salento, Lecce, Italy
| |
Collapse
|
3
|
Gao S, Shan D, Tang Y. Identification biomarkers in disease progression of obstructive sleep apnea from children serum based on WGCNA and Mfuzz. Front Neurol 2024; 15:1452507. [PMID: 39410993 PMCID: PMC11473293 DOI: 10.3389/fneur.2024.1452507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Obstructive sleep apnea (OSA) syndrome is a prevalent form of respiratory sleep disorder, with an increasing prevalence among children. The consequences of OSA include obesity, diabetes, cardiovascular disease, and neuropsychological diseases. Despite its pervasive impact, a significant proportion of individuals especially children remain unaware that they suffer from OSA. Consequently, there is an urgent need for an accessible diagnostic approach. In this study, we conducted a bioinformatic analysis to identify potential biomarkers from a proteomics dataset comprising serum samples from children with OSA in the progression stage. In the Gene Set Enrichment Analysis (GSEA), we observed that the complement and immune response pathways persisted throughout the development of OSA and could be detected in the early stages. Subsequent to soft clustering and WGCNA analysis, it was revealed that the Hippo pathway, including ITGAL and FERMT3, plays a role in mild OSA. The analysis revealed a significant alteration of the complement and coagulation pathways, including TFPI and MLB2, in moderate OSA. In severe OSA, there was an association between hypoxia and the extracellular matrix (ECM) receptor interaction and collagen binding. In summary, it can be posited that the systemic inflammation may persist throughout the progression of OSA. Furthermore, severe OSA is characterized by abnormal vascular endothelial function, which may be attributed to chronic hypoxia. Finally, four potential biomarkers (ITGAL, TFPI, TTR, ANTXR1) were identified based on LASSO regression, and a prediction model for OSA progression was constructed based on the biomarkers.
Collapse
Affiliation(s)
- Simin Gao
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Otolaryngology-Head and Neck Surgery, Sleep Medicine Center, West China School of Public Health and West China Forth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Shan
- Department of Otolaryngology-Head and Neck Surgery, Sleep Medicine Center, West China School of Public Health and West China Forth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuedi Tang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Feuth T. Interactions between sleep, inflammation, immunity and infections: A narrative review. Immun Inflamm Dis 2024; 12:e70046. [PMID: 39417642 PMCID: PMC11483929 DOI: 10.1002/iid3.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Over the past decades, it has become increasingly evident that sleep disturbance contributes to inflammation-mediated disease, including depression, mainly through activation of the innate immune system and to an increased risk of infections. METHODS A comprehensive literature search was performed in PubMed to identify relevant research findings in the field of immunity, inflammation and infections, with a focus on translational research findings from the past 5 years. RESULTS Physiological sleep is characterized by a dynamic interplay between the immune system and sleep architecture, marked by increased innate immunity and T helper 1 (Th1) -mediated inflammation in the early phase, transitioning to a T helper 2 (Th2) response dominating in late sleep. Chronic sleep disturbances are associated with enhanced inflammation and an elevated risk of infections, while other inflammatory diseases may also be affected. Conversely, inflammation in response to infection can also disrupt sleep patterns and architecture. This narrative review summarizes current data on the complex relationships between sleep, immunity, inflammation and infections, while highlighting translational aspects. The bidirectional nature of these interactions are addressed within specific conditions such as sleep apnea, HIV, and other infections. Furthermore, technical developments with the potential to accelerate our understanding of these interactions are identified, including advances in wearable devices, artificial intelligence, and omics technology. By integrating these tools, novel biomarkers and therapeutic targets for sleep-related immune dysregulation may be identified. CONCLUSION The review underscores the importance of understanding and addressing immune imbalance related to sleep disturbances to improve disease outcomes.
Collapse
Affiliation(s)
- Thijs Feuth
- Department of pulmonary diseases and AllergologyTurku University HospitalTurkuFinland
- Pulmonary Diseases and Allergology, Faculty of MedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
5
|
Epstein S, Jun D, Deng JC, Zeidler M. Effects of Obstructive Sleep Apnea on Airway Immunity and Susceptibility to Respiratory Infections. Sleep Med Clin 2024; 19:219-228. [PMID: 38692747 DOI: 10.1016/j.jsmc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Obstructive sleep apnea is a prevalent sleep disorder characterized by recurrent episodes of partial or complete upper airway collapse during sleep, leading to disrupted breathing patterns and intermittent hypoxia. OSA results in systemic inflammation but also directly affects the upper and lower airways leading to upregulation of inflammatory pathways and alterations of the local microbiome. These changes result in increased susceptibility to respiratory infections such as influenza, COVID-19, and bacterial pneumonia. This relationship is more complex and bidirectional in individuals with chronic lung disease such as chronic obstructive lung disease, interstitial lung disease and bronchiectasis.
Collapse
Affiliation(s)
- Samuel Epstein
- Division of Pulmonary, Critical Care and Sleep Medicine, David Geffen School of Medicine, UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Greater Los Angeles VA Healthcare System, 11301 Wilshire Boulevard 111Q, Los Angeles, CA 90073, USA
| | - Dale Jun
- Division of Pulmonary, Critical Care and Sleep Medicine, David Geffen School of Medicine, UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Greater Los Angeles VA Healthcare System, 11301 Wilshire Boulevard 111Q, Los Angeles, CA 90073, USA
| | - Jane C Deng
- Pulmonary Medicine, VA Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI 48105, USA; Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Michelle Zeidler
- Division of Pulmonary, Critical Care and Sleep Medicine, David Geffen School of Medicine, UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Greater Los Angeles VA Healthcare System, 11301 Wilshire Boulevard 111Q, Los Angeles, CA 90073, USA.
| |
Collapse
|
6
|
Dong M, Liang X, Zhu T, Xu T, Xie L, Feng Y. Reoxygenation Mitigates Intermittent Hypoxia-Induced Systemic Inflammation and Gut Microbiota Dysbiosis in High-Fat Diet-Induced Obese Rats. Nat Sci Sleep 2024; 16:517-530. [PMID: 38812701 PMCID: PMC11135559 DOI: 10.2147/nss.s454297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/12/2024] [Indexed: 05/31/2024] Open
Abstract
Background Obstructive sleep apnea (OSA) is a prevalent sleep breathing disorder characterized by intermittent hypoxia (IH), with continuous positive airway pressure (CPAP) as its standard treatment. However, the effects of intermittent hypoxia/reoxygenation (IH/R) on weight regulation in obesity and its underlying mechanism remain unclear. Gut microbiota has gained attention for its strong association with various diseases. This study aims to explore the combined influence of IH and obesity on gut microbiota and to investigate the impact of reoxygenation on IH-induced alterations. Methods Diet-induced obese (DIO) rats were created by 8-week high-fat diet (HFD) feeding and randomly assigned into three groups (n=15 per group): normoxia (NM), IH (6% O2, 30 cycles/h, 8 h/day, 4 weeks), or hypoxia/reoxygenation (HR, 2-week IH followed by 2-week reoxygenation) management. After modeling and exposure, body weight and biochemical indicators were measured, and fecal samples were collected for 16S rRNA sequencing. Results DIO rats in the IH group showed increased weight gain (p=0.0016) and elevated systemic inflammation, including IL-6 (p=0.0070) and leptin (p=0.0004). Moreover, IH rats exhibited greater microbial diversity (p<0.0167), and significant alterations in the microbial structure (p=0.014), notably the order Clostridiales, accompanied by an upregulation of bile acid metabolism predicted pathway (p=0.0043). Reoxygenation not only improved IH-exacerbated obesity, systemic inflammation, leptin resistance, and sympathetic activation, but also showed the potential to restore IH-induced microbial alterations. Elevated leptin levels were associated with Ruminococcaceae (p=0.0008) and Clostridiales (p=0.0019), while body weight was linked to Blautia producta (p=0.0377). Additionally, the abundance of Lactobacillus was negatively correlated with leptin levels (p=0.0006) and weight (p=0.0339). Conclusion IH leads to gut dysbiosis and metabolic disorders, while reoxygenation therapy demonstrates a potentially protective effect by restoring gut homeostasis and mitigating inflammation. It highlights the potential benefits of CPAP in reducing metabolic risk among obese patients with OSA.
Collapse
Affiliation(s)
- Menglu Dong
- Sleep Medicine Center, Department of Psychiatric, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xili Liang
- Sleep Medicine Center, Department of Psychiatric, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Tian Zhu
- Sleep Medicine Center, Department of Psychiatric, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ting Xu
- Sleep Medicine Center, Department of Psychiatric, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People’s Republic of China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yuan Feng
- Sleep Medicine Center, Department of Psychiatric, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Science, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Zhang X, Zhang H, Li S, Fang F, Yin Y, Wang Q. Recent progresses in gut microbiome mediates obstructive sleep apnea-induced cardiovascular diseases. FASEB Bioadv 2024; 6:118-130. [PMID: 38585431 PMCID: PMC10995711 DOI: 10.1096/fba.2023-00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a multifactorial sleep disorder with a high prevalence in the general population. OSA is associated with an increased risk of developing cardiovascular diseases (CVDs), particularly hypertension, and is linked to worse outcomes. Although the correlation between OSA and CVDs is firmly established, the mechanisms are poorly understood. Continuous positive airway pressure is primary treatment for OSA reducing cardiovascular risk effectively, while is limited by inadequate compliance. Moreover, alternative treatments for cardiovascular complications in OSA are currently not available. Recently, there has been considerable attention on the significant correlation between gut microbiome and pathophysiological changes in OSA. Furthermore, gut microbiome has a significant impact on the cardiovascular complications that arise from OSA. Nevertheless, a detailed understanding of this association is lacking. This review examines recent advancements to clarify the link between the gut microbiome, OSA, and OSA-related CVDs, with a specific focus on hypertension, and also explores potential health advantages of adjuvant therapy that targets the gut microbiome in OSA.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Haifen Zhang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Shuai Li
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Fan Fang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Yanran Yin
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Qiang Wang
- Department of Infectious Disease, Shanxi Provincial People's HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
8
|
Xerfan EMS, Facina AS, Tomimori J, Tufik S, Andersen ML. The relationship between irritable bowel syndrome, the gut microbiome, and obstructive sleep apnea: the role of the gut-brain axis. Sleep Breath 2024; 28:561-563. [PMID: 37581760 DOI: 10.1007/s11325-023-02898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Sleep disruption, especially that resulting from obstructive sleep apnea (OSA) - a widely prevalent sleep disorder - can lead to important systemic repercussions. We raise a subject of current interest, namely the possible relationship between sleep in general, OSA, and irritable bowel syndrome (IBS), an intestinal disease that can be made worse by stressful events. The intermittent hypoxia caused by OSA can induce alterations in the gut microbiota, which can lead to the dysregulation of the gut-brain axis and the worsening of IBS. This may be considered to be a circular relationship, with OSA playing a crucial role in the worsening of bowel symptoms, which in turn have a negative effect on sleep. Thus, based on previous evidence, we suggest that improving sleep quality could be a key to disrupting this relationship of IBS aggravation and OSA.
Collapse
Affiliation(s)
- Ellen M S Xerfan
- Programa de Pós-Graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Departamento de Dermatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua dos Otonis, 861 - Vila Clementino, São Paulo, 04025-002, Brazil
| | - Anamaria S Facina
- Departamento de Dermatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua dos Otonis, 861 - Vila Clementino, São Paulo, 04025-002, Brazil.
| | - Jane Tomimori
- Departamento de Dermatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua dos Otonis, 861 - Vila Clementino, São Paulo, 04025-002, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
9
|
Li C, Shi S. Gut microbiota and metabolic profiles in chronic intermittent hypoxia-induced rats: disease-associated dysbiosis and metabolic disturbances. Front Endocrinol (Lausanne) 2024; 14:1224396. [PMID: 38283743 PMCID: PMC10811599 DOI: 10.3389/fendo.2023.1224396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Aim Chronic intermittent hypoxia (CIH) is a key characteristic of obstructive sleep apnea (OSA) syndrome, a chronic respiratory disorder. The mechanisms of CIH-induced metabolic disturbance and histopathological damage remain unclear. Methods CIH-induced rats underwent daily 8-h CIH, characterized by oxygen levels decreasing from 21% to 8.5% over 4 min, remaining for 2 min, and quickly returning to 21% for 1 min. The control rats received a continuous 21% oxygen supply. The levels of hypersensitive C reactive protein (h-CRP), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), and nuclear factor kappa-B (NF-κB) were measured by ELISA. Histological analysis of the soft palates was conducted using HE staining. The microbial profiling of fecal samples was carried out by Accu16STM assay. Untargeted metabolomics of serum and soft palate tissue samples were analyzed by UPLC-MS. The protein expression of cAMP-related pathways in the soft palate was determined by Western blot. Results After 28 h of CIH induction, a significant increase in pro-inflammatory cytokines was observed in the serum, along with mucosal layer thickening and soft palate tissue hypertrophy. CIH induction altered the diversity and composition of fecal microbiota, specifically reducing beneficial bacteria while increasing harmful bacteria/opportunistic pathogens. Notably, CIH induction led to a significant enrichment of genera such as Dorea, Oscillibacter, Enteractinococcus, Paenibacillus, Globicatella, and Flaviflexus genera. Meanwhile, Additionally, CIH induction had a notable impact on 108 serum marker metabolites. These marker metabolites, primarily involving amino acids, organic acids, and a limited number of flavonoids or sterols, were associated with protein transport, digestion and absorption, amino acid synthesis and metabolism, as well as cancer development. Furthermore, these differential serum metabolites significantly affected 175 differential metabolites in soft palate tissue, mainly related to cancer development, signaling pathways, amino acid metabolism, nucleotide precursor or intermediate metabolism, respiratory processes, and disease. Importantly, CIH induction could significantly affect the expression of the cAMP pathway in soft palate tissue. Conclusions Our findings suggest that targeting differential metabolites in serum and soft palate tissue may represent a new approach to clinical intervention and treatment of OSA simulated by the CIH.
Collapse
Affiliation(s)
| | - Song Shi
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Andersen ML, Gozal D, Pires GN, Tufik S. Exploring the potential relationships among obstructive sleep apnea, erectile dysfunction, and gut microbiota: a narrative review. Sex Med Rev 2023; 12:76-86. [PMID: 37385976 DOI: 10.1093/sxmrev/qead026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Poor sleep quality is closely associated with comorbidities affecting a multitude of organ systems. Among the sleep disorders in the population, there has recently been an increase in the prevalence of obstructive sleep apnea (OSA), which has particularly affected men. The intermittent hypoxia and sleep fragmentation associated with OSA can result in the manifestation or aggravation of a number of pathophysiologic conditions, including the impairment of reproductive function in men and women. In this context, erectile dysfunction (ED) is of particular concern. Other consequences of OSA are changes in the gastrointestinal microbiota, with the resultant dysbiosis having potentially harmful consequences that promote downstream exacerbation of various comorbidities. OBJECTIVES This narrative review aims to explore the potential relationships among ED, gut microbiota, and OSA. METHODS A search of the relevant literature was performed in the PubMed, Embase, Medline, and Web of Science databases. RESULTS Sleep is important for regulating the body's functions, and sleep deprivation can negatively affect health. OSA can damage organic functions, including reproductive function, and can lead to ED. Restoring the microbiota and improving sleep can help to improve sexual function or reverse ED and enhance other associated conditions mediated through the gut-brain axis relationship. Probiotics and prebiotics can be used as supportive strategies in the prevention and treatment of OSA, as they help to reduce systemic inflammation and improve intestinal barrier function. CONCLUSION A good diet, a healthy lifestyle, and proper bowel function are essential in controlling depression and several other pathologies. Modulating the gut microbiota through probiotics and prebiotics can provide a viable strategy for developing new therapeutic options in treating many conditions. A better understanding of these a priori unrelated phenomena would foster our understanding of the effects of OSA on human fertility and how changes in gut microbiota may play a role.
Collapse
Affiliation(s)
- Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| |
Collapse
|
11
|
Li X, Wang F, Gao Z, Huang W, Zhang X, Liu F, Yi H, Guan J, Wu X, Xu H, Yin S. Melatonin attenuates chronic intermittent hypoxia-induced intestinal barrier dysfunction in mice. Microbiol Res 2023; 276:127480. [PMID: 37659335 DOI: 10.1016/j.micres.2023.127480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND AND PURPOSE Chronic intermittent hypoxia (CIH) triggers subclinical intestinal barrier disruption prior to systemic low-grade inflammation. Increasing evidence suggests therapeutic effects of melatonin on systemic inflammation and gut microbiota remodelling. However, whether and how melatonin alleviates CIH-induced intestinal barrier dysfunction remains unclear. EXPERIMENTAL APPROACH C57BL/6 J mice and Caco-2 cell line were treated. We evaluated gut barrier function spectrophotometrically using fluorescein isothiocyanate (FITC)-labelled dextran. Immunohistochemical and immunofluorescent staining were used to detect morphological changes in the mechanical barrier. Western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) revealed the expression of tight junctions, signal transducer and activator of transcription 3 (STAT3) levels. 16 S rRNA analysis of the colonic contents microflora. Flow cytometry was used to detect cytokines and Th17 cells with and without melatonin supplementation. KEY RESULTS We found that CIH could induce colonic mucosal injury, including reduction in the number of goblet cells and decrease the expression of intestinal tight junction proteins. CIH could decrease the abundance of the beneficial genera Clostridium, Akkermansia, and Bacteroides, while increasing the abundance of the pathogenic genera Desulfovibrio and Bifidobacterium. Finally, CIH facilitated Th17 differentiation via the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in vitro and elevated the circulating pro-inflammatory cytokine in vivo. Melatonin supplementation ameliorated CIH-induced intestinal mucosal injury, gut microbiota dysbiosis, enteric Th17 polarization, and systemic low-grade inflammation reactions mentioned-above. CONCLUSION AND IMPLICATIONS Melatonin attenuated CIH-induced intestinal barrier dysfunction by regulating gut flora dysbiosis, mucosal epithelium integrity, and Th17 polarization via STAT3 signalling.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Fan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Zhenfei Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Weijun Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Xiaoman Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Feng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Hongliang Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Jian Guan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China.
| | - Xiaolin Wu
- Central Laboratory of Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Caobao Road 8, Shanghai 200235, China.
| | - Huajun Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China.
| | - Shankai Yin
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| |
Collapse
|
12
|
Wang J, Zhang H, Wu L, Lu D. Sacubitril/valsartan mitigated intermittent hypoxia related intestinal microbiota alteration and aortic injury. Sleep Breath 2023; 27:1769-1777. [PMID: 36719525 DOI: 10.1007/s11325-023-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To investigate the influence of sacubitril valsartan sodium (SVS) on chronic intermittent hypoxia (IH) related gut microbiome composition alteration and aortic injury. METHODS Experiments were performed using SD rats, which were divided into three groups: control, IH, and SVS group. O2 concentration was decreased to 7-8% at nadir approximately every 3 min in IH group (8 h per day for 6 weeks) or was left unchanged in control group. Rats in SVS group were orally gavaged with SVS at the dosage of 30 mg/kg/day (2 weeks after chronic IH exposure). At week 6, fecal and aortic samples were harvested for 16 s rDNA analysis and histological analysis, respectively. RESULTS Principal coordinate analysis and non-metric multidimensional scaling analysis indicated that the bacterial community was altered by chronic IH exposure, while SVS treatment restored the intestinal microbial communities. Further analysis showed that IH decreased the relative abundance of Lactobacillus and Prevotella, while rats treated with SVS was enriched with Firmicutes, Bacilli, Prevotellaceae, and Lactobacillus, which was similar to control rats. Immunohistochemical staining showed that SVS prevented the upregulation of transforming growth factor-β1 and tumor necrosis factor-alpha in the aorta. CONCLUSION SVS prevented aortic adverse response to IH, possibly through modulating intestinal microbiota.
Collapse
Affiliation(s)
- Jinfeng Wang
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui Province, China
| | - Hongxiang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, 10# Kangfu Road, Wuhu, 241000, Anhui Province, China
- Vascular Diseases Research Center of Wannan Medical College, Wuhu, China
| | - LiJuan Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Dasheng Lu
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, 10# Kangfu Road, Wuhu, 241000, Anhui Province, China.
- Translational Medicine Center of the Second Hospital Affiliated Wannan Medical College & Pathogens Detection Engineering Center of Wuhu, Wuhu, China.
| |
Collapse
|
13
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
14
|
Arango Jimenez N, Morales Vera DZ, Latorre Uriza C, Velosa-Porras J, Téllez Corral MA, Escobar Arregocés FM. Relationship of obstructive sleep apnea with periodontal condition and its local and systemic risk factors. Clin Oral Investig 2023; 27:2823-2832. [PMID: 36800028 PMCID: PMC10264262 DOI: 10.1007/s00784-023-04869-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/22/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE Obstructive sleep apnea (OSA) and periodontitis share risk factors, such as age, obesity, stress, and cardiovascular events, which have a bidirectional cause-effect relationship through systemic inflammation. Our objective was to determine the relationship between OSA and the periodontal condition and its associated local and systemic risk factors. MATERIAL AND METHODS This was an observational case-control study involving 60 patients. Local oral risk factors and the systemic condition of each patient were evaluated. All patients underwent polysomnography for the diagnosis of OSA. Chi-squared, one-way ANOVA, and Bonferroni's tests were performed. RESULTS A higher percentage of patients with periodontitis had severe OSA (66.66%); however, no statistically significant association was found between the two pathologies (p = 0.290). In terms of systemic risk factors, an association was found between arterial hypertension and severe OSA (p = 0.038), and in terms of local factors, an association was found between the use of removable prostheses and severe OSA (p = 0.0273). CONCLUSION In the general population, patients with periodontitis showed a higher prevalence of severe OSA. Obesity and hypothyroidism were the most prevalent systemic findings in patients with OSA and periodontitis. Arterial hypertension and osteoarthritis were found to be associated with severe OSA. The local risk factors associated with periodontitis and severe OSA were removable partial dentures and misfit resins. CLINICAL RELEVANCE To study the factors that can facilitate the progression of OSA and periodontitis, physicians and dentists should be advised to provide comprehensive care for patients with both pathologies.
Collapse
Affiliation(s)
- Natalia Arango Jimenez
- Periodontics, Faculty of Dentistry, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Darena Z Morales Vera
- Periodontics, Faculty of Dentistry, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Catalina Latorre Uriza
- Periodontics, Faculty of Dentistry, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
- Centro de Investigaciones Odontológicas, Faculty of Dentistry, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, DC, Colombia
| | - Juliana Velosa-Porras
- Centro de Investigaciones Odontológicas, Faculty of Dentistry, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, DC, Colombia
| | - Mayra A Téllez Corral
- Centro de Investigaciones Odontológicas, Faculty of Dentistry, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, DC, Colombia
| | - Francina Maria Escobar Arregocés
- Periodontics, Faculty of Dentistry, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
- Centro de Investigaciones Odontológicas, Faculty of Dentistry, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, DC, Colombia.
| |
Collapse
|
15
|
Giannoni A, Borrelli C, Gentile F, Sciarrone P, Spießhöfer J, Piepoli M, Richerson GB, Floras JS, Coats AJS, Javaheri S, Emdin M, Passino C. Autonomic and respiratory consequences of altered chemoreflex function: clinical and therapeutic implications in cardiovascular diseases. Eur J Heart Fail 2023; 25:642-656. [PMID: 36907827 PMCID: PMC10989193 DOI: 10.1002/ejhf.2819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
The importance of chemoreflex function for cardiovascular health is increasingly recognized in clinical practice. The physiological function of the chemoreflex is to constantly adjust ventilation and circulatory control to match respiratory gases to metabolism. This is achieved in a highly integrated fashion with the baroreflex and the ergoreflex. The functionality of chemoreceptors is altered in cardiovascular diseases, causing unstable ventilation and apnoeas and promoting sympathovagal imbalance, and it is associated with arrhythmias and fatal cardiorespiratory events. In the last few years, opportunities to desensitize hyperactive chemoreceptors have emerged as potential options for treatment of hypertension and heart failure. This review summarizes up to date evidence of chemoreflex physiology/pathophysiology, highlighting the clinical significance of chemoreflex dysfunction, and lists the latest proof of concept studies based on modulation of the chemoreflex as a novel target in cardiovascular diseases.
Collapse
Affiliation(s)
- Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | | | - Francesco Gentile
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Jens Spießhöfer
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- University of Aachen, Aachen, Germany
| | | | | | - John S Floras
- Division of Cardiology, Mount Sinai Hospital, University of Toronto, Ontario, Canada
| | | | - Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, Ohio, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio, and Division of Cardiology, The Ohio State University, Columbus, Ohio USA
| | - Michele Emdin
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Claudio Passino
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
16
|
Sánchez-de-la-Torre M, Cubillos C, Veatch OJ, Garcia-Rio F, Gozal D, Martinez-Garcia MA. Potential Pathophysiological Pathways in the Complex Relationships between OSA and Cancer. Cancers (Basel) 2023; 15:1061. [PMID: 36831404 PMCID: PMC9953831 DOI: 10.3390/cancers15041061] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Several epidemiological and clinical studies have suggested a relationship between obstructive sleep apnea (OSA) and a higher incidence or severity of cancer. This relationship appears to be dependent on a myriad of factors. These include non-modifiable factors, such as age and gender; and modifiable or preventable factors, such as specific comorbidities (especially obesity), the use of particular treatments, and, above all, the histological type or location of the cancer. Heterogeneity in the relationship between OSA and cancer is also related to the influences of intermittent hypoxemia (a hallmark feature of OSA), among others, on metabolism and the microenvironment of different types of tumoral cells. The hypoxia inducible transcription factor (HIF-1α), a molecule activated and expressed in situations of hypoxemia, seems to be key to enabling a variety of pathophysiological mechanisms that are becoming increasingly better recognized. These mechanisms appear to be operationally involved via alterations in different cellular functions (mainly involving the immune system) and molecular functions, and by inducing modifications in the microbiome. This, in turn, may individually or collectively increase the risk of cancer, which is then, further modulated by the genetic susceptibility of the individual. Here, we provide an updated and brief review of the different pathophysiological pathways that have been identified and could explain the relationship between OSA and cancer. We also identify future challenges that need to be overcome in this intriguing field of research.
Collapse
Affiliation(s)
- Manuel Sánchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, IRBLleida, University of Lleida, 25003 Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Carolina Cubillos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - Olivia J. Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Francisco Garcia-Rio
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Miguel Angel Martinez-Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Respiratory Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46012 Valencia, Spain
| |
Collapse
|
17
|
Obstructive sleep apnea is related to alterations in fecal microbiome and impaired intestinal barrier function. Sci Rep 2023; 13:778. [PMID: 36642764 PMCID: PMC9841009 DOI: 10.1038/s41598-023-27784-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 01/16/2023] Open
Abstract
Obstructive Sleep Apnea (OSA) is related to repeated upper airway collapse, intermittent hypoxia, and intestinal barrier dysfunction. The resulting damage to the intestinal barrier may affect or be affected by the intestinal microbiota. A prospective case-control was used, including 48 subjects from Sleep Medicine Center of Nanfang Hospital. Sleep apnea was diagnosed by overnight polysomnography. Fecal samples and blood samples were collected from subjects to detect fecal microbiome composition (by 16S rDNA gene amplification and sequencing) and intestinal barrier biomarkers-intestinal fatty acid-binding protein (I-FABP) and D-lactic acid (D-LA) (by ELISA and colorimetry, respectively). Plasma D-LA and I-FABP were significantly elevated in patients with OSA. The severity of OSA was related to differences in the structure and composition of the fecal microbiome. Enriched Fusobacterium, Megamonas, Lachnospiraceae_UCG_006, and reduced Anaerostipes was found in patients with severe OSA. Enriched Ruminococcus_2, Lachnoclostridium, Lachnospiraceae_UCG_006, and Alloprevotella was found in patients with high intestinal barrier biomarkers. Lachnoclostridium and Lachnospiraceae_UCG_006 were the common dominant bacteria of OSA and intestinal barrier damage. Fusobacterium and Peptoclostridium was independently associated with apnea-hypopnea index (AHI). The dominant genera of severe OSA were also related to glucose, lipid, neutrophils, monocytes and BMI. Network analysis identified links between the fecal microbiome, intestinal barrier biomarkers, and AHI. The study confirms that changes in the intestinal microbiota are associated with intestinal barrier biomarkers among patients in OSA. These changes may play a pathophysiological role in the systemic inflammation and metabolic comorbidities associated with OSA, leading to multi-organ morbidity of OSA.
Collapse
|
18
|
Valverde-Pérez E, Olea E, Obeso A, Prieto-Lloret J, Rocher A, Gonzalez-Obeso E. Intermittent Hypoxia and Diet-Induced Obesity on the Intestinal Wall Morphology in a Murine Model of Sleep Apnea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:89-97. [PMID: 37322339 DOI: 10.1007/978-3-031-32371-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This work analyzes the impact of two conditions, intermittent hypoxia exposure and high-fat diet in rats as models of sleep apnea. We studied the autonomic activity and histological structure of the rat jejunum and whether the overlapping of both conditions, as often observed in patients, induces more deleterious effects on the intestinal barrier. We found alterations in jejunum wall histology, predominantly in HF rats, based on increased crypt depth and submucosal thickness, as well as decreased muscularis propria thickness. These alterations were maintained with the IH and HF overlap. An increase in the number and size of goblet cells in the villi and crypts and the infiltration of eosinophils and lymphocytes in the lamina propria suggest an inflammatory status, confirmed by the increase in plasma CRP levels in all experimental groups. Regarding the CAs analysis, IH, alone or combined with HF, causes a preferential accumulation of NE in the catecholaminergic nerve fibers of the jejunum. In contrast, serotonin increases in all three experimental conditions, with the highest level in the HF group. It remains to be elucidated whether the alterations found in the present work could affect the permeability of the intestinal barrier, promoting sleep apnea-induced morbidities.
Collapse
Affiliation(s)
- Esther Valverde-Pérez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biomedicina y Genética Molecular (IBGM), UVa-CSIC, Valladolid, Spain
| | - Elena Olea
- Instituto de Biomedicina y Genética Molecular (IBGM), UVa-CSIC, Valladolid, Spain
- Departamento de Enfermería, Facultad de Enfermeria, Universidad de Valladolid, Valladolid, Spain
| | - Ana Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biomedicina y Genética Molecular (IBGM), UVa-CSIC, Valladolid, Spain
| | - Jesús Prieto-Lloret
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biomedicina y Genética Molecular (IBGM), UVa-CSIC, Valladolid, Spain
| | - Asunción Rocher
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.
- Instituto de Biomedicina y Genética Molecular (IBGM), UVa-CSIC, Valladolid, Spain.
| | - Elvira Gonzalez-Obeso
- Instituto de Biomedicina y Genética Molecular (IBGM), UVa-CSIC, Valladolid, Spain
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
19
|
Badran M, Khalyfa A, Ericsson AC, Puech C, McAdams Z, Bender SB, Gozal D. Gut microbiota mediate vascular dysfunction in a murine model of sleep apnoea: effect of probiotics. Eur Respir J 2023; 61:2200002. [PMID: 36028255 PMCID: PMC11556237 DOI: 10.1183/13993003.00002-2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/10/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is a chronic prevalent condition characterised by intermittent hypoxia (IH), and is associated with endothelial dysfunction and coronary artery disease (CAD). OSA can induce major changes in gut microbiome diversity and composition, which in turn may induce the emergence of OSA-associated morbidities. However, the causal effects of IH-induced gut microbiome changes on the vasculature remain unexplored. Our objective was to assess if vascular dysfunction induced by IH is mediated through gut microbiome changes. METHODS Faecal microbiota transplantation (FMT) was conducted on C57BL/6J naïve mice for 6 weeks to receive either IH or room air (RA) faecal slurry with or without probiotics (VSL#3). In addition to 16S rRNA amplicon sequencing of their gut microbiome, FMT recipients underwent arterial blood pressure and coronary artery and aorta function testing, and their trimethylamine N-oxide (TMAO) and plasma acetate levels were determined. Finally, C57BL/6J mice were exposed to IH, IH treated with VSL#3 or RA for 6 weeks, and arterial blood pressure and coronary artery function assessed. RESULTS Gut microbiome taxonomic profiles correctly segregated IH from RA in FMT mice and the normalising effect of probiotics emerged. Furthermore, IH-FMT mice exhibited increased arterial blood pressure and TMAO levels, and impairments in aortic and coronary artery function (p<0.05) that were abrogated by probiotic administration. Lastly, treatment with VSL#3 under IH conditions did not attenuate elevations in arterial blood pressure or CAD. CONCLUSIONS Gut microbiome alterations induced by chronic IH underlie, at least partially, the typical cardiovascular disturbances of sleep apnoea and can be mitigated by concurrent administration of probiotics.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Abdelnaby Khalyfa
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
- University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, USA
| | - Clementine Puech
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Zachary McAdams
- Department of Molecular Microbiology and Immunology, Molecular Pathogenesis and Therapeutics Program, University of Missouri, Columbia, MO, USA
| | - Shawn B Bender
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
20
|
Liu W, Du Q, Zhang H, Han D. The gut microbiome and obstructive sleep apnea syndrome in children. Sleep Med 2022; 100:462-471. [PMID: 36252415 DOI: 10.1016/j.sleep.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 01/11/2023]
Abstract
Obstructive sleep apnea syndrome (OSAS) in children has become a major public health problem that affects the physical and mental growth of children. OSAS can result in adverse outcomes during growth and development, inhibiting the normal development of the metabolic, cardiovascular, and immune systems. OSAS is characterized by partial or complete obstruction of the upper airway, and prolonged obstruction that causes intermittent hypoxia and sleep fragmentation in children. The human microbiota is a complex community that is in dynamic equilibrium in the human body. Intermittent hypoxia and sleep fragmentation induced by childhood OSAS alter the composition of the gut microbiome. At the same time, changes in the gut microbiome affect sleep patterns in children through immunomodulatory and metabolic mechanisms, and induce further comorbidities, such as obesity, hypertension, and cardiovascular disease. This article discusses recent progress in research into the mechanisms of OSAS-induced changes in the gut microbiota and its pathophysiology in children.
Collapse
Affiliation(s)
- Wenxin Liu
- Children's Hospital of Shanghai Jiao Tong University, Clinical Lab in Children's Hospital of Shanghai, Shanghai, 200040, China; Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China
| | - Qingqing Du
- Children's Hospital of Shanghai Jiao Tong University, Clinical Lab in Children's Hospital of Shanghai, Shanghai, 200040, China; Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China
| | - Hong Zhang
- Children's Hospital of Shanghai Jiao Tong University, Clinical Lab in Children's Hospital of Shanghai, Shanghai, 200040, China; Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China.
| | - Dingding Han
- Children's Hospital of Shanghai Jiao Tong University, Clinical Lab in Children's Hospital of Shanghai, Shanghai, 200040, China; Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China.
| |
Collapse
|
21
|
Farré R, Almendros I, Martínez-García MÁ, Gozal D. Experimental Models to Study End-Organ Morbidity in Sleep Apnea: Lessons Learned and Future Directions. Int J Mol Sci 2022; 23:ijms232214430. [PMID: 36430904 PMCID: PMC9696027 DOI: 10.3390/ijms232214430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Sleep apnea (SA) is a very prevalent sleep breathing disorder mainly characterized by intermittent hypoxemia and sleep fragmentation, with ensuing systemic inflammation, oxidative stress, and immune deregulation. These perturbations promote the risk of end-organ morbidity, such that SA patients are at increased risk of cardiovascular, neurocognitive, metabolic and malignant disorders. Investigating the potential mechanisms underlying SA-induced end-organ dysfunction requires the use of comprehensive experimental models at the cell, animal and human levels. This review is primarily focused on the experimental models employed to date in the study of the consequences of SA and tackles 3 different approaches. First, cell culture systems whereby controlled patterns of intermittent hypoxia cycling fast enough to mimic the rates of episodic hypoxemia experienced by patients with SA. Second, animal models consisting of implementing realistic upper airway obstruction patterns, intermittent hypoxia, or sleep fragmentation such as to reproduce the noxious events characterizing SA. Finally, human SA models, which consist either in subjecting healthy volunteers to intermittent hypoxia or sleep fragmentation, or alternatively applying oxygen supplementation or temporary nasal pressure therapy withdrawal to SA patients. The advantages, limitations, and potential improvements of these models along with some of their pertinent findings are reviewed.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
- Correspondence: (R.F.); (D.G.)
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
| | - Miguel-Ángel Martínez-García
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, The University of Missouri, Columbia, MO 65201, USA
- Correspondence: (R.F.); (D.G.)
| |
Collapse
|
22
|
Wu J, Lu Y, Cai X, Chen Y, Shen Z, Lyv Q. Gut microbiota dysbiosis in 4- to 6-year-old children with obstructive sleep apnea-hypopnea syndrome. Pediatr Pulmonol 2022; 57:2012-2022. [PMID: 35580999 DOI: 10.1002/ppul.25967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Several experiments on animals have reported the relationship between obstructive sleep apnea-hypopnea syndrome (OSAHS) and gut microbiota. We investigated the gut microbiota composition of children aged 4-6 years with OSAHS to complement the pathogenesis and clinical screening methods of OSAHS. METHODS We collected feces from 43 children with OSAHS and 45 controls aged 4-6 years. We extracted total bacterial DNA from feces and analyzed the composition of gut microbiota through 16S ribosomal RNA sequencing. RESULTS There were significant differences in bacteria producing short-chain fatty acids (SCFAs) between OSAHS children and controls, including Faecalibacterium, Roseburia, and a member of Ruminococcaceae. A gut microbiota model for pediatric OSAHS screening showed that the receiver operating characteristic-area under the curve (ROC-AUC) was 0.794 with 79.1% and 80.0% sensitivity and specificity, respectively. Functional analysis of the gut microbiota revealed several alterations in metabolism. CONCLUSION The composition of gut microbiota in OSAHS children is partially changed. The altered intestinal flora may provide a new screening method for the diagnosis of children with OSAHS. The prediction of gut microbiota function suggests that intestinal metabolic function may be altered in OSAHS children.
Collapse
Affiliation(s)
- Junhua Wu
- Medical School of Ningbo University, Ningbo, Zhejiang, China.,Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Yanbo Lu
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaohong Cai
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Yuanyuan Chen
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qin Lyv
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
23
|
Mashaqi S, Kallamadi R, Matta A, Quan SF, Patel SI, Combs D, Estep L, Lee-Iannotti J, Smith C, Parthasarathy S, Gozal D. Obstructive Sleep Apnea as a Risk Factor for COVID-19 Severity-The Gut Microbiome as a Common Player Mediating Systemic Inflammation via Gut Barrier Dysfunction. Cells 2022; 11:1569. [PMID: 35563874 PMCID: PMC9101605 DOI: 10.3390/cells11091569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The novel corona virus that is now known as (SARS-CoV-2) has killed more than six million people worldwide. The disease presentation varies from mild respiratory symptoms to acute respiratory distress syndrome and ultimately death. Several risk factors have been shown to worsen the severity of COVID-19 outcomes (such as age, hypertension, diabetes mellitus, and obesity). Since many of these risk factors are known to be influenced by obstructive sleep apnea, this raises the possibility that OSA might be an independent risk factor for COVID-19 severity. A shift in the gut microbiota has been proposed to contribute to outcomes in both COVID-19 and OSA. To further evaluate the potential triangular interrelationships between these three elements, we conducted a thorough literature review attempting to elucidate these interactions. From this review, it is concluded that OSA may be a risk factor for worse COVID-19 clinical outcomes, and the shifts in gut microbiota associated with both COVID-19 and OSA may mediate processes leading to bacterial translocation via a defective gut barrier which can then foster systemic inflammation. Thus, targeting biomarkers of intestinal tight junction dysfunction in conjunction with restoring gut dysbiosis may provide novel avenues for both risk detection and adjuvant therapy.
Collapse
Affiliation(s)
- Saif Mashaqi
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.F.Q.); (S.I.P.); (D.C.); (L.E.); (S.P.)
| | - Rekha Kallamadi
- Department of Internal Medicine, The University of North Dakota School of Medicine, Grand Forks, ND 58203, USA; (R.K.); (A.M.)
| | - Abhishek Matta
- Department of Internal Medicine, The University of North Dakota School of Medicine, Grand Forks, ND 58203, USA; (R.K.); (A.M.)
| | - Stuart F. Quan
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.F.Q.); (S.I.P.); (D.C.); (L.E.); (S.P.)
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Salma I. Patel
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.F.Q.); (S.I.P.); (D.C.); (L.E.); (S.P.)
| | - Daniel Combs
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.F.Q.); (S.I.P.); (D.C.); (L.E.); (S.P.)
| | - Lauren Estep
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.F.Q.); (S.I.P.); (D.C.); (L.E.); (S.P.)
| | - Joyce Lee-Iannotti
- Department of Sleep Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85006, USA;
| | - Charles Smith
- The Intermountain Healthcare, Merrill Gappmayer Family Medicine Center, Provo, UT 84604, USA;
| | - Sairam Parthasarathy
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.F.Q.); (S.I.P.); (D.C.); (L.E.); (S.P.)
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65201, USA;
| |
Collapse
|
24
|
Torres-Castro R, Solis-Navarro L, Puppo H, Alcaraz-Serrano V, Vasconcello-Castillo L, Vilaró J, Vera-Uribe R. Respiratory Muscle Training in Patients with Obstructive Sleep Apnoea: A Systematic Review and Meta-Analysis. Clocks Sleep 2022; 4:219-229. [PMID: 35466271 PMCID: PMC9036269 DOI: 10.3390/clockssleep4020020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Effective treatments for obstructive sleep apnoea (OSA) include positive pressure, weight loss, oral appliances, surgery, and exercise. Although the involvement of the respiratory muscles in OSA is evident, the effect of training them to improve clinical outcomes is not clear. We aimed to determine the effects of respiratory muscle training in patients with OSA. Methods: A systematic review was conducted in seven databases. Studies that applied respiratory muscle training in OSA patients were reviewed. Two independent reviewers analysed the studies, extracted the data and assessed the quality of evidence. Results: Of the 405 reports returned by the initial search, eight articles reporting on 210 patients were included in the data synthesis. Seven included inspiratory muscle training (IMT), and one included expiratory muscle training (EMT). Regarding IMT, we found significant improvement in Epworth sleepiness scale in −4.45 points (95%CI −7.64 to −1.27 points, p = 0.006), in Pittsburgh sleep quality index of −2.79 points (95%CI −4.19 to −1.39 points, p < 0.0001), and maximum inspiratory pressure of −29.56 cmH2O (95%CI −53.14 to −5.98 cmH2O, p = 0.01). However, the apnoea/hypopnea index and physical capacity did not show changes. We did not perform a meta-analysis of EMT due to insufficient studies. Conclusion: IMT improves sleepiness, sleep quality and inspiratory strength in patients with OSA.
Collapse
Affiliation(s)
- Rodrigo Torres-Castro
- Department of Physical Therapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; (R.T.-C.); (L.S.-N.); (H.P.); (L.V.-C.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Lilian Solis-Navarro
- Department of Physical Therapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; (R.T.-C.); (L.S.-N.); (H.P.); (L.V.-C.)
| | - Homero Puppo
- Department of Physical Therapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; (R.T.-C.); (L.S.-N.); (H.P.); (L.V.-C.)
| | - Victoria Alcaraz-Serrano
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain;
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025 Barcelona, Spain
| | - Luis Vasconcello-Castillo
- Department of Physical Therapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; (R.T.-C.); (L.S.-N.); (H.P.); (L.V.-C.)
| | - Jordi Vilaró
- Blanquerna School of Health Sciences, Global Research on Wellbeing (GRoW), Universitat Ramon Llull, 08025 Barcelona, Spain;
| | - Roberto Vera-Uribe
- Department of Physical Therapy, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile; (R.T.-C.); (L.S.-N.); (H.P.); (L.V.-C.)
| |
Collapse
|
25
|
Gawlik-Kotelnicka O, Margulska A, Gabryelska A, Sochal M, Białasiewicz P, Strzelecki D. “Leaky Gut” as a Keystone of the Connection between Depression and Obstructive Sleep Apnea Syndrome? A Rationale and Study Design. Metabolites 2022; 12:metabo12020152. [PMID: 35208226 PMCID: PMC8878827 DOI: 10.3390/metabo12020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea (OSA) and depression are highly comorbid. Immune alterations, oxidative stress or microbiota dysfunction have been proposed as some mechanisms underlying this association. The aim of the proposed study is to assess the severity and profile of OSA and depressive symptoms in the context of serum microbiota metabolites, biomarkers of intestinal permeability, inflammation and oxidative stress in adult patients diagnosed with OSA syndrome. The study population consists of 200 subjects. An apnoea-hypopnoea index ≥ 5/hour is used for the diagnosis. Depressive symptoms are assessed with Beck Depression Inventory. Measured serum markers are: tumour necrosis factor–alpha and interleukin-6 for inflammation, total antioxidant capacity and malondialdehyde concentration for oxidative stress, zonulin, calprotectin, lipopolisaccharide-binding protein and intestinal fatty acids-binding protein for intestinal permeability. All of the above will be measured by enzyme-linked immunosorbent assay (ELISA). Associations between clinical symptoms profile and severity and the above markers levels will be tested. It would be valuable to seek for overlap indicators of depression and OSA to create this endophenotype possible biomarkers and form new prophylactic or therapeutic methods. The results may be useful to establish a subpopulation of patients sensitive to microbiota therapeutic interventions (probiotics, prebiotics, and microbiota transplantation).
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 90-419 Lodz, Poland;
- Correspondence: ; Tel.: +48-603819776
| | | | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (A.G.); (M.S.); (P.B.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (A.G.); (M.S.); (P.B.)
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (A.G.); (M.S.); (P.B.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
26
|
Chronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice. Sleep Med 2022; 91:84-92. [DOI: 10.1016/j.sleep.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022]
|
27
|
Xerfan EMS, Andersen ML, Facina AS, Tufik S, Tomimori J. Rosacea, poor sleep quality and obstructive sleep apnea: a commentary on potential interconnected features. J Cosmet Dermatol 2022; 21:4234-4236. [PMID: 35090184 DOI: 10.1111/jocd.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
Although rosacea is classically considered a skin disorder, recent evidence shows that it is emerging as a systemic vascular disease. The classical symptoms of burning, intense erythema and flushing could be related with several systemic and metabolic comorbidities. We highlight the role of sleep disturbance as a possible trigger for rosacea, which could be explained by the inflammatory and stressful conditions that can be produced by poor sleep. In particular, we call attention to obstructive sleep apnea (OSA), a common multisystemic sleep disorder; it could be linked with rosacea in the context of the metabolic syndrome, which in turn is frequently associated with OSA. Obstructive sleep apnea may be accompanied by autonomic system activation and catecholamine release, which can aggravate rosacea. Poor sleep, resulting from any underlying cause, can have a range of effects including immunological modulation and intrinsic cutaneous changes (such as the impairment of skin barrier defense and changes in the skin microbiome), that may trigger rosacea. Further studies on this subject could provide more evidence on these relationships, and help to improve the patients' quality of life and management of this uncomfortable and potentially severe condition.
Collapse
Affiliation(s)
- Ellen M S Xerfan
- Programa de Pós-Graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Anamaria S Facina
- Departamento de Dermatologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Jane Tomimori
- Programa de Pós-Graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Departamento de Dermatologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
28
|
Ren R, Zhang Y, Yang L, Somers VK, Covassin N, Tang X. Association Between Arousals During Sleep and Hypertension Among Patients With Obstructive Sleep Apnea. J Am Heart Assoc 2021; 11:e022141. [PMID: 34970921 PMCID: PMC9075207 DOI: 10.1161/jaha.121.022141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Sleep fragmentation induced by repetitive arousals is a hallmark of obstructive sleep apnea (OSA). Sleep fragmentation has been linked to hypertension in community‐based studies, but it is unclear if this association is manifest in OSA. We aimed to explore whether frequent arousals from sleep modify the relationship between OSA and prevalent hypertension. Methods and Results A total of 10 102 patients with OSA and 1614 primary snorers were included in the study. Hypertension was defined on either direct blood pressure measures or diagnosis by a physician. Spontaneous, respiratory, and movement arousals were derived by polysomnography. Logistic regression models were used to estimate the associations between arousals and prevalent hypertension in patients with OSA and primary snorers. For every 10‐unit increase of total arousal index, odds of hypertension significantly increased in both the total sample (odds ratio [OR], 1.08; 95% CI, 1.03–1.14; P=0.002) and patients with OSA (OR, 1.10; 95% CI, 1.04–1.16; P<0.001), but not in the primary snoring group. Total arousal index was significantly associated with systolic blood pressure and diastolic blood pressure in the total sample (β=0.05 and β=0.06; P<0.001) and in patients with (β=0.05 and β=0.06; P<0.01), but not in primary snorers. In addition, a greater influence of respiratory events with arousals than respiratory events without arousals on blood pressure in OSA was also noted. Results were independent of confounders, including apnea‐hypopnea index and nocturnal hypoxemia. Conclusions We conclude that repetitive arousals from sleep are independently associated with prevalent hypertension in patients with OSA.
Collapse
Affiliation(s)
- Rong Ren
- Department of Respiratory and Critical Care Medicine Sleep Medicine Center Translational Neuroscience Center State Key Laboratory West China HospitalSichuan University Chengdu China
| | - Ye Zhang
- Department of Respiratory and Critical Care Medicine Sleep Medicine Center Translational Neuroscience Center State Key Laboratory West China HospitalSichuan University Chengdu China
| | - Linghui Yang
- Department of Respiratory and Critical Care Medicine Sleep Medicine Center Translational Neuroscience Center State Key Laboratory West China HospitalSichuan University Chengdu China
| | - Virend K Somers
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN
| | - Naima Covassin
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN
| | - Xiangdong Tang
- Department of Respiratory and Critical Care Medicine Sleep Medicine Center Translational Neuroscience Center State Key Laboratory West China HospitalSichuan University Chengdu China
| |
Collapse
|
29
|
Disturbances of the Gut Microbiota, Sleep Architecture, and mTOR Signaling Pathway in Patients with Severe Obstructive Sleep Apnea-Associated Hypertension. Int J Hypertens 2021; 2021:9877053. [PMID: 34888100 PMCID: PMC8651365 DOI: 10.1155/2021/9877053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Intermittent hypoxia and sleep fragmentation are pathophysiological processes involved in obstructive sleep apnea (OSA) which affect gut microbiota, sleep architecture, and mTOR signaling pathway. However, the involvement of these elements in the pathogenesis mechanism of OSA-associated hypertension remains unclear. Therefore, this study investigated whether the OSA-associated hypertension mechanism is regulated by the gut microbiota and mTOR signaling pathway. Patients were diagnosed by polysomnography; their fecal samples were obtained and analyzed for their microbiome composition by 16S ribosomal RNA pyrosequencing and bioinformatics analysis. Transcript genes on fasting peripheral blood mononuclear cells (PBMCs) were examined using Illumina RNA-sequencing analysis. Totally, we enrolled 60 patients with severe OSA [without hypertension (n = 27) and with hypertension (n = 33)] and 12 controls (neither OSA nor hypertension). Results revealed that severe-OSA patients with hypertension had an altered gut microbiome, decreased short-chain fatty acid-producing bacteria (P < 0.05), and reduced arginine and proline metabolism pathways (P=0.001), compared with controls; also, they had increased stage N1 sleep and reduced stages N2 and N3 sleep accompanied by repeated arousals (P < 0.05). Analysis of PBMCs using the Kyoto Encyclopedia of Genes and Genomes database showed that the mTOR signaling pathway (P=0.006) was the most important differential gene-enriched pathway in severe-OSA patients with hypertension. Our findings extend prior work and suggest a possibility that the regulation of the mTOR signaling pathway is involved in developing OSA-associated hypertension through its interaction with the disturbance of the gut microbiome and sleep architecture.
Collapse
|
30
|
Farré R, Gozal D, Almendros I. Human experimental models: seeking to enhance multiscale research in sleep apnoea. Eur Respir J 2021; 58:58/4/2101169. [PMID: 34620681 DOI: 10.1183/13993003.01169-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain .,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - David Gozal
- Dept of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| |
Collapse
|
31
|
Profile of gut flora in hypertensive patients with insufficient sleep duration. J Hum Hypertens 2021; 36:390-404. [PMID: 33785906 DOI: 10.1038/s41371-021-00529-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
Recently, the contribution of both insufficient sleep duration and gut microbiome dysbiosis to hypertension (HTN) have been revealed, yet the profile of gut flora in hypertensive patients with insufficient sleep duration remains unknown. To examine this condition, the specific shifts in the fecal microbiome of 53 participants with or without HTN were investigated. The patients were divided into those who slept short (≤6 h) or optimal (6-9 h) duration per day. Comprehensive metagenomic sequencing analysis of fecal specimens was performed in healthy controls with sufficient sleep (s-CTR, n = 10), healthy controls with insufficient sleep (ins-CTR, n = 6), hypertensive patients with sufficient sleep (s-HTN, n = 25), and HTNs complicated by short sleep duration (ins-HTN, n = 12). We found that the α-diversity and β-diversity were quite similar between s-HTN and ins-HTN. Similarities were also observed in the enterotype distribution between s-HTN and ins-HTN subjects. In addition, the enrichment of gut bacteria was evident, such as Fusobacterium mortiferum and Roseburia inulinivorans in ins-HTN subjects. Several functional modules that were distinct between s-HTN and ins-HTN subjects were identified, which were unique to hypertensive patients with insufficient sleep duration. Overall, the data demonstrated that the gut microbial features were largely maintained in hypertensive participants with insufficient sleep duration.
Collapse
|
32
|
Khannous-Lleiffe O, Willis JR, Saus E, Cabrera-Aguilera I, Almendros I, Farré R, Gozal D, Farré N, Gabaldón T. A Mouse Model Suggests That Heart Failure and Its Common Comorbidity Sleep Fragmentation Have No Synergistic Impacts on the Gut Microbiome. Microorganisms 2021; 9:microorganisms9030641. [PMID: 33808770 PMCID: PMC8003359 DOI: 10.3390/microorganisms9030641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) is a common condition associated with a high rate of hospitalizations and adverse outcomes. HF is characterized by impairments of either the cardiac ventricular filling, ejection of blood capacity or both. Sleep fragmentation (SF) involves a series of short sleep interruptions that lead to fatigue and contribute to cognitive impairments and dementia. Both conditions are known to be associated with increased inflammation and dysbiosis of the gut microbiota. In the present study, mice were distributed into four groups, and subjected for four weeks to either HF, SF, both HF and SF, or left unperturbed as controls. We used 16S metabarcoding to assess fecal microbiome composition before and after the experiments. Evidence for distinct alterations in several bacterial groups and an overall decrease in alpha diversity emerged in HF and SF treatment groups. Combined HF and SF conditions, however, showed no synergism, and observed changes were not always additive, suggesting preliminarily that some of the individual effects of either HF or SF cancel each other out when applied concomitantly.
Collapse
Affiliation(s)
- Olfat Khannous-Lleiffe
- Barcelona Supercomputing Centre (BSC-CNS), 08034 Barcelona, Spain; (O.K.-L.); (J.R.W.); (E.S.)
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Jesse R. Willis
- Barcelona Supercomputing Centre (BSC-CNS), 08034 Barcelona, Spain; (O.K.-L.); (J.R.W.); (E.S.)
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS), 08034 Barcelona, Spain; (O.K.-L.); (J.R.W.); (E.S.)
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Ignacio Cabrera-Aguilera
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (I.C.-A.); (I.A.); (R.F.)
- Department of Human Movement Sciences, Faculty of Health Sciences, School of Kinesiology, Universidad de Talca, Talca 3460000, Chile
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (I.C.-A.); (I.A.); (R.F.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (I.C.-A.); (I.A.); (R.F.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, The University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Nuria Farré
- Heart Failure Unit, Department of Cardiology, Hospital del Mar (Parc de Salut Mar), 08003 Barcelona, Spain
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (N.F.); (T.G.)
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), 08034 Barcelona, Spain; (O.K.-L.); (J.R.W.); (E.S.)
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Correspondence: (N.F.); (T.G.)
| |
Collapse
|
33
|
Childhood Obesity and Respiratory Diseases: Which Link? CHILDREN-BASEL 2021; 8:children8030177. [PMID: 33669035 PMCID: PMC7996509 DOI: 10.3390/children8030177] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
Prevalence of childhood obesity is progressively increasing, reaching worldwide levels of 5.6% in girls and of 7.8% in boys. Several evidences showed that obesity is a major preventable risk factor and disease modifier of some respiratory conditions such as asthma and Obstructive Sleep Apnea Syndrome (OSAS). Co-occurrence of asthma and obesity may be due to common pathogenetic factors including exposure to air pollutants and tobacco smoking, Western diet, and low Vitamin D levels. Lung growth and dysanapsis phenomenon in asthmatic obese children play a role in impaired respiratory function which appears to be different than in adults. Genes involved in both asthma and obesity have been identified, though a gene-by-environment interaction has not been properly investigated yet. The identification of modifiable environmental factors influencing gene expression through epigenetic mechanisms may change the natural history of both diseases. Another important pediatric respiratory condition associated with obesity is Sleep-Disordered Breathing (SDB), especially Obstructive Sleep Apnea Syndrome (OSAS). OSAS and obesity are linked by a bidirectional causality, where the effects of one affect the other. The factors most involved in the association between OSAS and obesity are oxidative stress, systemic inflammation, and gut microbiota. In OSAS pathogenesis, obesity's role appears to be mainly due to mechanical factors leading to an increase of respiratory work at night-time. However, a causal link between obesity-related inflammatory state and OSAS pathogenesis still needs to be properly confirmed. To prevent obesity and its complications, family education and precocious lifestyle changes are critical. A healthy diet may lead to an improved quality of life in obese children suffering from respiratory diseases. The present review aimed to investigate the links between obesity, asthma and OSAS, focusing on the available evidence and looking for future research fields.
Collapse
|
34
|
Association between Gut Microbial Diversity and Carotid Intima-Media Thickness. ACTA ACUST UNITED AC 2021; 57:medicina57030195. [PMID: 33668894 PMCID: PMC7996485 DOI: 10.3390/medicina57030195] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
Background and Objectives: There is an increasing focus on the effect of the gut microbiome on developing atherosclerosis, but there is still no unified standpoint. We aimed to find associations between intestinal microbiome diversity and a marker of subclinical atherosclerosis, the carotid intima-media thickness (IMT). Materials and Methods: Recruited from the Hungarian Twin Registry, 108 monozygotic (MZ) twins (mean age 52.4 ± 14.1 years, 58% female) underwent a comprehensive carotid ultrasound examination (Samsung RS85). Of the 108 MZ twins, 14 pairs (mean age 65 ± 6.4 years, 71% female) discordant for carotid IMT were selected to undergo a stool sample collection. A special stool sampling container was mailed and received from each participant. After DNA extraction, library construction was performed specifically for the V3–V4 hypervariable region of microbial 16S rRNA. Next, the microbiome composition of the samples was determined using Kraken software. Two hypotheses were tested with the exact permutation test: (1) in the group with normal IMT, the Shannon index of the phyla is higher; and (2) the Firmicutes/Bacteroidetes ratio is greater in the group with high IMT values. Furthermore, the abundance of different bacterial strains present at higher and normal IMT was also explored. Statistical analysis was carried out using R software. Results: Increased Firmicutes/Bacteroidetes ratio was associated with increased IMT (mean Firmicutes/Bacteroidetes ratio of IMT > 0.9 and IMT < 0.9 groups: 2.299 and 1.436, respectively; p = 0.031). In the group with normal IMT values, a substantially higher fraction of Prevotellaceae was observed in contrast with subjects having subclinical atherosclerosis. However, there was no significant difference in the alpha diversity between the two groups. Conclusions: The determining role of individual genera and their proportions in the development and progression of atherosclerosis can be assumed. Further studies are needed to clarify if these findings can be used as potential therapeutic targets.
Collapse
|
35
|
Li SQ, Sun XW, Zhang L, Ding YJ, Li HP, Yan YR, Lin YN, Zhou JP, Li QY. Impact of insomnia and obstructive sleep apnea on the risk of acute exacerbation of chronic obstructive pulmonary disease. Sleep Med Rev 2021; 58:101444. [PMID: 33601330 DOI: 10.1016/j.smrv.2021.101444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 10/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major health burden worldwide. Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is characterized by worsening of patients' respiratory symptoms that requires a modification in medication. This event could accelerate disease progression and increase the risk of hospital admissions and mortality. Both insomnia and obstructive sleep apnea (OSA) are prevalent in patients with COPD, and are linked to increased susceptibility to AECOPD. Improper treatment of insomnia may increase the risk of adverse respiratory outcomes for patients with COPD, while effective continuous positive airway pressure (CPAP) treatment may reduce the risk of AECOPD and mortality in patients with overlap syndrome. Sleep disorders should be considered in clinical management for COPD.
Collapse
Affiliation(s)
- Shi Qi Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xian Wen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liu Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Jie Ding
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Peng Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ya Ru Yan
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Ni Lin
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Ping Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qing Yun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
36
|
Khalyfa A, Ericsson A, Qiao Z, Almendros I, Farré R, Gozal D. Circulating exosomes and gut microbiome induced insulin resistance in mice exposed to intermittent hypoxia: Effects of physical activity. EBioMedicine 2021; 64:103208. [PMID: 33485839 PMCID: PMC7910674 DOI: 10.1016/j.ebiom.2021.103208] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Gut microbiota (GM) contribute to obesity and insulin resistance (IR). Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), promotes IR and alters GM. Since circulating exosomes are implicated in IR, we examined the effects of IH and physical activity (PA) in mice on GM, colonic epithelium permeability, systemic IR, and plasma exosome cargo, and exosome effects on visceral white adipose tissues (vWAT) IR. Methods C57BL/6 mice were exposed to IH or room air (RA) for 6 weeks with and without PA (n = 12/group), and GM and systemic IR changes were assessed, as well as the effects of plasma exosomes on naïve adipocyte insulin sensitivity. Fecal microbiota transfers (FMT) were performed in naïve mice (n = 5/group), followed by fecal 16S rRNA sequencing, and systemic IR and exosome-induced effects on adipocyte insulin sensitivity were evaluated. Findings Principal coordinate analysis (PCoA) ordinates revealed B-diversity among IH and FMT recipients that accounted for 64% principal component 1 (PC1) and 12.5% (PC2) of total variance. Dominant microbiota families and genera in IH-exposed and FMT-treated were preserved, and IH-exposed GM and IH-FMT induced increased gut permeability. Plasma exosomes from IH-exposed and IH-FMT mice decreased pAKT/AKT responses to exogenous insulin in adipocytes vs. IH+PA or RA FMT-treated mice (p = 0.001). Interpretation IH exposures mimicking OSA induce changes in GM, increase gut permeability, and alter plasma exosome cargo, the latter inducing adipocyte dysfunction (increased IR). Furthermore, these alterations improved with PA. Thus, IH leads to perturbations of a singular GM-circulating exosome pathway that disrupts adipocyte homeostasis resulting in metabolic dysfunction, as reflected by IR. Funding This study was supported by grants from the National Institutes of Health grants HL130984 and HL140548 and University of Missouri Tier 2 grant. The study has not received any funding or grants from pharmaceutical or other industrial corporations.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Child Health and the Child Health Research Institute, University of Missouri, School of Medicine, Columbia, 400N. Keene Street, Suite 010, MO 65201, United States.
| | - Aaron Ericsson
- University of Missouri Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri at Columbia, Columbia, MO 65201, United States
| | - Zhuanghong Qiao
- Department of Child Health and the Child Health Research Institute, University of Missouri, School of Medicine, Columbia, 400N. Keene Street, Suite 010, MO 65201, United States
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain; Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain; Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri, School of Medicine, Columbia, 400N. Keene Street, Suite 010, MO 65201, United States.
| |
Collapse
|
37
|
Studnicka M, Baumgartner B, Bolitschek J, Doberer D, Eber E, Eckmayr J, Hartl S, Hesse P, Jaksch P, Kink E, Kneussl M, Lamprecht B, Olschewski H, Pfleger A, Pohl W, Prior C, Puelacher C, Renner A, Steflitsch W, Stelzmüller I, Täubl H, Vonbank K, Wagner M, Wantke F, Wass R. [Masterplan 2025 of the Austrian Society of Pneumology (ASP)-the expected burden and management of respiratory diseases in Austria]. Wien Klin Wochenschr 2020; 132:89-113. [PMID: 32990821 DOI: 10.1007/s00508-020-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Scientific Members of the Austrian Society of Pneumology describe the expected development in respiratory health and provide guidance towards patient-oriented and cost-efficient respiratory care in Austria.Methods: In November 2017, respiratory care providers (physicians, nurses, physiotherapists) together with patient's advocacy groups and experts in health development, collaborated in workshops on: respiratory health and the environment, bronchial asthma and allergy, COPD, pediatric respiratory disease, respiratory infections, sleep disorders, interventional pneumology, thoracic oncology and orphan diseases.Results: Respiratory disease is extremely prevalent and driven by ill-health behavior, i.e. cigarette smoking, over-eating and physical inactivity. For the majority of respiratory diseases increased prevalence, but decreased hospitalizations are expected.The following measures should be implemented to deal with future challenges:1. Screening and case-finding should be implemented for lung cancer and COPD.2. E-health solutions (telemedicine, personal apps) should be used to facilitate patient management.3. Regional differences in respiratory care should be reduced through E‑health and harmonization of health insurance benefits across Austria.4. Patient education and awareness, to reduce respiratory health illiteracy should be increased, which is essential for sleep disorders but relevant also for other respiratory diseases.5. Respiratory care should be inter-professional, provided via disease-specific boards beyond lung cancer (for ILDs, sleep, allergy)6. Programs for outpatient's pulmonary rehabilitation can have a major impact on respiratory health.7. Increased understanding of molecular pathways will drive personalized medicine, targeted therapy (for asthma, lung cancer) and subsequently health care costs.
Collapse
Affiliation(s)
- Michael Studnicka
- Landeskrankenhaus Salzburg, Universitätsklinik für Pneumologie/Lungenheilkunde, Müllner Hauptstraße 48, 5020, Salzburg, Österreich. .,Paracelsus Medical University, Salzburg, Österreich.
| | - Bernhard Baumgartner
- Abteilung für Pulmologie, Salzkammergut-Klinikum Vöcklabruck, Vöcklabruck, Österreich
| | - Josef Bolitschek
- Abteilung für Pneumologie, Ordensklinikum Linz GmbH Elisabethinen, Linz, Österreich
| | - Daniel Doberer
- Klin. Abteilung für Pulmologie, Medizinische Universität Wien, Wien, Österreich
| | - Ernst Eber
- Univ.-Klinik für Kinder- und Jugendheilkunde, Medizinische Universität Graz, Graz, Österreich
| | - Josef Eckmayr
- Abteilung für Lungenkrankheiten, Klinikum Wels-Grieskirchen, Wels, Österreich
| | - Sylvia Hartl
- 2. Interne Lungenabteilung, Otto Wagner-Spital, Wien, Österreich
| | - Peter Hesse
- Ordination Dr. Judith & Dr. Peter Hesse, Schwechat, Österreich
| | - Peter Jaksch
- Klin. Abteilung für Thoraxchirurgie, Medizinische Universität Wien, Wien, Österreich
| | - Eveline Kink
- Lungenabteilung, LKH Graz II - Standort Enzenbach, Gratwein-Straßengel, Österreich
| | - Meinhard Kneussl
- ehem. 2. Medizinische Abteilung mit Pneumologie, Wilhelminenspital Wien, Wien, Österreich
| | - Bernd Lamprecht
- Klinik für Lungenheilkunde, Kepler Universitätsklinikum, Linz, Österreich
| | - Horst Olschewski
- Klinische Abteilung für Pulmonologie, LKH-Univ. Klinikum Graz, Graz, Österreich
| | - Andreas Pfleger
- Univ.-Klinik für Kinder- und Jugendheilkunde, Medizinische Universität Graz, Graz, Österreich
| | - Wolfgang Pohl
- Abteilung für Atmungs- und Lungenerkrankungen, Krankenhaus Hietzing, Wien, Österreich
| | - Christian Prior
- Ordination Univ.-Prof. Dr. Christian Prior, Innsbruck, Österreich
| | | | - Andreas Renner
- Abteilung für Atmungs- und Lungenerkrankungen, Krankenhaus Hietzing, Wien, Österreich
| | - Wolfgang Steflitsch
- Wahlarzt-Ordination für Lungenheilkunde, Ollersbach bei Neulengbach, Österreich
| | | | - Helmut Täubl
- Standort Natters, Pulmologie, LKH Hochzirl-Natters, Natters, Österreich
| | - Karin Vonbank
- Klin. Abteilung für Pulmologie, Medizinische Universität Wien, Wien, Österreich
| | - Marlies Wagner
- Univ.-Klinik für Kinder- und Jugendheilkunde, Medizinische Universität Graz, Graz, Österreich
| | - Felix Wantke
- FAZ Floridsdorfer Allergiezentrum GmbH, Wien, Österreich
| | - Romana Wass
- Klinik für Lungenheilkunde, Kepler Universitätsklinikum, Linz, Österreich
| |
Collapse
|
38
|
Implication of gut microbiota in the physiology of rats intermittently exposed to cold and hypobaric hypoxia. PLoS One 2020; 15:e0240686. [PMID: 33142314 PMCID: PMC7608931 DOI: 10.1371/journal.pone.0240686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
This study examines the influence of intermittent exposure to cold, hypobaric hypoxia, and their combination, in gut microbiota and their metabolites in vivo, and explores their effects on the physiology of the host. Sprague-Dawley rats were exposed to cold (4°C), hypobaric hypoxia (462 torr), or both simultaneously, 4 h/day for 21 days. Biometrical and hematological parameters were monitored. Gut bacterial subgroups were evaluated by qPCR and short-chain fatty acids were determined by gas chromatography in caecum and feces. Cold increased brown adipose tissue, Clostridiales subpopulation and the concentration of butyric and isovaleric acids in caecum. Hypobaric hypoxia increased hemoglobin, red and white cell counts and Enterobacteriales, and reduced body and adipose tissues weights and Lactobacilliales. Cold plus hypobaric hypoxia counteracted the hypoxia-induced weight loss as well as the increase in white blood cells, while reducing the Bacteroidetes:Firmicutes ratio and normalizing the populations of Enterobacteriales and Lactobacilliales. In conclusion, intermittent cold and hypobaric hypoxia exposures by themselves modified some of the main physiological variables in vivo, while their combination kept the rats nearer to their basal status. The reduction of the Bacteroidetes:Firmicutes ratio and balanced populations of Enterobacteriales and Lactobacilliales in the gut may contribute to this effect.
Collapse
|
39
|
Eissa N, Mujawar Q, Alabdoulsalam T, Zohni S, El-Matary W. The immune-sleep crosstalk in inflammatory bowel disease. Sleep Med 2020; 73:38-46. [PMID: 32769031 DOI: 10.1016/j.sleep.2020.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Sleep disorders are progressively common and sometimes are associated with aberrant regulation of the adaptive and innate immune responses. Sleep interruption can increase the inflammatory burden by enhancing the pro-inflammatory cytokines particularly in patients with chronic diseases such as inflammatory bowel disease (IBD). IBD is a chronic inflammatory disease characterized by immune dysregulation, dysbiosis of gut microbiome, and poor-quality life. Therefore, this review highlights the crosstalk between sleep and immune responses during the progression of IBD.
Collapse
Affiliation(s)
- Nour Eissa
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Internal Medicine, Section of Gastroenterology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada.
| | - Quais Mujawar
- Department of Pediatric and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Tareq Alabdoulsalam
- Department of Pediatric and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Sahar Zohni
- Department of Pediatrics, Faculty of Medicine, University of Alexandria, Alexandria, Egypt; Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Wael El-Matary
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatric and Child Health, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
40
|
Badran M, Khalyfa A, Ericsson A, Gozal D. Fecal microbiota transplantation from mice exposed to chronic intermittent hypoxia elicits sleep disturbances in naïve mice. Exp Neurol 2020; 334:113439. [PMID: 32835671 DOI: 10.1016/j.expneurol.2020.113439] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Obstructive sleep apnea (OSA) is a chronic prevalent condition characterized by intermittent hypoxia (IH) and sleep fragmentation (SF). Evidence suggests that OSA can alter the gut microbiome (GM) diversity and composition that may then promote the occurrence of some of the OSA-associated morbidities. However, it is unclear whether perturbations in the GM caused by IH can elicit sleep disturbances that underlie the increased sleep propensity that occurs in IH-exposed mice. To evaluate this issue, we exposed C57Bl/6 J mice to IH or room air (RA) for 6 weeks, and fecal matter was collected and frozen. C57Bl/6 J naïve mice were then randomly assigned to a fecal microbiota transfer (FMT) protocol for 3 weeks with either IH or RA fecal slur, and their GM was then analyzed using 16 s rRNA sequencing. In addition, FMT recipients underwent sleep recordings using piezoelectric approaches for 3 consecutive days. As anticipated, FMT-IH and FMT-RA mice showed different taxonomic profiles that corresponded to previous effects of IH on GM. Furthermore, FMT-IH mice exhibited increased sleep duration and the frequency of longer sleep bouts during the dark cycle, suggesting increased sleepiness (p < 0.0001 vs. FMT-RA mice). Thus, alterations of GM diversity induced by IH exposures can elicit sleep disturbances in the absence of concurrent IH, suggesting that sleep disturbances can be mediated, at least in part, by IH-induced alterations in GM.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and Child Health Research Institute, Faculty of Medicine, University of Missouri, Columbia, MO 65201, United States
| | - Abdelnaby Khalyfa
- Department of Child Health and Child Health Research Institute, Faculty of Medicine, University of Missouri, Columbia, MO 65201, United States
| | - Aaron Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States; University of Missouri, Metagenomics Center, Columbia, MO, United States
| | - David Gozal
- Department of Child Health and Child Health Research Institute, Faculty of Medicine, University of Missouri, Columbia, MO 65201, United States.
| |
Collapse
|
41
|
Ryan S, Cummins EP, Farre R, Gileles-Hillel A, Jun JC, Oster H, Pepin JL, Ray DW, Reutrakul S, Sanchez-de-la-Torre M, Tamisier R, Almendros I. Understanding the pathophysiological mechanisms of cardiometabolic complications in obstructive sleep apnoea: towards personalised treatment approaches. Eur Respir J 2020; 56:13993003.02295-2019. [PMID: 32265303 DOI: 10.1183/13993003.02295-2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/15/2020] [Indexed: 12/19/2022]
Abstract
In January 2019, a European Respiratory Society research seminar entitled "Targeting the detrimental effects of sleep disturbances and disorders" was held in Dublin, Ireland. It provided the opportunity to critically review the current evidence of pathophysiological responses of sleep disturbances, such as sleep deprivation, sleep fragmentation or circadian misalignment and of abnormalities in physiological gases such as oxygen and carbon dioxide, which occur frequently in respiratory conditions during sleep. A specific emphasis of the seminar was placed on the evaluation of the current state of knowledge of the pathophysiology of cardiovascular and metabolic diseases in obstructive sleep apnoea (OSA). Identification of the detailed mechanisms of these processes is of major importance to the field and this seminar offered an ideal platform to exchange knowledge, and to discuss pitfalls of current models and the design of future collaborative studies. In addition, we debated the limitations of current treatment strategies for cardiometabolic complications in OSA and discussed potentially valuable alternative approaches.
Collapse
Affiliation(s)
- Silke Ryan
- Pulmonary and Sleep Disorders Unit, St Vincent's University Hospital, Dublin, Ireland .,School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Eoin P Cummins
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Ramon Farre
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBAPS, and CIBER Enfermedades Respiratorias, Barcelona, Spain
| | - Alex Gileles-Hillel
- Pediatric Pulmonology and Sleep Unit, Dept of Pediatrics, and The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jonathan C Jun
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | | | - David W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Sirimon Reutrakul
- Division of Endocrinology, Diabetes, and Metabolism, Dept of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Manuel Sanchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, Hospital Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Renaud Tamisier
- HP2 INSERM U1042, Université Grenoble Alpes, Grenoble, France
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBAPS, and CIBER Enfermedades Respiratorias, Barcelona, Spain
| |
Collapse
|
42
|
Javaheri S, Gay PC. To Die, to Sleep - to Sleep, Perchance to Dream…Without Hypertension: Dreams of the Visionary Christian Guilleminault Revisited. J Clin Sleep Med 2020; 15:1189-1190. [PMID: 31538586 DOI: 10.5664/jcsm.7952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CITATION Javaheri S, Gay PC. To die, to sleep - to sleep, perchance to dream…without hypertension: dreams of the visionary Christian Guilleminault revisited. J Clin Sleep Med. 2019;15(9):1189-1190.
Collapse
|
43
|
Kuvat N, Tanriverdi H, Armutcu F. The relationship between obstructive sleep apnea syndrome and obesity: A new perspective on the pathogenesis in terms of organ crosstalk. CLINICAL RESPIRATORY JOURNAL 2020; 14:595-604. [PMID: 32112481 DOI: 10.1111/crj.13175] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Obstructive sleep apnea syndrome (OSAS) is a common disorder that has a major impact on public health. The connection between OSAS and obesity is very complex and likely represents an interaction between biological and lifestyle factors. Oxidative stress, inflammation and metabolic dysregulation are both actors involved in the pathogenesis of OSAS and obesity. Also, the current evidence suggests that gut microbiota plays a significant role in the emergence and progression of some metabolic disorders. When the relationship between OSAS and obesity is evaluated extensively, it is understood that they show mutual causality with each other, and that metabolic challenges such as impaired microbiota affect this bidirectional organ interaction, and by ensuing organ injury. OBJECTIVES The aim of this study is to investigate the association between OSAS and obesity, and the effect of "organ crosstalk" on the pathogenesis of the relationship and to contribute to the diagnosis and treatment options in the light of current data. DATA SOURCE We performed an electronic database search including PubMed, EMBASE and Web of Science. We used the following search terms: OSAS, obesity, inflammation, metabolic dysregulation and gut microbiota. CONCLUSION Obesity and OSAS adversely affect many organs and systems. Besides the factors affecting the diagnosis of the OSAS-obesity relationship, mutual organ interactions among the respiratory system, adipose tissue and intestines should not be ignored for prevention and treatment of OSAS and obesity. Comprehensive clinical trials addressing the efficacy and efficiency of current or potential treatments on therapeutic applications in the OSAS-obesity relationship are needed.
Collapse
Affiliation(s)
- Nuray Kuvat
- Infectious Diseases and Clinical Microbiology, Haseki Training and Research Hospital, Istanbul, Turkey
| | - Hakan Tanriverdi
- Department of Chest Diseases, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - Ferah Armutcu
- Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
44
|
Obstructive sleep apnea syndrome and causal relationship with female breast cancer: a mendelian randomization study. Aging (Albany NY) 2020; 12:4082-4092. [PMID: 32112550 PMCID: PMC7093176 DOI: 10.18632/aging.102725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Although observational studies have reported a positive association between obstructive sleep apnea syndrome (OSAS) and breast cancer (BC) risk, causality remains inconclusive. We aim to explore whether OSAS is associated with etiology of BC by conducting a two-sample Mendelian randomization (MR) study in a Chinese population and Asian population from the Breast Cancer Association Consortium (BCAC). We found a detrimental causal effect of OSAS on BC risk in the primary analysis of our samples (IVW OR, 2.47 for BC risk per log-odds increment in OSAS risk, 95% CI = 1.86-3.27; P = 3.6×10-10). This was very similar to results of the direct observational case-control study between OSAS and BC risk (OR = 2.80; 95% CI = 2.24-3.50; P =1.4×10-19). Replication in the Asian population of the BCAC study also supported our results (IVW OR, 1.33 for BC risk per log-odds increment in OSAS risk, 95% CI = 1.13-1.56; P = 0.0006). Sensitivity analyses confirmed the robustness of our findings. We provide novel evidence that genetically determined higher risk of OSAS has a causal effect on higher risk of BC. Further studies focused on the mechanisms of the relationship between OSAS and breast carcinogenesis are needed.
Collapse
|
45
|
Ko CY, Hu AK, Chou D, Huang LM, Su HZ, Yan FR, Zhang XB, Zhang HP, Zeng YM. Analysis of oral microbiota in patients with obstructive sleep apnea-associated hypertension. Hypertens Res 2019; 42:1692-1700. [PMID: 30976074 PMCID: PMC8075895 DOI: 10.1038/s41440-019-0260-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/28/2019] [Accepted: 03/09/2019] [Indexed: 02/08/2023]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is an independent risk factor for hypertension (HTN). The oral microbiota plays a pathophysiological role in cardiovascular diseases; however, there are few reports directly investigating and identifying the organisms involved in OSAHS-related HTN. Therefore, this study aimed to identify those organisms. We obtained 139 oral samples and determined the microbiome composition using pyrosequencing and bioinformatic analyses of the 16S rRNA. We examined the fasting levels of cytokines and homocysteine in all participants and analyzed the correlations between the oral microbiota and homocysteine levels. We determined the molecular mechanism underlying HTN by investigating the genetic composition of the strains in the blood. We detected higher relative abundances of Porphyromonas and Aggregatibacter and elevated proinflammatory cytokines in patients with OSAHS of varying severity compared with individuals without OSAHS; however, the two organisms were not measured in the blood samples from all participants. High levels of specific Porphyromonas bacteria were detected in patients with OSAHS with and without HTN, whereas the relative abundance of Aggregatibacter was negatively correlated with the homocysteine level. The receiver operating characteristic curve analysis of controls and patients with OSAHS resulted in area under the curve values of 0.759 and 0.641 for patients with OSAHS with or without HTN, respectively. We found that the predictive function of oral microbiota was different in patients with OSAHS with and without HTN. However, there was no direct invasion by the two organisms causing endothelial cell injury, leading to speculation regarding the other mechanisms that may lead to HTN. Elucidating the differences in the oral microbiome will help us understand the pathogenesis of OSAHS-related HTN.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China.
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China.
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China.
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China.
| | - An-Ke Hu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China
| | - Dylan Chou
- Zhuhai Campus of Zunyi Medical University, Zhuhai, 519090, Guangdong, China
| | - Li-Mei Huang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China
| | - Huan-Zhang Su
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China
| | - Fu-Rong Yan
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China
- Center for Molecular Diagnosis and Therapy, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
| | - Xiao-Bin Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China
| | - Hua-Ping Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China.
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China.
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China.
| | - Yi-Ming Zeng
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China.
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China.
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China.
| |
Collapse
|
46
|
Mashaqi S, Gozal D. Obstructive Sleep Apnea and Systemic Hypertension: Gut Dysbiosis as the Mediator? J Clin Sleep Med 2019; 15:1517-1527. [PMID: 31596218 PMCID: PMC6778338 DOI: 10.5664/jcsm.7990] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) and systemic hypertension (SH) are common and interrelated diseases. It is estimated that approximately 75% of treatment-resistant hypertension cases have an underlying OSA. Exploration of the gut microbiome is a new advance in medicine that has been linked to many comorbid illnesses, including SH and OSA. Here, we will review the literature in SH and gut dysbiosis, OSA and gut dysbiosis, and whether gut dysbiosis is common in both conditions. METHODS We reviewed the National Center for Biotechnology Information database, including PubMed and PubMed Central. We identified a total of 230 articles. The literature search was conducted using the phrase "obstructive sleep apnea and gut dysbiosis." Only original research articles were included. This yielded a total of 12 articles. RESULTS Most of the research conducted in this field was on animal models, and almost all trials confirmed that intermittent hypoxia models resulted in gut dysbiosis. Gut dysbiosis, however, can cause a state of low-grade inflammation through damage to the gut wall barrier resulting in "leaky gut." Neuroinflammation is a hallmark of the pathophysiology of OSA-induced SH. CONCLUSIONS Gut dysbiosis seems to be an important factor in the pathophysiology of OSA-induced hypertension. Reversing gut dysbiosis at an early stage through prebiotics and probiotics and fecal microbiota transplantation combined with positive airway pressure therapy may open new horizons of treatment to prevent SH. More studies are needed in humans to elicit the effect of positive airway pressure therapy on gut dysbiosis.
Collapse
Affiliation(s)
- Saif Mashaqi
- Division of Sleep Medicine, University of North Dakota School of Medicine – Sanford Health, Fargo, North Dakota
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
47
|
Mehra R, Teodorescu M. Sleep, Circadian Disruption, and Microbial-Immune Interactions: A New Frontier. Chest 2019; 154:740-742. [PMID: 30290923 DOI: 10.1016/j.chest.2018.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/14/2023] Open
Affiliation(s)
- Reena Mehra
- Sleep Disorders Center, Neurologic Institute, Respiratory Institute, Heart and Vascular Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH.
| | | |
Collapse
|
48
|
Almendros I, Martínez-Ros P, Farré N, Rubio-Zaragoza M, Torres M, Gutiérrez-Bautista ÁJ, Carrillo-Poveda JM, Sopena-Juncosa JJ, Gozal D, Gonzalez-Bulnes A, Farré R. Placental oxygen transfer reduces hypoxia-reoxygenation swings in fetal blood in a sheep model of gestational sleep apnea. J Appl Physiol (1985) 2019; 127:745-752. [PMID: 31369330 DOI: 10.1152/japplphysiol.00303.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea (OSA), characterized by events of hypoxia-reoxygenation, is highly prevalent in pregnancy, negatively affecting the gestation process and particularly the fetus. Whether the consequences of OSA for the fetus and offspring are mainly caused by systemic alterations in the mother or by a direct effect of intermittent hypoxia in the fetus is unknown. In fact, how apnea-induced hypoxemic swings in OSA are transmitted across the placenta remains to be investigated. The aim of this study was to test the hypothesis, based on a theoretical background on the damping effect of oxygen transfer in the placenta, that oxygen partial pressure (Po2) swings resulting from obstructive apneas mimicking OSA are mitigated in the fetal circulation. To this end, four anesthetized ewes close to term pregnancy were subjected to obstructive apneas consisting of 25-s airway obstructions. Real-time Po2 was measured in the maternal carotid artery and in the umbilical vein with fast-response fiber-optic oxygen sensors. The amplitudes of Po2 swings in the umbilical vein were considerably smaller [3.1 ± 1.0 vs. 21.0 ± 6.1 mmHg (mean ± SE); P < 0.05]. Corresponding estimated swings in fetal and maternal oxyhemoglobin saturation tracked Po2 swings. This study provides novel insights into fetal oxygenation in a model of gestational OSA and highlights the importance of further understanding the impact of sleep-disordered breathing on fetal and offspring development.NEW & NOTEWORTHY This study in an airway obstruction sheep model of gestational sleep apnea provides novel data on how swings in oxygen partial pressure (Po2) translate from maternal to fetal blood. Real-time simultaneous measurement of Po2 in maternal artery and in umbilical vein shows that placenta transfer attenuates the magnitude of oxygenation swings. These data prompt further investigation of the extent to which maternal apneas could induce similar direct oxidative stress in fetal and maternal tissues.
Collapse
Affiliation(s)
- Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Paula Martínez-Ros
- Animal Production and Health Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Nuria Farré
- Department of Cardiology, Hospital del Mar, Barcelona, Spain.,Heart Diseases Biomedical Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mónica Rubio-Zaragoza
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.,García Cugat Foundation for Biomedical Research, Barcelona, Spain
| | - Marta Torres
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Servei de Pneumologia, Hospital Clínic, Barcelona, Spain
| | - Álvaro J Gutiérrez-Bautista
- Anaesthesia Unit, Veterinary Teaching Hospital, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - José M Carrillo-Poveda
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.,García Cugat Foundation for Biomedical Research, Barcelona, Spain
| | - Joaquín J Sopena-Juncosa
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.,García Cugat Foundation for Biomedical Research, Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, Missouri
| | - Antonio Gonzalez-Bulnes
- Department of Animal Reproduction, Deputy Directorate General of Research and Technology-Spanish National Institute for Agricultural and Food Research and Technology, Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| |
Collapse
|
49
|
Ko CY, Fan JM, Hu AK, Su HZ, Yang JH, Huang LM, Yan FR, Zhang HP, Zeng YM. Disruption of sleep architecture in Prevotella enterotype of patients with obstructive sleep apnea-hypopnea syndrome. Brain Behav 2019; 9:e01287. [PMID: 30957979 PMCID: PMC6520469 DOI: 10.1002/brb3.1287] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Intermittent hypoxia and sleep fragmentation are critical pathophysiological processes involved in obstructive sleep apnea-hypopnea syndrome (OSAHS). Those manifestations independently affect similar brain regions and contribute to OSAHS-related comorbidities that are known to be related to the host gut alteration microbiota. We hypothesized that gut microbiota disruption may cross talk the brain function via the microbiota-gut-brain axis. Thus, we aim to survey enterotypes and polysomnographic data of patients with OSAHS. METHODS Subjects were diagnosed by polysomnography, from whom fecal samples were obtained and analyzed for the microbiome composition by variable regions 3-4 of 16S rRNA pyrosequencing and bioinformatic analyses. We examined the fasting levels of interleukin-6 and tumor necrosis factor-alpha of all subjects. RESULTS Three enterotypes Bacteroides, Ruminococcus, and Prevotella were identified in patients with OSAHS. Arousal-related parameters or sleep stages are significantly disrupted in apnea-hypopnea index (AHI) ≥15 patients with Prevotella enterotype; further analysis this enterotype subjects, obstructive, central, and mixed apnea indices, and mean heart rate are also significantly elevated in AHI ≥15 patients. However, blood cytokines levels of all subjects were not significantly different. CONCLUSIONS This study indicates the possibility of pathophysiological interplay between enterotypes and sleeps structure disruption in sleep apnea through a microbiota-gut-brain axis and offers some new insight toward the pathogenesis of OSAHS.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China.,Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ji-Mim Fan
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| | - An-Ke Hu
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| | - Huan-Zhang Su
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| | - Jiao-Hong Yang
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| | - Li-Mei Huang
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| | - Fu-Rong Yan
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China.,Center for Molecular Diagnosis and Therapy, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hua-Ping Zhang
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| | - Yi-Ming Zeng
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| |
Collapse
|
50
|
Gut microbiota in obstructive sleep apnea-hypopnea syndrome: disease-related dysbiosis and metabolic comorbidities. Clin Sci (Lond) 2019; 133:905-917. [PMID: 30957778 PMCID: PMC6465302 DOI: 10.1042/cs20180891] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Gut microbiota alterations manifest as intermittent hypoxia and fragmented sleep, thereby mimicking obstructive sleep apnea–hypopnea syndrome (OSAHS). Here, we sought to perform the first direct survey of gut microbial dysbiosis over a range of apnea–hypopnea indices (AHI) among patients with OSAHS. We obtained fecal samples from 93 patients with OSAHS [5 < AHI ≤ 15 (n=40), 15 < AHI ≤ 30 (n=23), and AHI ≥ 30 (n=30)] and 20 controls (AHI ≤ 5) and determined the microbiome composition via 16S rRNA pyrosequencing and bioinformatics analysis of variable regions 3–4. We measured fasting levels of homocysteine (HCY), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α). Results revealed gut microbial dysbiosis in several patients with varying severities of OSAHS, reliably separating them from controls with a receiver operating characteristic-area under the curve (ROC-AUC) of 0.789. Functional analysis in the microbiomes of patients revealed alterations; additionally, decreased in short-chain fatty acid (SCFA)-producing bacteria and increased pathogens, accompanied by elevated levels of IL-6. Lactobacillus levels correlated with HCY levels. Stratification analysis revealed that the Ruminococcus enterotype posed the highest risk for patients with OSAHS. Our results show that the presence of an altered microbiome is associated with HCY among OSAHS patients. These changes in the levels of SCFA affect the levels of pathogens that play a pathophysiological role in OSAHS and related metabolic comorbidities.
Collapse
|