1
|
Gogos A, Thomson S, Drummond K, Holland L, O'Hely M, Dawson S, Marx W, Mansell T, Burgner D, Saffery R, Sly P, Collier F, Tang ML, Symeonides C, Vuillermin P, Ponsonby AL. Socioeconomic adversity, maternal nutrition, and the prenatal programming of offspring cognition and language at two years of age through maternal inflammation. Brain Behav Immun 2024; 122:471-482. [PMID: 39163911 DOI: 10.1016/j.bbi.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/18/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Increasing rates of child neurodevelopmental vulnerability are a significant public health challenge. The adverse effect of socioeconomic adversity on offspring cognition may be mediated through elevated prenatal maternal systemic inflammation, but the role of modifiable antecedents such as maternal nutrition has not yet been clarified. This study aimed to examine (1) whether prenatal factors, with an emphasis on maternal nutrition, were associated with prenatal maternal systemic inflammation at 28 weeks' gestation, including the metabolomic marker glycoprotein acetyls (GlycA); (2) the extent to which the association between prenatal maternal nutrition and child cognition and language at age two years was mediated by elevated maternal inflammation in pregnancy; (3) the extent to which the associations between prenatal socioeconomic adversity and child neurodevelopment were mediated through prenatal maternal nutrition and GlycA levels. We used a prospective population-derived pre-birth longitudinal cohort study, the Barwon Infant Study (Barwon region of Victoria, Australia), where 1074 mother-child pairs were recruited by 28 weeks' gestation using an unselected sampling frame. Exposures included prenatal factors such as maternal diet measured by a validated food frequency questionnaire at 28 weeks' gestation and dietary patterns determined by principal component analysis. The main outcome measures were maternal inflammatory biomarkers (GlycA and hsCRP levels) at 28 weeks' gestation, and offspring Bayley-III cognition and language scores at age two years. Results showed that the 'modern wholefoods' and 'processed' maternal dietary patterns were independently associated with reduced and elevated maternal inflammation respectively (GlycA or hsCRP p < 0.001), and also with higher and reduced offspring Bayley-III scores respectively (cognition p ≤ 0.004, language p ≤ 0.009). Associations between dietary patterns and offspring cognition and language were partially mediated by higher maternal GlycA (indirect effect: cognition p ≤ 0.036, language p ≤ 0.05), but were less evident for hsCRP. The maternal dietary patterns mediated 22 % of the association between socioeconomic adversity (lower maternal education and/or lower household income vs otherwise) and poorer offspring cognition (indirect effect p = 0.001). Variation in prenatal GlycA levels that were independent of these dietary measures appeared less important. In conclusion, modifiable prenatal maternal dietary patterns were associated with adverse child neurocognitive outcomes through their effect on maternal inflammation (GlycA). Maternal diet may partially explain the association between socioeconomic adversity and child neurocognitive vulnerability. Maternal diet-by-inflammation pathways are an attractive target for future intervention studies.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Lada Holland
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Samantha Dawson
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Peter Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia; Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Fiona Collier
- Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Mimi Lk Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia; Barwon Health, Geelong, VIC, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Perrigo JL, Block EP, Aguilar E, Beck C, Halfon N. Income is not an equalizer: health development inequities by ethnoracial backgrounds in California kindergartners. BMC Public Health 2023; 23:2474. [PMID: 38082324 PMCID: PMC10714585 DOI: 10.1186/s12889-023-17246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Early childhood health development is positively associated with income, but the strength of this relationship with ethnoracial background remains unclear. This study examined the extent of health development inequities among California kindergarteners based on ethnoracial backgrounds and neighborhood-level income. METHODS This cross-sectional study assessed health development inequities by analyzing neighborhood-level income, ethnoracial background, and health development data for California kindergarteners. Student-level data (n = 106,574) were collected through teacher report between 2010-2020 across 52 school districts and 964 schools. Student addresses were geocoded and linked to American Community Survey neighborhood income levels. Health development was measured using the Early Development Instrument, a population-level measure which includes physical health and well-being, social competence, emotional maturity, language and cognitive development, and communication skills and general knowledge domains. Outcomes included being "on-track" in each domain as well as overall health development. RESULTS Using a Generalized Estimation Equation with a log-link function, while accounting for interactions between ethnoracial background, income, and income-squared, we found significant health development inequities by ethnoracial background and neighborhood-level income. Regarding overall health development, as well as the physical, social and emotional domains, Black students had a lower likelihood of being on-track compared to the weighted average across income levels, whereas Asian students surpassed the weighted average. White students exhibited the steepest slope, and at the lowest income levels, their health development scores were akin to their Black and Hispanic/Latino/a low-income counterparts but resembled their Asian counterparts at higher income levels. For the general knowledge and communication domain, white students consistently had the highest likelihood of being on-track, while Hispanic/Latino/a students had the lowest likelihood across all income levels. CONCLUSION This study examines health development inequities among California kindergarteners in diverse communities. Our analysis shows that the relationship between neighborhood-level income and kindergartners' health development varies by domain and is weaker for students of color. Given the scarcity of population-level data on health development outcomes, these analyses offer valuable insights for identifying ecosystems necessitating support in promoting equitable early childhood health development.
Collapse
Affiliation(s)
- Judith L Perrigo
- Department of Social Welfare, University of California, Los Angeles (UCLA), Luskin School of Public Affairs, 337 Charles E Young Dr E, Los Angeles, CA, 90095, USA.
| | - E Piper Block
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Center for Healthier Children, Families, and Communities, Los Angeles, USA
| | - Efren Aguilar
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Center for Healthier Children, Families, and Communities, Los Angeles, USA
| | - Chandler Beck
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Center for Healthier Children, Families, and Communities, Los Angeles, USA
| | - Neal Halfon
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Center for Healthier Children, Families, and Communities, Los Angeles, USA
| |
Collapse
|
3
|
Clausén Gull I, Kapetanovic S, Norman Å, Ferrer-Wreder L, Olsson TM, Eninger L. Neighborhood conditions in a Swedish context-Two studies of reliability and validity of virtual systematic social observation using Google Street View. Front Psychol 2023; 14:1020742. [PMID: 36777218 PMCID: PMC9911895 DOI: 10.3389/fpsyg.2023.1020742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction The goal of these studies was to investigate the reliability and validity of virtual systematic social observation (virtual SSO) using Google Street View in a Swedish neighborhood context. Methods This was accomplished in two studies. Study 1 focused on interrater reliability and construct validity, comparing ratings conducted in-person to those done using Google Street View, across 24 study sites within four postal code areas. Study 2 focused on criterion validity of virtual SSO in terms of neighborhoods with low versus high income levels, including 133 study sites within 22 postal code areas in a large Swedish city. In both studies, assessment of the neighborhood context was conducted at each study site, using a protocol adapted to a Swedish context. Results Scales for Physical Decay, Neighborhood Dangerousness, and Physical Disorder were found to be reliable, with adequate interrater reliability, high consistency across methods, and high internal consistency. In Study 2, significantly higher levels of observed Physical Decay, Neighborhood Dangerousness, and signs of garbage or litter were observed in postal codes areas (site data was aggregated to postal code level) with lower as compared to higher income levels. Discussion We concluded that the scales within the virtual SSO with Google Street View protocol that were developed in this series of studies represents a reliable and valid measure of several key neighborhood contextual features. Implications for understanding the complex person-context interactions central to many theories of positive development among youth were discussed in relation to the study findings.
Collapse
Affiliation(s)
- Ingela Clausén Gull
- Department of Psychology, Stockholm University, Stockholm, Sweden,*Correspondence: Ingela Clausén Gull, ✉
| | - Sabina Kapetanovic
- Department of Psychology, Stockholm University, Stockholm, Sweden,Department of Social and Behavioral Studies, University West, Trollhättan, Sweden
| | - Åsa Norman
- Department of Clinical Neurosciences, Karolinska Institute, Stockholm, Sweden
| | | | - Tina M. Olsson
- Department of Social Work, University of Gothenburg, Gothenburg, Sweden,School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Lilianne Eninger
- Department of Psychology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Greene AS, Shen X, Noble S, Horien C, Hahn CA, Arora J, Tokoglu F, Spann MN, Carrión CI, Barron DS, Sanacora G, Srihari VH, Woods SW, Scheinost D, Constable RT. Brain-phenotype models fail for individuals who defy sample stereotypes. Nature 2022; 609:109-118. [PMID: 36002572 PMCID: PMC9433326 DOI: 10.1038/s41586-022-05118-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/15/2022] [Indexed: 01/19/2023]
Abstract
Individual differences in brain functional organization track a range of traits, symptoms and behaviours1-12. So far, work modelling linear brain-phenotype relationships has assumed that a single such relationship generalizes across all individuals, but models do not work equally well in all participants13,14. A better understanding of in whom models fail and why is crucial to revealing robust, useful and unbiased brain-phenotype relationships. To this end, here we related brain activity to phenotype using predictive models-trained and tested on independent data to ensure generalizability15-and examined model failure. We applied this data-driven approach to a range of neurocognitive measures in a new, clinically and demographically heterogeneous dataset, with the results replicated in two independent, publicly available datasets16,17. Across all three datasets, we find that models reflect not unitary cognitive constructs, but rather neurocognitive scores intertwined with sociodemographic and clinical covariates; that is, models reflect stereotypical profiles, and fail when applied to individuals who defy them. Model failure is reliable, phenotype specific and generalizable across datasets. Together, these results highlight the pitfalls of a one-size-fits-all modelling approach and the effect of biased phenotypic measures18-20 on the interpretation and utility of resulting brain-phenotype models. We present a framework to address these issues so that such models may reveal the neural circuits that underlie specific phenotypes and ultimately identify individualized neural targets for clinical intervention.
Collapse
Affiliation(s)
- Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
- MD-PhD program, Yale School of Medicine, New Haven, CT, USA.
| | - Xilin Shen
- Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- MD-PhD program, Yale School of Medicine, New Haven, CT, USA
| | - C Alice Hahn
- Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jagriti Arora
- Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Fuyuze Tokoglu
- Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Carmen I Carrión
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Daniel S Barron
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Vinod H Srihari
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Scott W Woods
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
- Depatment of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Marx W, Thomson S, O'Hely M, Symeonides C, Collier F, Tang MLK, Loughman A, Burgner D, Saffery R, Pham C, Mansell T, Sly PD, Vuillermin P, Ranganathan S, Ponsonby AL. Maternal inflammatory and omega-3 fatty acid pathways mediate the association between socioeconomic disadvantage and childhood cognition. Brain Behav Immun 2022; 100:211-218. [PMID: 34896180 DOI: 10.1016/j.bbi.2021.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022] Open
Abstract
Poor cognitive outcomes in early childhood predict poor educational outcomes and diminished health over the life course. We sought to investigate (i) whether maternal metabolites predict child cognition, and (ii) if maternal metabolomic profile mediates the relationship between environmental exposures and child cognition. Metabolites were measured using nuclear magnetic resonance-based metabolomics in pregnant women from a population-derived birth cohort. Child cognition was measured at age 2 years. In 662 mother-child pairs, elevated inflammatory markers (β = -2.62; 95% CI -4.10, -1.15; P = 0.0005) and lower omega-3 fatty acid-related metabolites (β = 0.49; 95% CI 0.09, 0.88; P = 0.02) in the mother were associated with lower child cognition and partially mediated the association between lower child cognition and multiple risk factors common to socioeconomic disadvantage. Modifying maternal prenatal metabolic pathways related to inflammation and omega-3 fatty acids may offset the adverse associations between prenatal risk factors related to socioeconomic disadvantage and low child cognition.
Collapse
Affiliation(s)
- Wolfgang Marx
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia
| | - Sarah Thomson
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Martin O'Hely
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Minderoo Foundation, Perth, VIC 6000, Australia; Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Fiona Collier
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Cindy Pham
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Barwon Health, Bellerine St, Geelong, VIC 3220, Australia
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Anne-Louise Ponsonby
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia.
| | | |
Collapse
|