1
|
Ma X, Chen Z, Chen W, Chen Z, Meng X. Exosome subpopulations: The isolation and the functions in diseases. Gene 2024; 893:147905. [PMID: 37844851 DOI: 10.1016/j.gene.2023.147905] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Exosomes are nanoscale extracellular vesicles secreted by cells. Exosomes mediate intercellular communication by releasing their bioactive contents (e.g., DNAs, RNAs, lipids, proteins, and metabolites). The components of exosomes are regulated by the producing cells of exosomes. Due to their diverse origins, exosomes are highly heterogeneous in size, content, and function. Depending on these characteristics, exosomes can be divided into multiple subpopulations which have different functions. Efficient enrichment of specific subpopulations of exosomes helps to investigate their biological functions. Accordingly, numerous techniques have been developed to isolate specific subpopulations of exosomes. This review systematically introduces emerging new technologies for the isolation of different exosome subpopulations and summarizes the critical role of specific exosome subpopulations in diseases, especially in tumor occurrence and progression.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Zhenhua Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Ziyuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China.
| |
Collapse
|
2
|
A Novel Tandem-Tag Purification Strategy for Challenging Disordered Proteins. Biomolecules 2022; 12:biom12111566. [DOI: 10.3390/biom12111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) lack well-defined 3D structures and can only be described as ensembles of different conformations. This high degree of flexibility allows them to interact promiscuously and makes them capable of fulfilling unique and versatile regulatory roles in cellular processes. These functional benefits make IDPs widespread in nature, existing in every living organism from bacteria and fungi to plants and animals. Due to their open and exposed structural state, IDPs are much more prone to proteolytic degradation than their globular counterparts. Therefore, the purification of recombinant IDPs requires extra care and caution, such as maintaining low temperature throughout the purification, the use of protease inhibitor cocktails and fast workflow. Even so, in the case of long IDP targets, the appearance of truncated by-products often seems unavoidable. The separation of these unwanted proteins can be very challenging due to their similarity to the parent target protein. Here, we describe a tandem-tag purification method that offers a remedy to this problem. It contains only common affinity-chromatography steps (HisTrap and Heparin) to ensure low cost, easy access and scaling-up for possible industrial use. The effectiveness of the method is demonstrated with four examples, Tau-441 and two of its fragments and the transactivation domain (AF1) of androgen receptor.
Collapse
|
3
|
Barnes B, Caws T, Thomas S, Shephard AP, Corteling R, Hole P, Bracewell DG. Investigating heparin affinity chromatography for extracellular vesicle purification and fractionation. J Chromatogr A 2022; 1670:462987. [DOI: 10.1016/j.chroma.2022.462987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 01/15/2023]
|
4
|
Jaffar-Aghaei M, Khanipour F, Maghsoudi A, Sarvestani R, Mohammadian M, Maleki M, Havasi F, Rahmani H, Karagah AH, Kazemali MR. QbD-guided pharmaceutical development of Pembrolizumab biosimilar candidate PSG-024 propelled to industry meeting primary requirements of comparability to Keytruda®. Eur J Pharm Sci 2022; 173:106171. [DOI: 10.1016/j.ejps.2022.106171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/13/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
|
5
|
Dimartino S, Galindo-Rodriguez GR, Simon U, Conti M, Sarwar MS, Athi Narayanan SM, Jiang Q, Christofi N. Flexible material formulations for 3D printing of ordered porous beds with applications in bioprocess engineering. BIORESOUR BIOPROCESS 2022; 9:20. [PMID: 38647837 PMCID: PMC10992019 DOI: 10.1186/s40643-022-00511-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 3D printing is revolutioning many industrial sectors and has the potential to enhance also the biotechnology and bioprocessing fields. Here, we propose a new flexible material formulation to 3D print support matrices with complex, perfectly ordered morphology and with tuneable properties to suit a range of applications in bioprocess engineering. FINDINGS Supports were fabricated using functional monomers as the key ingredients, enabling matrices with bespoke chemistry, such as charged groups, chemical moieties for further functionalization, and hydrophobic/hydrophilic groups. Other ingredients, e.g. crosslinkers and porogens, can be employed to fabricate supports with diverse characteristics of their porous network, providing an opportunity to further regulate the mechanical and mass transfer properties of the supports. Through this approach, we fabricated and demonstrated the operation of Schoen gyroid columns with (I) positive and negative charges for ion exchange chromatography, (II) enzyme bioreactors with immobilized trypsin to catalyse hydrolysis, and (III) bacterial biofilm bioreactors for fuel desulphurization. CONCLUSIONS This study demonstrates a simple, cost-effective, and flexible fabrication of customized 3D printed supports for different biotechnology and bioengineering applications.
Collapse
Affiliation(s)
- Simone Dimartino
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK.
| | | | - Ursula Simon
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK
| | - Mariachiara Conti
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK
| | - M Sulaiman Sarwar
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK
| | | | - Qihao Jiang
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK
| | - Nick Christofi
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| |
Collapse
|
6
|
Herman CE, Xu X, Traylor SJ, Ghose S, Li ZJ, Lenhoff AM. Behavior of weakly adsorbing protein impurities in flow-through ion-exchange chromatography. J Chromatogr A 2021; 1664:462788. [PMID: 34998025 DOI: 10.1016/j.chroma.2021.462788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Flow-through ion-exchange chromatography is frequently used in polishing biotherapeutics, but the factors that contribute to impurity persistence are incompletely understood. A large number of dilute impurities may be encountered that exhibit physicochemical diversity, making the flow-through separation performance highly sensitive to process conditions. The analysis presented in this work develops two novel correlations that offer transferable insights into the chromatographic behavior of weakly adsorbing impurities. The first, based on column simulations and validated experimentally, delineates the relative contributions of thermodynamic, transport, and geometric properties in dictating the initial breakthrough volumes of dilute species. The Graetz number for mass transfer was found to generalize the transport contributions, enabling estimation of a threshold in the equilibrium constant below which impurity persistence is expected. Impurity adsorption equilibria are needed to use this correlation, but such data are not typically available. The second relationship presented in this work may be used to reduce the experimental burden of estimating adsorption equilibria as a function of ionic strength. A correlation between stoichiometric displacement model parameters was found by consolidating isocratic retention data for over 200 protein-pH-resin combinations from the extant literature. Coupled with Yamamoto's analysis of linear gradient elution data, this correlation may be used to estimate retentivity approximately from a single experimental measurement, which could prove useful in predicting host-cell protein chromatographic behavior.
Collapse
Affiliation(s)
- Chase E Herman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xuankuo Xu
- Biologics Process Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Steven J Traylor
- Biologics Process Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Sanchayita Ghose
- Biologics Process Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Zheng Jian Li
- Biologics Process Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
7
|
Misiura A, Shen H, Tauzin L, Dutta C, Bishop LDC, Carrejo NC, Zepeda O J, Ramezani S, Moringo NA, Marciel AB, Rossky PJ, Landes CF. Single-Molecule Dynamics Reflect IgG Conformational Changes Associated with Ion-Exchange Chromatography. Anal Chem 2021; 93:11200-11207. [PMID: 34346671 DOI: 10.1021/acs.analchem.1c01799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conformational changes of antibodies and other biologics can decrease the effectiveness of pharmaceutical separations. Hence, a detailed mechanistic picture of antibody-stationary phase interactions that occur during ion-exchange chromatography (IEX) can provide critical insights. This work examines antibody conformational changes and how they perturb antibody motion and affect ensemble elution profiles. We combine IEX, three-dimensional single-protein tracking, and circular dichroism spectroscopy to investigate conformational changes of a model antibody, immunoglobulin G (IgG), as it interacts with the stationary phase as a function of salt conditions. The results indicate that the absence of salt enhances electrostatic attraction between IgG and the stationary phase, promotes surface-induced unfolding, slows IgG motion, and decreases elution from the column. Our results reveal previously unreported details of antibody structural changes and their influence on macroscale elution profiles.
Collapse
Affiliation(s)
- Anastasiia Misiura
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, 800 E Summit Street, Kent, Ohio 44240, United States
| | - Lawrence Tauzin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Chayan Dutta
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Logan D C Bishop
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Nicole C Carrejo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jorge Zepeda O
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Shahryar Ramezani
- Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Nicholas A Moringo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Amanda B Marciel
- Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Peter J Rossky
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Patterns of protein adsorption in ion-exchange particles and columns: Evolution of protein concentration profiles during load, hold, and wash steps predicted for pore and solid diffusion mechanisms. J Chromatogr A 2021; 1653:462412. [PMID: 34320430 DOI: 10.1016/j.chroma.2021.462412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
Elucidation of protein transport mechanism in ion exchanges is essential to model separation performance. In this work we simulate intraparticle adsorption profiles during batch adsorption assuming typical process conditions for pore, solid and parallel diffusion. Artificial confocal laser scanning microscopy images are created to identify apparent differences between the different transport mechanisms. Typical sharp fronts for pore diffusion are characteristic for Langmuir equilibrium constants of KL ≥1. Only at KL = 0.1 and lower, the profiles are smooth and practically indistinguishable from a solid diffusion mechanism. During hold and wash steps, at which the interstitial buffer is removed or exchanged, continuation of diffusion of protein molecules is significant for solid diffusion due to the adsorbed phase concentration driving force. For pore diffusion, protein mobility is considerable at low and moderate binding strength. Only when pore diffusion if completely dominant, and the binding strength is very high, protein mobility is low enough to restrict diffusion out of the particles. Simulation of column operation reveals substantial protein loss when operating conditions are not adjusted appropriately.
Collapse
|
9
|
Sarwar MS, Simon U, Dimartino S. Experimental investigation and mass transfer modelling of 3D printed monolithic cation exchangers. J Chromatogr A 2021; 1646:462125. [PMID: 33894456 DOI: 10.1016/j.chroma.2021.462125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/27/2022]
Abstract
3D printing has recently found application in chromatography as a means to create ordered stationary phases with improved separation efficiency. Currently, 3D printed stationary phases are limited by the lack of 3D printing materials suitable for chromatographic applications, and require a strict compromise in terms of desired resolution, model size and the associated print time. Modelling of mass transfer in 3D printed monoliths is also fundamental to understand and further optimise separation performance of 3D printed stationary phases. In this work, a novel 3D printing material was formulated and employed to fabricate monolithic cation exchangers (CEXs) with carboxyl functionalities. CEXs were printed with ligand densities of 0.7, 1.4, 2.1 and 2.8 mmol/g and used in batch adsorption experiments with lysozyme as model protein. All CEXs demonstrated high binding strength towards lysozyme, with maximum binding capacities of up to 108 mg/mL. The experimental results were described using mass transfer models based on lumped pore diffusion and lumped solid diffusion mechanisms adapted to reflect the complex geometry of the 3D printed monoliths. An exact 3D model as well as less computationally demanding 1D and 2D approximations were evaluated in terms of their quality to capture the experimental trend of batch adsorption kinetic data. Overall, the model results indicate that mass transfer in the fabricated CEXs is mostly controlled by pore diffusion at high protein concentrations in the mobile phase, with solid diffusion becoming important at low protein concentrations. Also, the kinetic data were approximated equally well by both the full 3D model as well as the 2D approximation, indicating leaner mathematical models of lower dimensionality can be employed to describe mass transfer in complex three dimensional geometries. We believe this work will help spur the development of 3D printable materials for separations and aid in the development of quantitative platforms to evaluate and optimise the performance of 3D printed monoliths.
Collapse
Affiliation(s)
- M Sulaiman Sarwar
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Ursula Simon
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Simone Dimartino
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK.
| |
Collapse
|
10
|
Singh SK, Kumar D, Malani H, Rathore AS. LC-MS based case-by-case analysis of the impact of acidic and basic charge variants of bevacizumab on stability and biological activity. Sci Rep 2021; 11:2487. [PMID: 33514790 PMCID: PMC7846745 DOI: 10.1038/s41598-020-79541-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023] Open
Abstract
The present study investigates the impact of charge variants on bevacizumab's structure, stability, and biological activity. Five basic and one acidic charge variants were separated using semi-preparative cation exchange chromatography using linear pH gradient elution with purity > 85%. Based on the commercial biosimilar product's composition, two basic variants, one acidic and the main bevacizumab product, were chosen for further investigation. Intact mass analysis and tryptic peptide mapping established the basic variants' identity as those originating from an incomplete clipping of either one or both C-terminal lysine residues in the heavy chain of bevacizumab. Based on peptide mapping data, the acidic variant formation was attributed to deamidation of asparagine residue (N84), oxidation of M258, and preservation of C-terminal lysine residue, located on the heavy chain of bevacizumab. None of the observed charge heterogeneities in bevacizumab were due to differences in glycosylation among the variants. The basic (lysine) variants exhibited similar structural, functional, and stability profiles as the bevacizumab main product. But it was also noted that both the variants did not improve bevacizumab's therapeutic utility when pooled in different proportions with the main product. The acidic variant was found to have an equivalent secondary structure with subtle differences in the tertiary structure. The conformational difference also translated into a ~ 62% decrease in biological activity. Based on these data, it can be concluded that different charge variants behave differently with respect to their structure and bioactivity. Hence, biopharmaceutical manufacturers need to incorporate this understanding into their process and product development guidelines to maintain consistency in product quality.
Collapse
Affiliation(s)
- Sumit Kumar Singh
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Deepak Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Himanshu Malani
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
11
|
Stańczak A, Baran K, Antos D. A high-throughput method for fast detecting unfolding of monoclonal antibodies on cation exchange resins. J Chromatogr A 2020; 1634:461688. [DOI: 10.1016/j.chroma.2020.461688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022]
|
12
|
Poplewska I, Piątkowski W, Antos D. A case study of the mechanism of unfolding and aggregation of a monoclonal antibody in ion exchange chromatography. J Chromatogr A 2020; 1636:461687. [PMID: 33246679 DOI: 10.1016/j.chroma.2020.461687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/18/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
A mechanistic model for describing unfolding of a monoclonal antibody (mAb) in ion exchange chromatography has been developed. The model reproduced retention behavior characteristic for conformational changes of antibodies upon adsorption, including: multi-peak elution, aggregate formation, and recovery reduction. Two competitive paths in the adsorption mechanism of the unfolded protein were assumed: refolding in the adsorbed phase to the native form followed by its desorption, or direct desorption followed by instantaneous aggregation in the liquid phase. The reduction in recovery of the eluted protein was attributed to spreading of the unfolded protein on the adsorbent surface, which enhanced the binding affinity. The model was formulated based on the analysis of retention behavior of a model mAb that was eluted in pH gradients on a strong cation exchange resin. The pH profile was found to be distorted in the presence of the protein, which was ascribed to dissociation of ionizable groups of the protein in the adsorbed phase. Since the protein retention was strongly pH dependent, that phenomenon was also accounted for in mathematical modeling. A series of independent experiments was designed to evaluate the model parameters that quantified the process thermodynamics and kinetics: the Henry constants of the native, unfolded, spread and aggregated forms of the protein along with underlying kinetic coefficients. The model was efficient in reproducing the retention pattern of the protein and the aggregate content in eluting band profiles. After proper calibration, the model can potentially be used to quantify protein unfolding and elution in other ion exchange systems.
Collapse
Affiliation(s)
- Izabela Poplewska
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland
| | - Wojciech Piątkowski
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland
| | - Dorota Antos
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland.
| |
Collapse
|
13
|
Bolten SN, Knoll AS, Li Z, Gellermann P, Pepelanova I, Rinas U, Scheper T. Purification of the human fibroblast growth factor 2 using novel animal-component free materials. J Chromatogr A 2020; 1626:461367. [PMID: 32797846 DOI: 10.1016/j.chroma.2020.461367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 11/17/2022]
Abstract
This paper analyzes the use of animal-component free chromatographic materials for the efficient purification of the human fibroblast growth factor 2 (hFGF-2). hFGF-2 is produced in Escherichia coli and purified via three different chromatography steps, which include a strong cation exchange chromatography as a capture step, followed by heparin affinity chromatography and an anion exchange chromatography as a polishing step. The affinity chromatography step is based on the animal-derived material heparin. Chemically produced ligands provide a viable alternative to animal-derived components in production processes, since they are characterized by a defined structure which leads to reproducible results and a broad range of applications. The alternative ligands can be assigned to adsorber of the mixed-mode chromatography (MMC) and pseudo-affinity chromatography. Eight different animal-component free materials used as adsorbers in MMC or pseudo-affinity chromatography were tested as a substitute for heparin. The MMCs were cation exchangers characterized with further functional residues. The ligands of the pseudo-affinity chromatography were heparin-like ligands which are based on heparin's molecular structure. The alternative methods were tested as a capture step and in combination with another chromatographic step in the purification procedure of hFGF-2. In each downstream step purity, recovery and yield were analysed and compared to the conventional downstream process. Two types of MMC - the column ForesightTM NuviaTM cPrimeTM from Bio-Rad Laboratories and the column HiTrapTM CaptoTM MMC from GE Healthcare Life Sciences - can be regarded as effective animal-component free alternatives to the heparin - based adsorber.
Collapse
Affiliation(s)
- Svenja Nicolin Bolten
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Anne-Sophie Knoll
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Zhaopeng Li
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Pia Gellermann
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Ursula Rinas
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany; Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig 38124, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany.
| |
Collapse
|
14
|
|
15
|
Bolten SN, Rinas U, Scheper T. Heparin: role in protein purification and substitution with animal-component free material. Appl Microbiol Biotechnol 2018; 102:8647-8660. [PMID: 30094590 PMCID: PMC6153649 DOI: 10.1007/s00253-018-9263-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 01/27/2023]
Abstract
Heparin is a highly sulfated polysaccharide which belongs to the family of glycosaminoglycans. It is involved in various important biological activities. The major biological purpose is the inhibition of the coagulation cascade to maintain the blood flow in the vasculature. These properties are employed in several therapeutic drugs. Heparin’s activities are associated with its interaction to various proteins. To date, the structural heparin-protein interactions are not completely understood. This review gives a general overview of specific patterns and functional groups which are involved in the heparin-protein binding. An understanding of the heparin-protein interactions at the molecular level is not only advantageous in the therapeutic application but also in biotechnological application of heparin for downstreaming. This review focuses on the heparin affinity chromatography. Diverse recombinant proteins can be successfully purified by this method. While effective, it is disadvantageous that heparin is an animal-derived material. Animal-based components carry the risk of contamination. Therefore, they are liable to strict quality controls and the validation of effective good manufacturing practice (GMP) implementation. Hence, adequate alternatives to animal-derived components are needed. This review examines strategies to avoid these disadvantages. Thereby, alternatives for the provision of heparin such as chemical synthesized heparin, chemoenzymatic heparin, and bioengineered heparin are discussed. Moreover, the usage of other chromatographic systems mimetic the heparin effect is reviewed.
Collapse
Affiliation(s)
- Svenja Nicolin Bolten
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Ursula Rinas
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, 30167, Hannover, Germany
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, 30167, Hannover, Germany.
| |
Collapse
|
16
|
Nascimento A, Pinto IF, Chu V, Aires-Barros MR, Conde JP, Azevedo AM. Studies on the purification of antibody fragments. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Janakiraman VN, Solé M, Maria S, Pezzini J, Cabanne C, Santarelli X. Comparative study of strong cation exchangers: Structure-related chromatographic performances. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1080:1-10. [DOI: 10.1016/j.jchromb.2018.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 11/26/2022]
|
18
|
Relating saturation capacity to charge density in strong cation exchangers. J Chromatogr A 2017; 1507:95-103. [DOI: 10.1016/j.chroma.2017.05.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 01/29/2023]
|
19
|
Chen Z, Huang C, Chennamsetty N, Xu X, Li ZJ. Insights in understanding aggregate formation and dissociation in cation exchange chromatography for a structurally unstable Fc-fusion protein. J Chromatogr A 2016; 1460:110-22. [DOI: 10.1016/j.chroma.2016.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
|
20
|
Pinto IF, Rosa SA, Aires-Barros MR, Azevedo AM. Exploring the use of heparin as a first capture step in the purification of monoclonal antibodies from cell culture supernatants. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Brenac Brochier V, Ravault V. High throughput development of a non protein A monoclonal antibody purification process using mini-columns and bio-layer interferometry. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Guo J, Carta G. Unfolding and aggregation of monoclonal antibodies on cation exchange columns: Effects of resin type, load buffer, and protein stability. J Chromatogr A 2015; 1388:184-94. [DOI: 10.1016/j.chroma.2015.02.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
|
23
|
Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part I. Chromatographic elution and batch adsorption behavior. J Chromatogr A 2014; 1356:117-28. [DOI: 10.1016/j.chroma.2014.06.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 11/20/2022]
|
24
|
Burdette CQ, Marcus RK. Solid phase extraction of proteins from buffer solutions employing capillary-channeled polymer (C-CP) fibers as the stationary phase. Analyst 2014; 138:1098-106. [PMID: 23223274 DOI: 10.1039/c2an36126d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypropylene (PP) capillary-channeled polymer (C-CP) fibers are applied for solid phase extraction (SPE) of proteins from aqueous buffer solutions using a micropipette tip-based format. A process was developed in which centrifugation is used as the moving force for solution passage in the loading/washing steps instead of the previously employed manual aspiration. The complete procedure requires ~15 minutes, with the number of samples run in parallel limited only by the capacity of the centrifuge. The method performance was evaluated based on adsorption and elution characteristics of several proteins (cytochrome c, lysozyme, myoglobin, and glucose oxidase) from 150 mM phosphate buffered saline (PBS) solutions. Protein concentration ranges of ~2 to 100 μg mL(-1) were employed and the recovery characteristics determined through UV-Vis absorbance spectrophotometry for protein quantification. The protein loading capacities across the range of proteins was ~1.5 μg for the 5 mg fiber tips. Average recoveries from PBS were determined for each protein sample; cytochrome c ~86%, lysozyme ~80%, myoglobin ~86%, and glucose oxidase ~89%. Recoveries from more complex matrices, synthetic urine and synthetic saliva, were determined to be ~90%. A 10× dilution study for a fixed 1 μg protein application yielded 94 ± 3.2% recoveries. The C-CP tips provided significantly higher recoveries for myoglobin in a 150 mM PBS matrix in comparison to a commercially available protein SPE product, with the added advantages of low cost, rapid processing, and reusability.
Collapse
Affiliation(s)
- Carolyn Q Burdette
- Biosystems Research Complex, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
25
|
Gonçalves A, Rocha L, Dias J, Passarinha L, Sousa A. Optimization of a chromatographic stationary phase based on gellan gum using central composite design. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 957:46-52. [DOI: 10.1016/j.jchromb.2014.02.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 01/17/2014] [Accepted: 02/10/2014] [Indexed: 01/27/2023]
|
26
|
Besselink T, Liu M, Ottens M, van Beckhoven R, Janssen AEM, Boom RM. Comparison of activated chromatography resins for protein immobilization. J Sep Sci 2013; 36:1185-91. [DOI: 10.1002/jssc.201200875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Tamara Besselink
- Food Process Engineering Group; Wageningen University and Research Centre; Wageningen The Netherlands
| | - Meng Liu
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
- DSM Biotechnology Center; Delft; The Netherlands
| | - Marcel Ottens
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | | | - Anja E. M. Janssen
- Food Process Engineering Group; Wageningen University and Research Centre; Wageningen The Netherlands
| | - Remko M. Boom
- Food Process Engineering Group; Wageningen University and Research Centre; Wageningen The Netherlands
| |
Collapse
|
27
|
Hahn R. Methods for characterization of biochromatography media. J Sep Sci 2012; 35:3001-32. [DOI: 10.1002/jssc.201200770] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Rainer Hahn
- Department of Biotechnology; University of Natural Resources and Life Sciences; Vienna Austria
- Austrian Centre of Industrial Biotechnology; Vienna Austria
| |
Collapse
|
28
|
Fogle J, Mohan N, Cheung E, Persson J. Effects of resin ligand density on yield and impurity clearance in preparative cation exchange chromatography. I. Mechanistic evaluation. J Chromatogr A 2012; 1225:62-9. [DOI: 10.1016/j.chroma.2011.12.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/02/2011] [Accepted: 12/15/2011] [Indexed: 11/30/2022]
|
29
|
Technology trends in antibody purification. J Chromatogr A 2012; 1221:57-70. [DOI: 10.1016/j.chroma.2011.10.034] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 10/09/2011] [Accepted: 10/12/2011] [Indexed: 01/21/2023]
|
30
|
Lenhoff AM. Protein adsorption and transport in polymer-functionalized ion-exchangers. J Chromatogr A 2011; 1218:8748-59. [PMID: 21752388 PMCID: PMC3326415 DOI: 10.1016/j.chroma.2011.06.061] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/10/2011] [Accepted: 06/14/2011] [Indexed: 11/21/2022]
Abstract
A wide variety of stationary phases is available for use in preparative chromatography of proteins, covering different base matrices, pore structures and modes of chromatography. There has recently been significant growth in the number of such materials in which the base matrix is derivatized to add a covalently attached or grafted polymer layer or, in some cases, a hydrogel that fills the pore space. This review summarizes the main structural and functional features of ion exchangers of this kind, which represent the largest class of such materials. Although the adsorption and transport properties may generally be used operationally and modeled phenomenologically using the same methods as are used for proteins in conventional media, there are noteworthy mechanistic differences in protein behavior in these adsorbents. A fundamental difference in protein retention is that it may be portrayed as partitioning into a three-dimensional polymer phase rather than adsorption at an extended two-dimensional surface, as applies in more conventional media. Beyond this partitioning behavior, however, the polymer-functionalized media often display rapid intraparticle transport that, while qualitatively comparable to that in conventional media, is sufficiently rapid quantitatively under certain conditions that it can lead to clear benefits in key measures of performance such as the dynamic binding capacity. Although possible mechanistic bases for the retention and transport properties are discussed, appreciable areas of uncertainty make detailed mechanistic modeling very challenging, and more detailed experimental characterization is likely to be more productive.
Collapse
Affiliation(s)
- Abraham M Lenhoff
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
31
|
Nfor BK, Zuluaga DS, Verheijen PJT, Verhaert PDEM, van der Wielen LAM, Ottens AM. Model-based rational strategy for chromatographic resin selection. Biotechnol Prog 2011; 27:1629-43. [DOI: 10.1002/btpr.691] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Connell-Crowley L, Nguyen T, Bach J, Chinniah S, Bashiri H, Gillespie R, Moscariello J, Hinckley P, Dehghani H, Vunnum S, Vedantham G. Cation exchange chromatography provides effective retrovirus clearance for antibody purification processes. Biotechnol Bioeng 2011; 109:157-65. [DOI: 10.1002/bit.23300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/11/2011] [Accepted: 07/28/2011] [Indexed: 11/07/2022]
|
33
|
Hao J, Wang F, Dai X, Gong B, Wei Y. Preparation of poly(vinyltetrazole) chain-grafted poly(glycidymethacrylate-co-ethylenedimethacrylate) beads by surface-initiated atom transfer radical polymerization for the use in weak cation exchange and hydrophilic interaction chromatography. Talanta 2011; 85:482-7. [DOI: 10.1016/j.talanta.2011.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 03/30/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
|
34
|
Ly L, Wasinger VC. Protein and peptide fractionation, enrichment and depletion: Tools for the complex proteome. Proteomics 2011; 11:513-34. [DOI: 10.1002/pmic.201000394] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/03/2010] [Accepted: 10/18/2010] [Indexed: 12/28/2022]
|
35
|
|
36
|
Shapiro MS, Haswell SJ, Lye GJ, Bracewell DG. Microfluidic Chromatography for Early Stage Evaluation of Biopharmaceutical Binding and Separation Conditions. SEP SCI TECHNOL 2010. [DOI: 10.1080/01496395.2010.511641] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Franke A, Forrer N, Butté A, Cvijetić B, Morbidelli M, Jöhnck M, Schulte M. Role of the ligand density in cation exchange materials for the purification of proteins. J Chromatogr A 2010; 1217:2216-25. [DOI: 10.1016/j.chroma.2010.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/25/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
|
38
|
|
39
|
Fogle J, Hsiung J. Understanding and mitigating conductivity transitions in weak cation exchange chromatography. J Chromatogr A 2010; 1217:660-6. [DOI: 10.1016/j.chroma.2009.11.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 11/07/2009] [Accepted: 11/30/2009] [Indexed: 11/30/2022]
|
40
|
Rapid screening of purification strategies for the capture of a human recombinant F(ab′)2 expressed in baculovirus-infected cells using a micro-plate approach and SELDI-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2428-34. [DOI: 10.1016/j.jchromb.2009.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022]
|
41
|
Pezzini J, Cabanne C, Santarelli X. Comparative study of strong anion exchangers: Structure-related chromatographic performances. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2443-50. [DOI: 10.1016/j.jchromb.2009.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 11/25/2022]
|
42
|
Restuccia U, Boschetti E, Fasoli E, Fortis F, Guerrier L, Bachi A, Kravchuk AV, Righetti PG. pI-based fractionation of serum proteomes versus anion exchange after enhancement of low-abundance proteins by means of peptide libraries. J Proteomics 2009; 72:1061-70. [DOI: 10.1016/j.jprot.2009.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 06/23/2009] [Indexed: 10/20/2022]
|
43
|
Polymeric strong cation-exchange monolithic column for capillary liquid chromatography of peptides and proteins. J Sep Sci 2009; 32:2565-73. [DOI: 10.1002/jssc.200900255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Shapiro MS, Haswell SJ, Lye GJ, Bracewell DG. Design and characterization of a microfluidic packed bed system for protein breakthrough and dynamic binding capacity determination. Biotechnol Prog 2009; 25:277-85. [PMID: 19224605 DOI: 10.1002/btpr.99] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael S Shapiro
- The Advanced Centre for Biochemical Engineering, Dept. of Biochemical Engineering, University College London, London WC1E7JE, UK
| | | | | | | |
Collapse
|
45
|
Jmeian Y, El Rassi Z. Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids for in-depth proteomics analysis. Electrophoresis 2009; 30:249-61. [DOI: 10.1002/elps.200800639] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Robustness of virus removal by protein A chromatography is independent of media lifetime. J Chromatogr A 2008; 1205:17-25. [DOI: 10.1016/j.chroma.2008.07.094] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 07/17/2008] [Accepted: 07/23/2008] [Indexed: 11/19/2022]
|
47
|
Novel tetrazole-functionalized ion exchanger for weak cation-exchange chromatography of proteins. J Chromatogr A 2008; 1187:197-204. [DOI: 10.1016/j.chroma.2008.02.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/25/2008] [Accepted: 02/08/2008] [Indexed: 11/24/2022]
|
48
|
Xu X, Lenhoff AM. A Predictive Approach to Correlating Protein Adsorption Isotherms on Ion-Exchange Media. J Phys Chem B 2008; 112:1028-40. [DOI: 10.1021/jp0754233] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuankuo Xu
- Center for Molecular and Engineering Thermodynamics, Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716
| | - Abraham M. Lenhoff
- Center for Molecular and Engineering Thermodynamics, Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
49
|
Abstract
Heparins are negatively charged polydispersed linear polysaccharides which have the ability to bind a wide range of biomolecules including enzymes, serine protease inhibitors, growth factors, extracellular matrix proteins, DNA modification enzymes and hormone receptors. In this chromatography, heparin is not only an affinity ligand but also an ion exchanger with high charge density and distribution. Heparin chromatography is an adsorption chromatography in which biomolecules can be specifically and reversibly adsorbed by heparins immobilized on an insoluble support. An advantage of this chromatography is that heparin-binding proteins can be conveniently enriched using its concentration effect. This is especially important for separating low abundance proteins for the analysis in two-dimensional electrophoresis (2DE) or other proteomics approaches. Heparin chromatography is a powerful sample-pretreatment technology that has been widely used to fractionate proteins from extracts of prokaryotic organism or eukaryotic cells. As an example, the fractionation of fibroblast growth factors (FGFs) from the extract of mouse brain microvascular endothelial cells (MVEC) is now introduced to demonstrate the procedure of heparin chromatography.
Collapse
|
50
|
Ishihara T, Kadoya T. Accelerated purification process development of monoclonal antibodies for shortening time to clinic. J Chromatogr A 2007; 1176:149-56. [DOI: 10.1016/j.chroma.2007.10.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 10/25/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
|