1
|
Onder A, Otsuki K, Zhang M, Avci E, Kikuchi T, Li W. Qualitative Analysis of Daphnane Diterpenoids in Various Parts of Daphne pontica L. by UHPLC-Q-Exactive-Orbitrap MS. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:805-818. [PMID: 39508400 DOI: 10.1002/pca.3469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION Daphne pontica L. is an evergreen shrub that is recorded as an anti-diarrheic plant in Turkish folk medicine. Previous studies on D. pontica have reported, albeit slightly, the isolation of daphnane diterpenoids, but no systematic phytochemical analysis of daphnane diterpenoids has been conducted. OBJECTIVE This study aimed to comprehensively investigate daphnane diterpenoids in the extracts from the different parts (stems, leaves, and fruits) of D. pontica. METHODS An ultra-high-performance liquid chromatography coupled with Q-Exactive hybrid quadrupole Orbitrap mass spectrometer (UHPLC-Q-Exactive-Orbitrap MS) was used for the qualitative analysis of D. pontica. The stems, leaves, and fruits of D. pontica were extracted with diethyl ether. Each extract was then pretreated by a solid phase extraction cartridge and subjected to LC-MS/MS analysis. Detected daphnane diterpenoids were tentatively identified by comparison with an in-house daphnane library, and their chemical structures were estimated in detail by MS/MS fragmentation evaluation. RESULTS A total of 33 kinds of daphnanes were identified from the different parts of D. pontica, and were classified into three subtypes: daphnane orthoester, polyhydroxy daphnane, and macrocyclic daphnane orthoester. Among them, six daphnanes were postulated to be previously unreported compounds based on MS/MS fragmentation elucidation. Furthermore, the three plant parts showed similar daphnane diterpenoid profiles, with the stems containing the most abundant daphnane diterpenoids. CONCLUSION This is the first study to perform qualitative analysis of daphnane diterpenoids systematically and comprehensively in different parts of D. pontica. The results revealed that D. pontica is a plant resource rich in a variety of daphnane diterpenoids.
Collapse
Affiliation(s)
- Alev Onder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Mi Zhang
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Eda Avci
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara Medipol University, Ankara, Türkiye
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
2
|
Jemal M, Getinet M, Amare GA, Tegegne BA, Baylie T, Mengistu EF, Osman EE, Chura Waritu N, Adugna A. Non-metabolic enzyme function of pyruvate kinase M2 in breast cancer. Front Oncol 2024; 14:1450325. [PMID: 39411137 PMCID: PMC11473492 DOI: 10.3389/fonc.2024.1450325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer (BC) is a prevalent malignant tumor in women, and its incidence has been steadily increasing in recent years. Compared with other types of cancer, it has the highest mortality and morbidity rates in women. So, it is crucial to investigate the underlying mechanisms of BC development and identify specific therapeutic targets. Pyruvate kinase M2 (PKM2), an important metabolic enzyme in glycolysis, has been found to be highly expressed in BC. It can also move to the nucleus and interact with various transcription factors and proteins, including hypoxia-inducible factor-1α (HIF-1α), signal transducer and activator of transcription 3 (STAT3), β-catenin, cellular-myelocytomatosis oncogene (c-Myc), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mammalian sterile 20-like kinase 1 (MST1). This interaction leads to non-metabolic functions that control the cell cycle, proliferation, apoptosis, migration, invasion, angiogenesis, and tumor microenvironment in BC. This review provides an overview of the latest advancements in understanding the interactions between PKM2 and different transcription factors and proteins that influence the initiation and progression of BC. It also examined how natural drugs and noncoding RNAs affect various biological processes in BC cells through the regulation of the non-metabolic enzyme functions of PKM2. The findings provide valuable insights for improving the prognosis and developing targeted therapies for BC in the coming years.
Collapse
Affiliation(s)
- Mohammed Jemal
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enyew Fenta Mengistu
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enatnesh Essa Osman
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Nuredin Chura Waritu
- Department of Biomedical Sciences, School of Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
3
|
Wang N, Wan LX, Li X, Xu JB, Gao F. Rapid Access to Tigliane, Ingenane, and Rhamnofolane Diterpenes from a Lathyrane Precursor via Biomimetic Skeleton Transformation Strategy. JOURNAL OF NATURAL PRODUCTS 2024; 87:1479-1486. [PMID: 38728656 DOI: 10.1021/acs.jnatprod.4c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Bioinspired skeleton transformation of a tricyclic lathyrane-type Euphorbia diterpene was conducted to efficiently construct a tetracyclic tigliane diterpene on a gram scale via a key aldol condensation. The tigliane diterpene was then respectively converted into naturally rare ingenane and rhamnofolane diterpenes through a semipinacol rearrangement and a visible-light-promoted regioselective cyclopropane ring-opening reaction. This work provides a concise strategy for high-efficiency access to diverse polycyclic Euphorbia diterpene skeletons from abundant lathyrane-type natural products and paves the way for biological activity investigation of naturally rare molecules.
Collapse
Affiliation(s)
- Neng Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Lin-Xi Wan
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaohuan Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Jin-Bu Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
- Yibin Institute of Southwest Jiaotong University, Yibin 644000, Sichuan, People's Republic of China
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
- Yibin Institute of Southwest Jiaotong University, Yibin 644000, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Liu Y, Meng X, Jin X, Wang L, Liu S, Chen S, Du K, Li J, Chang Y. A comprehensive review of the botany, ethnopharmacology, phytochemistry, pharmacology, quality control and other applications of Ligustici Rhizoma et Radix. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117687. [PMID: 38163554 DOI: 10.1016/j.jep.2023.117687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum sinense Oliv. and L. jeholense Nakai et Kitag. are globally recognized as medicinal botanical species, specifically the rhizomes and roots. These plant parts are collectively referred to as Ligustici Rhizoma et Radix (LReR), which is recorded in the Pharmacopoeia of the People's Republic of China (Ch. P). LReR enjoys widespread recognition in many countries such as China, Russia, Vietnam, and Korea. It is an herbal remedy traditionally employed for dispelling wind and cold, eliminating dampness, and alleviating pain. Numerous bioactive compounds have been successfully isolated and identified, displaying a diverse array of pharmacological activities and medicinal value. THE AIM OF THE REVIEW This review aims to primarily center on the botanical aspects, ethnopharmacology, phytochemistry, pharmacology, toxicity, quality control, and other applications of LReR to furnish a comprehensive and multidimensional foundation for future exploration and utilization. MATERIALS AND METHODS Relevant information about LReR was acquired from ancient books, doctoral and master's dissertations, Google Scholar, Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), ScienceDirect, classical literature, and clinical reports. Several electronic databases were also incorporated. RESULTS In traditional usage, LReR had been traditionally employed for the treatment of anemofrigid headaches, colds, and joint pain. It possessed therapeutic properties for facial skin disorders, thereby facilitating skin regeneration. It has been subjected to comprehensive chemical analysis, resulting in the identification and isolation of 190 compounds, including phthalides, phenylpropanoids, flavonoids, phenolic acids, triterpenes, steroids, volatile oil, fatty acids, and other constituents. The pharmacological activities have been in-depth explored through modern in vivo and in vitro studies, confirming its anti-inflammatory, analgesic, and anti-melanin effects. Furthermore, it exhibited pharmacological activities such as antioxidant, anticancer, antibacterial, and vasodilatory properties. This study provides a basic to contribute to the advancement of research, medicinal applications and product development related to LReR. CONCLUSIONS Considering its traditional and contemporary applications, phytochemical composition, and pharmacological properties, LReR was regarded as a valuable botanical resource for pharmaceutical and pest control purposes. While certain constituents had demonstrated diverse pharmacological activities and application potential, further elucidation was required to fully understand their specific actions and underlying mechanisms. Hence, there was a need to conduct additional investigations to uncover its material foundation and mode of action.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Guo M, Li Z, Gu M, Gu J, You Q, Wang L. Targeting phosphatases: From molecule design to clinical trials. Eur J Med Chem 2024; 264:116031. [PMID: 38101039 DOI: 10.1016/j.ejmech.2023.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Phosphatase is a kind of enzyme that can dephosphorylate target proteins, which can be divided into serine/threonine phosphatase and tyrosine phosphatase according to its mode of action. Current evidence showed multiple phosphatases were highly correlated with diseases including various cancers, demonstrating them as potential targets. However, currently, targeting phosphatases with small molecules faces many challenges, resulting in no drug approved. In this case, phosphatases are even regarded as "undruggable" targets for a long time. Recently, a variety of strategies have been adopted in the design of small molecule inhibitors targeting phosphatases, leading many of them to enter into the clinical trials. In this review, we classified these inhibitors into 4 types, including (1) molecular glues, (2) small molecules targeting catalytic sites, (3) allosteric inhibition, and (4) bifunctional molecules (proteolysis targeting chimeras, PROTACs). These molecules with diverse strategies prove the feasibility of phosphatases as drug targets. In addition, the combination therapy of phosphatase inhibitors with other drugs has also entered clinical trials, which suggests a broad prospect. Thus, targeting phosphatases with small molecules by different strategies is emerging as a promising way in the modulation of pathogenetic phosphorylation.
Collapse
Affiliation(s)
- Mochen Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zekun Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingxiao Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junrui Gu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Yang X, Zeng P, Wen J, Wang C, Yao L, He M. Gain deeper insights into traditional Chinese medicines using multidimensional chromatography combined with chemometric approaches. CHINESE HERBAL MEDICINES 2024; 16:27-41. [PMID: 38375051 PMCID: PMC10874776 DOI: 10.1016/j.chmed.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/30/2023] [Accepted: 07/12/2023] [Indexed: 02/21/2024] Open
Abstract
Traditional Chinese medicines (TCMs) possess a rich historical background, unique theoretical framework, remarkable therapeutic efficacy, and abundant resources. However, the modernization and internationalization of TCMs have faced significant obstacles due to their diverse ingredients and unknown mechanisms. To gain deeper insights into the phytochemicals and ensure the quality control of TCMs, there is an urgent need to enhance analytical techniques. Currently, two-dimensional (2D) chromatography, which incorporates two independent separation mechanisms, demonstrates superior separation capabilities compared to the traditional one-dimensional (1D) separation system when analyzing TCMs samples. Over the past decade, new techniques have been continuously developed to gain actionable insights from complex samples. This review presents the recent advancements in the application of multidimensional chromatography for the quality evaluation of TCMs, encompassing 2D-gas chromatography (GC), 2D-liquid chromatography (LC), as well as emerging three-dimensional (3D)-GC, 3D-LC, and their associated data-processing approaches. These studies highlight the promising potential of multidimensional chromatographic separation for future phytochemical analysis. Nevertheless, the increased separation capability has resulted in higher-order data sets and greater demands for data-processing tools. Considering that multidimensional chromatography is still a relatively nascent research field, further hardware enhancements and the implementation of chemometric methods are necessary to foster its robust development.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Pingping Zeng
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jin Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Chuanlin Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Liangyuan Yao
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412000, China
| | - Min He
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
7
|
Zhao P, Xin BS, Ma ZT, Yao GD, Shi R, He XH, Lin B, Huang XX, Song SJ. Six undescribed guaianolide-type sesquiterpenes from the aerial parts of Daphne penicillata. Fitoterapia 2024; 172:105762. [PMID: 38040095 DOI: 10.1016/j.fitote.2023.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Six undescribed guaianolide sesquiterpenes (1-6) were obtained from the aerial parts of Daphne penicillata. Their structures and absolute configuration were elucidated by HRESIMS, NMR analyses, ECD calculations and single-crystal X-ray diffraction analysis. Structurally, all compounds possess the typical 5,7-fused system of 8,12-guaianolides and this guaianolide-type was first reported to be isolated from Daphne penicillata. All compounds (1-6) were evaluated for anti-inflammatory and cytotoxic activity. Among them, compounds 1 and 5 showed moderate inhibitory effects on LPS-induced NO production in BV2 cells and 4 displayed potential inhibition against Hep3B cells with an IC50 value of 7.33 μM.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ben-Song Xin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhen-Tao Ma
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Foresty Research Center of Kunming, Horticulture and Landscape Architecture, Southwest Forestry University, Yunnan, Kunming 650224, China
| | - Xia-Hong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Foresty Research Center of Kunming, Horticulture and Landscape Architecture, Southwest Forestry University, Yunnan, Kunming 650224, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Basic Science Research Center Base (Pharmaceutical Science), Shandong Province, Yantai University, Yantai 264005, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
8
|
Otsuki K, Li W. Tigliane and daphnane diterpenoids from Thymelaeaceae family: chemistry, biological activity, and potential in drug discovery. J Nat Med 2023; 77:625-643. [PMID: 37294498 PMCID: PMC10465420 DOI: 10.1007/s11418-023-01713-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Tigliane and daphnane diterpenoids are characteristically distributed in plants of the Thymelaeaceae family as well as the Euphorbiaceae family and are structurally diverse due to the presence of polyoxygenated functionalities in the polycyclic skeleton. These diterpenoids are known as toxic components, while they have been shown to exhibit a wide variety of biological activities, such as anti-cancer, anti-HIV, and analgesic activity, and are attracting attention in the field of natural product drug discovery. This review focuses on naturally occurring tigliane and daphnane diterpenoids from plants of the Thymelaeaceae family and provides an overview of their chemical structure, distribution, isolation, structure determination, chemical synthesis, and biological activities, with a prime focus on the recent findings.
Collapse
Affiliation(s)
- Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
9
|
Cheng ZY, Ren JX, Xue XB, Wang M, Yu XQ, Lin B, Yao GD, Song SJ, Huang XX. Daphnane-type diterpenoids from Stellera chamaejasme L. and their inhibitory activity against hepatocellular carcinoma cells. PHYTOCHEMISTRY 2023:113725. [PMID: 37224912 DOI: 10.1016/j.phytochem.2023.113725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Daphnane-type diterpenoids, which are scarce in nature, exhibit potent growth-inhibitory activities against various cancer cells. To identify more daphnane-type diterpenoids, the phytochemical components in the root extracts of Stellera chamaejasme L. were analysed in this study using the Global Natural Products Social platform and the MolNetEnhancer tool. Three undescribed 1α-alkyldaphnane-type diterpenoids (1-3; named stelleradaphnanes A-C) and 15 known analogues were isolated and characterised. The structures of these compounds were determined using ultraviolet and nuclear magnetic resonance spectroscopy. The stereo configurations of the compounds were determined using electronic circular dichroism. Next, the growth-inhibitory activities of isolated compounds against HepG2 and Hep3B cells were examined. Compound 3 exhibited potent growth-inhibitory activities against HepG2 and Hep3B cells with half-maximal inhibitory concentration values of 9.73 and 15.97 μM, respectively. Morphological and staining analyses suggested that compound 3 induced apoptosis in HepG2 and Hep3B cells.
Collapse
Affiliation(s)
- Zhuo-Yang Cheng
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, People's Republic of China; (b) Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning, People's Republic of China; (c) Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; (e) School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030000, People's Republic of China
| | - Jing-Xian Ren
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, People's Republic of China; (b) Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning, People's Republic of China; (c) Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiao-Bian Xue
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, People's Republic of China; (b) Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning, People's Republic of China; (c) Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Man Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, People's Republic of China; (b) Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning, People's Republic of China; (c) Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiao-Qi Yu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, People's Republic of China; (b) Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning, People's Republic of China; (c) Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, People's Republic of China; (b) Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning, People's Republic of China; (c) Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, People's Republic of China; (b) Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning, People's Republic of China; (c) Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, People's Republic of China; (b) Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning, People's Republic of China; (c) Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
10
|
Song Q, Li SF, Cheng ZY, Song SJ, Huang XX. Chemical constituents from Stellera chamaejasme L. and chemotaxonomic significance. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
11
|
Xue XB, Lv TM, Hou JY, Li DQ, Huang XX, Song SJ, Yao GD. Vibsane-type diterpenoids from Viburnum odoratissimum inhibit hepatocellular carcinoma cells via the PI3K/AKT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154499. [PMID: 36270223 DOI: 10.1016/j.phymed.2022.154499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with an elevated danger of metastasis and a short survival rate. Vibsane-type diterpenoids with novel structures possess marked antitumor activities against multiple cancer cells. However, the exact mechanism is poorly unclear. PURPOSE To assess the antitumor mechanism of vibsane-type diterpenoids derived from Viburnum odoratissimum (V. odoratissimum) against HCC cells in vitro and in vivo. METHODS The main constituents in the ethyl acetate extract of V. odoratissimum (EAVO) were identified by LC-MS/MS. The antiproliferative activity of EAVO in vitro was evaluated by MTT assays. Annexin V-FITC/PI, AO/EB, and Hoechst 33,258 staining were employed to detect apoptosis. JC-1 fluorescence dye was used to detect the mitochondrial membrane potential (MMP). The levels of intracellular ROS and mitochondrial superoxides were assessed by H2DCF-DA and MitoSox staining, respectively. The levels of oxidative stress were determined by ROS Green™ H2O2 probe, hydroxyphenyl fluorescein (HPF), and the C11 BODIPY 581/591 fluorescent probe. Transcriptomics was performed to investigate the antitumor mechanism of EAVO in HCC. The molecular mechanism by which EAVO suppressed HCC cells was verified by Western blot, RT-PCR, and HTRF® KinEASE™-STK S3 kits. The efficacy and safety of EAVO in vivo were evaluated using Hep3B xenograft models. RESULTS Vibsane-type diterpenoids were the main constituents of EAVO by LC-MS/MS. EAVO suppressed proliferation, aggravated oxidative stress, and promoted apoptosis in HCC cells. Moreover, EAVO dramatically inhibited tumor growth in Hep3B xenograft models. Transcriptomics results indicated that EAVO inhibited HCC cell proliferation by regulating the PI3K/AKT pathway. Vibsanin B, vibsanol I, and vibsanin S isolated from EAVO was used to further verify the antitumor activity of vibsane-type diterpenoids subsequently. Interestingly, the kinase results showed that vibsanin B and vibsanol I exhibited vital AKT kinase inhibitory activities. CONCLUSIONS Collectively, this study provided a comprehensive mechanism overview of vibsane-type diterpenoids against HCC cells in vitro and in vivo. It also laid a foundation for further antitumor investigation of vibsane-type diterpenoids in V. odoratissimum.
Collapse
Affiliation(s)
- Xiao-Bian Xue
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tian-Ming Lv
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jiao-Yang Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Dan-Qi Li
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
12
|
Mi SH, Duan ZK, Wang YJ, Dong SH, Zhao P, Yao GD, Liu QB, Lin B, Song SJ, Huang XX. Isolation of cytotoxic daphnane-type and tigliane-type diterpenoids from Daphne genkwa using MetGem software. NEW J CHEM 2023; 47:1517-1524. [DOI: 10.1039/d2nj05276h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Guided by MetGem Molecular Networking, eight daphnane-type and tigliane-type diterpenoids including four undescribed compounds were isolated from Daphne genkwa.
Collapse
Affiliation(s)
- Si-Hui Mi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yu-Jue Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Shu-Hui Dong
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qing-Bo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| |
Collapse
|
13
|
Shang X, Wang Y, Hou Z, Wang X, Zhang H, Yang C, Li J, Huang X, Song S, Yao G. A natural PKM2 targeting agent as a potential drug for breast cancer treatment. Clin Transl Med 2022; 13:e1157. [PMID: 36579385 PMCID: PMC9798039 DOI: 10.1002/ctm2.1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
- Xin‐Yue Shang
- Key Laboratory of Computational Chemistry‐Based Natural Antitumor Drug Research & DevelopmentEngineering Research Center of Natural Medicine Active Molecule Research & DevelopmentShenyangChina,Key Laboratory of Natural Bioactive Compounds Discovery & ModificationShenyangLiaoningChina,Department of Natural Medicine Chemistry, School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangLiaoningChina,Department of PharmacologyShenyang Medical CollegeShenyangLiaoningChina
| | - Yu‐Jue Wang
- Key Laboratory of Computational Chemistry‐Based Natural Antitumor Drug Research & DevelopmentEngineering Research Center of Natural Medicine Active Molecule Research & DevelopmentShenyangChina,Key Laboratory of Natural Bioactive Compounds Discovery & ModificationShenyangLiaoningChina,Department of Natural Medicine Chemistry, School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangLiaoningChina
| | - Zi‐Lin Hou
- Key Laboratory of Computational Chemistry‐Based Natural Antitumor Drug Research & DevelopmentEngineering Research Center of Natural Medicine Active Molecule Research & DevelopmentShenyangChina,Key Laboratory of Natural Bioactive Compounds Discovery & ModificationShenyangLiaoningChina,Department of Natural Medicine Chemistry, School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangLiaoningChina
| | - Xin‐Ye Wang
- Key Laboratory of Computational Chemistry‐Based Natural Antitumor Drug Research & DevelopmentEngineering Research Center of Natural Medicine Active Molecule Research & DevelopmentShenyangChina,Key Laboratory of Natural Bioactive Compounds Discovery & ModificationShenyangLiaoningChina,Department of Natural Medicine Chemistry, School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangLiaoningChina
| | - Hao Zhang
- Key Laboratory of Computational Chemistry‐Based Natural Antitumor Drug Research & DevelopmentEngineering Research Center of Natural Medicine Active Molecule Research & DevelopmentShenyangChina,Key Laboratory of Natural Bioactive Compounds Discovery & ModificationShenyangLiaoningChina,Department of Natural Medicine Chemistry, School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangLiaoningChina
| | - Chen‐Yu Yang
- Key Laboratory of Computational Chemistry‐Based Natural Antitumor Drug Research & DevelopmentEngineering Research Center of Natural Medicine Active Molecule Research & DevelopmentShenyangChina,Key Laboratory of Natural Bioactive Compounds Discovery & ModificationShenyangLiaoningChina,Department of Natural Medicine Chemistry, School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangLiaoningChina
| | - Ji‐Chong Li
- Key Laboratory of Computational Chemistry‐Based Natural Antitumor Drug Research & DevelopmentEngineering Research Center of Natural Medicine Active Molecule Research & DevelopmentShenyangChina,Key Laboratory of Natural Bioactive Compounds Discovery & ModificationShenyangLiaoningChina,Department of Natural Medicine Chemistry, School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangLiaoningChina
| | - Xiao‐Xiao Huang
- Key Laboratory of Computational Chemistry‐Based Natural Antitumor Drug Research & DevelopmentEngineering Research Center of Natural Medicine Active Molecule Research & DevelopmentShenyangChina,Key Laboratory of Natural Bioactive Compounds Discovery & ModificationShenyangLiaoningChina,Department of Natural Medicine Chemistry, School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangLiaoningChina
| | - Shao‐Jiang Song
- Key Laboratory of Computational Chemistry‐Based Natural Antitumor Drug Research & DevelopmentEngineering Research Center of Natural Medicine Active Molecule Research & DevelopmentShenyangChina,Key Laboratory of Natural Bioactive Compounds Discovery & ModificationShenyangLiaoningChina,Department of Natural Medicine Chemistry, School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangLiaoningChina
| | - Guo‐Dong Yao
- Key Laboratory of Computational Chemistry‐Based Natural Antitumor Drug Research & DevelopmentEngineering Research Center of Natural Medicine Active Molecule Research & DevelopmentShenyangChina,Key Laboratory of Natural Bioactive Compounds Discovery & ModificationShenyangLiaoningChina,Department of Natural Medicine Chemistry, School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangLiaoningChina
| |
Collapse
|
14
|
Jiang MH, Zhao P, Zhou WY, Huang XX, Song SJ. Lignans and monoterpenes from Daphne penicillata Rehd and their chemotaxonomic significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Zhou WY, Hou JY, Li Q, Wang YJ, Wang JY, Jiang MH, Yao GD, Huang XX, Song SJ. Targeted isolation of diterpenoids and sesquiterpenoids from Daphne gemmata E. Pritz. ex Diels using molecular networking together with network annotation propagation and MS2LDA. PHYTOCHEMISTRY 2022; 204:113468. [PMID: 36191659 DOI: 10.1016/j.phytochem.2022.113468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Investigation of the whole plant of Daphne gemmata E. Pritz. ex Diels (Thymelaeaceae) using molecular networking coupled to Network Annotation Propagation (NAP) and unsupervised substructure annotation (MS2LDA) led to the discovery of five tigliane diterpenoids, 14 guaiane sesquiterpenoids, one rhamnofolane diterpenoid and three carotene sesquiterpenoids. The structures of the eight undescribed compounds, daphnorbol A and daphnegemmatoids A-G, were characterized by detailed spectroscopic analyses, NMR and ECD calculations, application of Snatzke's method and single-crystal X-ray diffraction analysis. All isolated compounds were evaluated for their cytotoxic activities against HepG2, A549, and MCF-7 cells by MTT assay. Daphnorbol A exhibited significant cytotoxic activity against HepG2 and A549 cells with IC50 values of 4.06 μM and 6.35 μM, respectively. Prostratin showed potent cytotoxic activity against HepG2 and A549 cells with IC50 values of 6.06 μM and 5.45 μM, respectively. Further Hoechst 33,258 and AO-EB staining assays indicated that daphnorbol A and prostratin could induce apoptosis in HepG2 and A549 cells.
Collapse
Affiliation(s)
- Wei-Yu Zhou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jiao-Yang Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yu-Jue Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jia-Yi Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ming-Hao Jiang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research and Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery and Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
16
|
Shi WY, Bai M, Zhang X, Qin SY, Yao GD, Lin B, Song SJ, Huang XX. Diverse guaiane-type sesquiterpenoids from the root of Daphne genkwa based on molecular networking. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Bai M, Xu W, Li Q, Liu DF, Lv TM, Du NN, Yao GD, Lin B, Song SJ, Huang XX. Highly Oxidized Germacranolides from Elephantopus tomentosus and the Configurational Revision of Some Previously Reported Analogues. JOURNAL OF NATURAL PRODUCTS 2022; 85:2433-2444. [PMID: 36223633 DOI: 10.1021/acs.jnatprod.2c00630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Highly oxidized germacranolides are mainly found in the genus Elephantopus, contain a characteristic ten-membered molecular core that is highly flexible, and exhibit potential cytotoxic properties. However, their configurations were assigned ambiguously in previous reports due to spectroscopic observation of macrocyclic systems. Herein, 17 highly oxidized germacranolides, including 12 new germacranolides (1-12), were isolated from Elephantopus tomentosus. Their structures were characterized by spectroscopic data analysis combined with X-ray crystallography and ECD calculations, and it was possible to propose configurational revisions of five previously reported analogues (13-17). Cytotoxic activities for 1-17 against two hepatocellular carcinoma cell lines (HepG2 and Hep3B) were tested, and compounds 1-10 and 13-16 generated IC50 values of 2.2-9.8 μM. Furthermore, the observed cytotoxic activity of 1 was determined as being mediated by inducing the apoptosis of HepG2 and Hep3B cells via mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Wei Xu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - De-Feng Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Tian-Ming Lv
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ning-Ning Du
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
18
|
Tembeni B, Sciorillo A, Invernizzi L, Klimkait T, Urda L, Moyo P, Naidoo-Maharaj D, Levitties N, Gyampoh K, Zu G, Yuan Z, Mounzer K, Nkabinde S, Nkabinde M, Gqaleni N, Tietjen I, Montaner LJ, Maharaj V. HPLC-Based Purification and Isolation of Potent Anti-HIV and Latency Reversing Daphnane Diterpenes from the Medicinal Plant Gnidia sericocephala ( Thymelaeaceae). Viruses 2022; 14:1437. [PMID: 35891417 PMCID: PMC9318819 DOI: 10.3390/v14071437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the success of combination antiretroviral therapy (cART), HIV persists in low- and middle-income countries (LMIC) due to emerging drug resistance and insufficient drug accessibility. Furthermore, cART does not target latently-infected CD4+ T cells, which represent a major barrier to HIV eradication. The “shock and kill” therapeutic approach aims to reactivate provirus expression in latently-infected cells in the presence of cART and target virus-expressing cells for elimination. An attractive therapeutic prototype in LMICs would therefore be capable of simultaneously inhibiting viral replication and inducing latency reversal. Here we report that Gnidia sericocephala, which is used by traditional health practitioners in South Africa for HIV/AIDS management to supplement cART, contains at least four daphnane-type compounds (yuanhuacine A (1), yuanhuacine as part of a mixture (2), yuanhuajine (3), and gniditrin (4)) that inhibit viral replication and/or reverse HIV latency. For example, 1 and 2 inhibit HIV replication in peripheral blood mononuclear cells (PBMC) by >80% at 0.08 µg/mL, while 1 further inhibits a subtype C virus in PBMC with a half-maximal effective concentration (EC50) of 0.03 µM without cytotoxicity. Both 1 and 2 also reverse HIV latency in vitro consistent with protein kinase C activation but at 16.7-fold lower concentrations than the control prostratin. Both 1 and 2 also reverse latency in primary CD4+ T cells from cART-suppressed donors with HIV similar to prostratin but at 6.7-fold lower concentrations. These results highlight G. sericocephala and components 1 and 2 as anti-HIV agents for improving cART efficacy and supporting HIV cure efforts in resource-limited regions.
Collapse
Affiliation(s)
- Babalwa Tembeni
- Department of Chemistry, University of Pretoria, Pretoria 0028, South Africa; (B.T.); (L.I.); (P.M.); (D.N.-M.)
| | - Amanda Sciorillo
- The Wistar Institute, Philadelphia, PA 19104, USA; (A.S.); (N.L.); (K.G.); (G.Z.); (Z.Y.); (I.T.)
| | - Luke Invernizzi
- Department of Chemistry, University of Pretoria, Pretoria 0028, South Africa; (B.T.); (L.I.); (P.M.); (D.N.-M.)
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; (T.K.); (L.U.)
| | - Lorena Urda
- Molecular Virology, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; (T.K.); (L.U.)
| | - Phanankosi Moyo
- Department of Chemistry, University of Pretoria, Pretoria 0028, South Africa; (B.T.); (L.I.); (P.M.); (D.N.-M.)
| | - Dashnie Naidoo-Maharaj
- Department of Chemistry, University of Pretoria, Pretoria 0028, South Africa; (B.T.); (L.I.); (P.M.); (D.N.-M.)
- Agricultural Research Council-Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa
| | - Nathan Levitties
- The Wistar Institute, Philadelphia, PA 19104, USA; (A.S.); (N.L.); (K.G.); (G.Z.); (Z.Y.); (I.T.)
| | - Kwasi Gyampoh
- The Wistar Institute, Philadelphia, PA 19104, USA; (A.S.); (N.L.); (K.G.); (G.Z.); (Z.Y.); (I.T.)
| | - Guorui Zu
- The Wistar Institute, Philadelphia, PA 19104, USA; (A.S.); (N.L.); (K.G.); (G.Z.); (Z.Y.); (I.T.)
| | - Zhe Yuan
- The Wistar Institute, Philadelphia, PA 19104, USA; (A.S.); (N.L.); (K.G.); (G.Z.); (Z.Y.); (I.T.)
| | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Fight Community Health Centers, Philadelphia, PA 19107, USA;
| | | | - Magugu Nkabinde
- Ungangezulu Indigenous Remedies, J Uitval, Wasbank 2920, South Africa; (S.N.); (M.N.)
| | - Nceba Gqaleni
- Africa Health Research Institute, Congella 4013, South Africa;
- Discipline of Traditional Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Faculty of Health Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Ian Tietjen
- The Wistar Institute, Philadelphia, PA 19104, USA; (A.S.); (N.L.); (K.G.); (G.Z.); (Z.Y.); (I.T.)
| | - Luis J. Montaner
- The Wistar Institute, Philadelphia, PA 19104, USA; (A.S.); (N.L.); (K.G.); (G.Z.); (Z.Y.); (I.T.)
| | - Vinesh Maharaj
- Department of Chemistry, University of Pretoria, Pretoria 0028, South Africa; (B.T.); (L.I.); (P.M.); (D.N.-M.)
| |
Collapse
|
19
|
Mi SH, Zhao P, Li Q, Zhang H, Guo R, Liu YY, Lin B, Yao GD, Song SJ, Huang XX. Guided isolation of daphnane-type diterpenes from Daphne genkwa by molecular network strategies. PHYTOCHEMISTRY 2022; 198:113144. [PMID: 35283165 DOI: 10.1016/j.phytochem.2022.113144] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
A molecular networking-guided study on the Daphne genkwa Sieb. et Zucc led to the isolation of twelve daphnane-type diterpenoids including four undescribed compounds, yuanhuakines A-D. Their structures were elucidated by spectroscopic analyses, ECD calculations, and single-crystal X-ray diffraction analysis. All isolates were evaluated for their inhibitory activity against the A549, Hep3B, and MCF-7 cell lines. The majority of compounds inhibited A549 cells with IC50 values ranging from 7.77 to 20.56 μM, and their structure-activity relationship is preliminarily discussed. Five of these compounds were selected for further experiments, and they appear to inhibit A549 cell lines by inducing apoptosis.
Collapse
Affiliation(s)
- Si-Hui Mi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Hao Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Rui Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yu-Yang Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
20
|
Bailly C. Yuanhuacin and Related Anti-Inflammatory and Anticancer Daphnane Diterpenes from Genkwa Flos-An Overview. Biomolecules 2022; 12:192. [PMID: 35204693 PMCID: PMC8961543 DOI: 10.3390/biom12020192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The dried flower buds of the plant Daphne genkwa Sieb. et Zucc. have been largely used in traditional Chinese medicine for the treatment of inflammatory diseases. Numerous diterpenoids have been isolated from the Genkwa Flos (yuanhua in Chinese), including a series of daphnane-type diterpene designated as yuanhuacin (YC, often improperly designated as yuanhuacine) and analogues with a patronymic name. The series includes ten daphnane-type diterpenes: yuanhuacin, yuanhuadin (YD), yuanhuafin (YF), yuanhuagin (YG), yuanhuahin (YH), yuanhuajin (YJ), yuanhualin (YL), yuanhuamin (YM), yuanhuapin (YP), and yuanhuatin (YT). They are distinct from the rare flavonoid yuanhuanin. The series comprises several anticancer agents, such as the lead compound YC, which has revealed potent activity in vitro and in vivo against models of lung and breast cancers. The main signaling pathways implicated in the antitumor effects have been delineated. Protein kinase C is a key factor of activity for YC, but in general the molecular targets at the origin of the activity of these compounds remain little defined. Promising anticancer effects have been reported with analogues YD and YT, whereas compounds YF and YP are considered more toxic. The pharmacological activity of each compound is presented, as well as the properties of Genkwa Flos extracts. The potential toxic effects associated with the use of these compounds are also underlined.
Collapse
|