1
|
Ram J, Snyder M, Belisle C, Koley S, Vecchiarello N. Defining operating regimes for partition coefficient measurements in protein chromatography. J Chromatogr A 2025; 1745:465730. [PMID: 39919683 DOI: 10.1016/j.chroma.2025.465730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 02/09/2025]
Abstract
Partition coefficient (Kp) measurements are widely used in early- and late-stage downstream process development for biologics to screen binding, elution, and selectivity behaviors of chromatographic resins and conditions. Although the procedure for performing these experiments is straightforward, obtaining accurate Kp and selectivity measurements can be challenging with equilibrium concentrations often being below the limit of detection (LOD) of the analyzing device, and with no guarantee that the partition coefficient measurement will sample from the linear portion of the isotherm. This work develops a theoretical framework and corresponding software tool to inform the selection of phase ratio and protein loading such that partition coefficient experiments satisfy the following three criteria: i.) equilibrium concentrations are above the LOD, ii.) measurements are sampled from the linear portion of the isotherm, and iii.) partition coefficient values fall within a practically relevant range for utility in downstream process development. First, the concept of feasibility maps is developed which calculates equilibrium concentrations, separation factors, and Kp values on the KL vs. qm plane to define a feasibility regime based on a determined LOD, minimum-required separation factor, and maximum relevant Kp. These data are then superimposed onto a large database of historical isotherm data from the literature comprised of 6,310 Langmuir isotherm points over a broad range of chromatography resins and protein modalities, which are used to binarily determine whether these three criteria are met for a given phase ratio and resin loading. Feasibility maps are calculated as a function of phase ratio and resin loading to define an operating regime bounded by a top operating curve and bottom operating line on the resin loading vs. phase ratio plane. Further, closed-form expressions for these operating curves are derived, and the sensitivity of these curves to experimental parameters such as hold-up volume, intraparticle porosity, isotherm linearity criteria, and LOD is then evaluated and discussed in the context of relative error due to isotherm curvature. The impact of measuring Kp values inside vs. outside these operating regimes is assessed by experimentally measuring Kp vs. salt sampled from these two regions and predicting elution salt by mechanistic column modeling from these equilibrium data. These results indicate that Kp measurements sampled from outside the operating regime result in substantial error in model prediction compared to column experiments. Together, this work provides a theoretical foundation for obtaining accurate partition coefficient and selectivity measurements for informing robust experimental design. Further, it develops a software tool for calculating operating regimes, which can leverage in-house historical isotherm data to calculate custom operating regimes.
Collapse
Affiliation(s)
- Janani Ram
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Mark Snyder
- Bio-Rad Laboratories, Process Chromatography Division, Hercules, CA, USA
| | | | - Sushmita Koley
- Bio-Rad Laboratories, Process Chromatography Division, Hercules, CA, USA
| | - Nicholas Vecchiarello
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Beck J, Hochdaninger G, Carta G, Hahn R. Resin structure impacts two-component protein adsorption and separation in anion exchange chromatography. J Chromatogr A 2023; 1705:464208. [PMID: 37453173 DOI: 10.1016/j.chroma.2023.464208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The influence of the resin structure, on the competitive binding and separation of a two-component protein mixture with anion exchange resins is evaluated using conalbumin and green fluorescent protein as a model system. Two macroporous resins, one with large open pores and one with smaller pores, are compared to a resin with grafted polymers. Investigations include measurements of single and two-component isotherms, batch uptake kinetics and two-component column breakthrough. On both macroporous resins, the weaker binding protein, conalbumin, is displaced by the stronger binding green fluorescent protein. For the large pore resin, this results in a pronounced overshoot and efficient separation by frontal chromatography. The polymer-grafted resin exhibits superior capacity and kinetics for one-component adsorption, but is unable to achieve separation due to strongly hindered counter-diffusion. Intermediate separation efficiency is obtained with the smaller pore resin. Confocal laser scanning microscopy provides a mechanistic explanation of the underlying intra-particle diffusional phenomena revealing whether unhindered counter-diffusion of the displaced protein can occur or not. This study demonstrates that the resin's intra-particle structure and its effects on diffusional transport are crucial for an efficient separation process. The novelty of this work lies in its comprehensive nature which includes examples of the three most commonly used resin structures: a small pore agarose matrix, a large-pore polymeric matrix, and a polymer grafted resin. Comparison of the protein adsorption properties of these materials provides valuable clues about advantages and disadvantages of each for anion exchange chromatography applications.
Collapse
Affiliation(s)
- Jürgen Beck
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg Hochdaninger
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Giorgio Carta
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Rainer Hahn
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
3
|
Beck J, Biechele M, Repik C, Gruber P, Furtmüller PG, Hahn R. Desorption of plasmid DNA from anion exchangers: Salt concentration at elution is independent of plasmid size and load. J Sep Sci 2023; 46:e2200943. [PMID: 36807776 DOI: 10.1002/jssc.202200943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/20/2023]
Abstract
Detailed studies on the sorption behavior of plasmids on anion exchangers are rare compared to proteins. In this study, we systematically compare the elution behavior of plasmid DNA on three common anion exchange resins using linear gradient and isocratic elution experiments. Two plasmids of different lengths, 8 and 20 kbp, were studied and their elution characteristics were compared to a green fluorescent protein. Using established methods for determining retention characteristics of biomolecules in ion exchange chromatography lead to remarkable results. In contrast to the green fluorescent protein, plasmid DNA consistently elutes at one characteristic salt concentration in linear gradient elution. This salt concentration was the same independent of plasmid size but differed slightly for different resins. The behavior is consistent also at preparative loadings of plasmid DNA. Thus, only a single linear gradient elution experiment is sufficient to design elution in a process scale capture step. At isocratic elution conditions, plasmid DNA elutes only above this characteristic concentration. Even at slightly lower concentrations most plasmids remain tightly bound. We hypothesize, that the desorption is accompanied by a conformational change leading to a reduced number of available negative charges for binding. This explanation is supported by structural analysis before and after elution.
Collapse
Affiliation(s)
- Jürgen Beck
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Matthias Biechele
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christoph Repik
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, Austria
| | - Petra Gruber
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rainer Hahn
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
4
|
Bernau CR, Knödler M, Emonts J, Jäpel RC, Buyel JF. The use of predictive models to develop chromatography-based purification processes. Front Bioeng Biotechnol 2022; 10:1009102. [PMID: 36312533 PMCID: PMC9605695 DOI: 10.3389/fbioe.2022.1009102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatography is the workhorse of biopharmaceutical downstream processing because it can selectively enrich a target product while removing impurities from complex feed streams. This is achieved by exploiting differences in molecular properties, such as size, charge and hydrophobicity (alone or in different combinations). Accordingly, many parameters must be tested during process development in order to maximize product purity and recovery, including resin and ligand types, conductivity, pH, gradient profiles, and the sequence of separation operations. The number of possible experimental conditions quickly becomes unmanageable. Although the range of suitable conditions can be narrowed based on experience, the time and cost of the work remain high even when using high-throughput laboratory automation. In contrast, chromatography modeling using inexpensive, parallelized computer hardware can provide expert knowledge, predicting conditions that achieve high purity and efficient recovery. The prediction of suitable conditions in silico reduces the number of empirical tests required and provides in-depth process understanding, which is recommended by regulatory authorities. In this article, we discuss the benefits and specific challenges of chromatography modeling. We describe the experimental characterization of chromatography devices and settings prior to modeling, such as the determination of column porosity. We also consider the challenges that must be overcome when models are set up and calibrated, including the cross-validation and verification of data-driven and hybrid (combined data-driven and mechanistic) models. This review will therefore support researchers intending to establish a chromatography modeling workflow in their laboratory.
Collapse
Affiliation(s)
- C. R. Bernau
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - M. Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - J. Emonts
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - R. C. Jäpel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - J. F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Vienna, Austria
- *Correspondence: J. F. Buyel,
| |
Collapse
|
5
|
Patterns of protein adsorption in ion-exchange particles and columns: Evolution of protein concentration profiles during load, hold, and wash steps predicted for pore and solid diffusion mechanisms. J Chromatogr A 2021; 1653:462412. [PMID: 34320430 DOI: 10.1016/j.chroma.2021.462412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
Elucidation of protein transport mechanism in ion exchanges is essential to model separation performance. In this work we simulate intraparticle adsorption profiles during batch adsorption assuming typical process conditions for pore, solid and parallel diffusion. Artificial confocal laser scanning microscopy images are created to identify apparent differences between the different transport mechanisms. Typical sharp fronts for pore diffusion are characteristic for Langmuir equilibrium constants of KL ≥1. Only at KL = 0.1 and lower, the profiles are smooth and practically indistinguishable from a solid diffusion mechanism. During hold and wash steps, at which the interstitial buffer is removed or exchanged, continuation of diffusion of protein molecules is significant for solid diffusion due to the adsorbed phase concentration driving force. For pore diffusion, protein mobility is considerable at low and moderate binding strength. Only when pore diffusion if completely dominant, and the binding strength is very high, protein mobility is low enough to restrict diffusion out of the particles. Simulation of column operation reveals substantial protein loss when operating conditions are not adjusted appropriately.
Collapse
|
6
|
Yu L, Sun Y. Recent advances in protein chromatography with polymer-grafted media. J Chromatogr A 2021; 1638:461865. [PMID: 33453656 DOI: 10.1016/j.chroma.2020.461865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/19/2023]
Abstract
The strategy of using polymer-grafted media is effective to create protein chromatography of high capacity and uptake rate, giving rise to an excellent performance in high-throughput protein separation due to its high dynamic binding capacity. Taking the scientific development and technological innovation of protein chromatography as the objective, this review is devoted to an overview of polymer-grafted media reported in the last five years, including their fabrication routes, protein adsorption and chromatography, mechanisms behind the adsorption behaviors, limitations of polymer-grafted media and chromatographic operation strategies. Particular emphasis is placed on the elaboration and discussion on the behaviors of ion-exchange chromatography (IEC) with polymer-grafted media because IEC is the most suitable chromatographic mode for this kind of media. Recent advances in both the theoretical and experimental investigations on polymer-grafted media are discussed by focusing on their implications to the rational design of novel chromatographic media and mobile phase conditions for the development of high-performance protein chromatography. It is concluded that polymer-grafted media are suitable for development of IEC and mixed-mode chromatography with charged and low hydrophobic ligands, but not for hydrophobic interaction chromatography with high hydrophobic ligands and affinity chromatography with ligands that have single binding site on the protein.
Collapse
Affiliation(s)
- Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
7
|
A thermodynamic evaluation of antibody-surface interactions in multimodal cation exchange chromatography. J Chromatogr A 2020; 1628:461479. [DOI: 10.1016/j.chroma.2020.461479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022]
|
8
|
Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1730-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Creasy A, Reck J, Pabst T, Hunter A, Barker G, Carta G. Systematic Interpolation Method Predicts Antibody Monomer-Dimer Separation by Gradient Elution Chromatography at High Protein Loads. Biotechnol J 2018; 14:e1800132. [DOI: 10.1002/biot.201800132] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/21/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Arch Creasy
- Department of Chemical Engineering; University of Virginia; 102 Engineers’ Way Charlottesville Virginia 22904 USA
| | - Jason Reck
- Department of Chemical Engineering; University of Virginia; 102 Engineers’ Way Charlottesville Virginia 22904 USA
| | | | | | - Gregory Barker
- Biologics Process Development; Bristol-Myers Squibb; Hopewell New Jersey USA
| | - Giorgio Carta
- Department of Chemical Engineering; University of Virginia; 102 Engineers’ Way Charlottesville Virginia 22904 USA
| |
Collapse
|
10
|
Zhao Y, Dong X, Yu L, Liu Y, Sun Y. Implications from protein adsorption onto anion- and cation-exchangers derivatized by modification of poly(ethylenimine)-Sepharose FF with succinic anhydride. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Chung S, Tian J, Tan Z, Chen J, Lee J, Borys M, Li ZJ. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26587] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Chung
- Department of Chemical Engineering; Northeastern University; Boston Massachusetts
| | - Jun Tian
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zhijun Tan
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jie Chen
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jongchan Lee
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Michael Borys
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| |
Collapse
|
12
|
Janakiraman VN, Solé M, Maria S, Pezzini J, Cabanne C, Santarelli X. Comparative study of strong cation exchangers: Structure-related chromatographic performances. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1080:1-10. [DOI: 10.1016/j.jchromb.2018.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 11/26/2022]
|
13
|
Protein adsorption onto diethylaminoethyl dextran modified anion exchanger: Effect of ionic strength and column behavior. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Koshari SHS, Wagner NJ, Lenhoff AM. Effects of Resin Architecture and Protein Size on Nanoscale Protein Distribution in Ion-Exchange Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:673-684. [PMID: 29286243 DOI: 10.1021/acs.langmuir.7b03289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Knowledge of the nanoscale distribution of proteins in chromatographic resins is critical to our mechanistic understanding of separations performance. However, the nano- to mesoscale architecture of these materials is challenging to characterize using conventional techniques. Small-angle neutron scattering was used to probe (1) the nano- to mesoscale structure of chromatographic media and (2) protein sorption in these media in situ with protein-scale resolution. In particular, we characterize the effect of the architecture of cellulose-based and traditional and dextran-modified agarose-based ion-exchange resins on the nanoscale distribution of a relatively small protein (lysozyme) and two larger proteins (lactoferrin and a monoclonal antibody) at different protein loadings. Traditional agarose-based resins (SP Sepharose FF) can be envisioned as comprising long, thin strands of helical resin material around which the proteins adsorb, while higher static capacities are achieved in dextran-modified resins (SP Sepharose XL and Capto S) due to protein partitioning into the increased effective binding volume provided by the dextran. While protein size is shown not to affect the underlying sorption behavior in agarose-based resins such as SP Sepharose FF and XL, it plays an important role in the cellulose-based S HyperCel and the more highly cross-linked agarose-based Capto S, where size-exclusion effects prevent larger proteins from binding to the base matrix resin strands. Based on the data, we propose that entropic partitioning effects such as depletion forces may drive the observed protein crowding. In general, these observations elucidate the structure and point to the mechanism of protein partitioning in different classes of chromatographic materials, providing guidance for optimizing their performance.
Collapse
Affiliation(s)
- Stijn H S Koshari
- Center for Molecular and Engineering Thermodynamics, Department of Chemical and Biomolecular Engineering, University of Delaware , 150 Academy Street, Newark, Delaware 19716, United States
| | - Norman J Wagner
- Center for Molecular and Engineering Thermodynamics, Department of Chemical and Biomolecular Engineering, University of Delaware , 150 Academy Street, Newark, Delaware 19716, United States
| | - Abraham M Lenhoff
- Center for Molecular and Engineering Thermodynamics, Department of Chemical and Biomolecular Engineering, University of Delaware , 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Relating saturation capacity to charge density in strong cation exchangers. J Chromatogr A 2017; 1507:95-103. [DOI: 10.1016/j.chroma.2017.05.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 01/29/2023]
|
16
|
Xue A, Yu L, Sun Y. Implications from protein uptake kinetics onto dextran-grafted Sepharose FF coupled with ion exchange and affinity ligands. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Basconi JE, Carta G, Shirts MR. Effects of protein properties on adsorption and transport in polymer‐grafted ion exchangers: A multiscale modeling study. AIChE J 2017. [DOI: 10.1002/aic.15798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joseph E. Basconi
- Dept. of Chemical EngineeringUniversity of VirginiaCharlottesville VA22904
| | - Giorgio Carta
- Dept. of Chemical EngineeringUniversity of VirginiaCharlottesville VA22904
| | - Michael R. Shirts
- Dept. of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulder CO80309
| |
Collapse
|
18
|
Zhao L, Zhu K, Huang Y, Li Q, Li X, Zhang R, Su Z, Wang Q, Ma G. Enhanced binding by dextran-grafting to Protein A affinity chromatographic media. J Sep Sci 2017; 40:1493-1499. [PMID: 28234424 DOI: 10.1002/jssc.201601196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/28/2016] [Accepted: 01/25/2017] [Indexed: 12/24/2022]
Abstract
Dextran-grafted Protein A affinity chromatographic medium was prepared by grafting dextran to agarose-based matrix, followed by epoxy-activation and Protein A coupling site-directed to sulfhydryl groups of cysteine molecules. An enhancement of both the binding performance and the stability was achieved for this dextran-grafted Protein A chromatographic medium. Its dynamic binding capacity was 61 mg immunoglobulin G/mL suction-dried gel, increased by 24% compared with that of the non-grafted medium. The binding capacity of dextran-grafted medium decreased about 7% after 40 cleaning-in-place cycles, much lower than that of the non-grafted medium as decreased about 15%. Confocal laser scanning microscopy results showed that immunoglobulin G was bound to both the outside and the inside of dextran-grafted medium faster than that of non-grafted one. Atomic force microscopy showed that this dextran-grafted Protein A medium had much rougher surface with a vertical coordinate range of ±80 nm, while that of non-grafted one was ±10 nm. Grafted dextran provided a more stereo surface morphology and immunoglobulin G molecules were more easily to be bound. This high-performance dextran-grafted Protein A affinity chromatographic medium has promising applications in large-scale antibody purification.
Collapse
Affiliation(s)
- Lan Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China
| | - Kai Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China.,School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, P.R. China
| | - Yongdong Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China
| | - Qiang Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiunan Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China
| | - Rongyue Zhang
- Department of Chemical Engineering, Beijing Institute of Petro-chemical Technology, Beijing, P.R. China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China
| | - Qibao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, P.R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China.,Jiangsu National Synergetic Innovation, Center for Advance Materials (SICAM), Nanjing, P.R. China
| |
Collapse
|
19
|
Lu HL, Lin DQ, Zhang QL, Yao SJ. Evaluation on adsorption selectivity of immunoglobulin G with 2-mercapto-1-methyl-imidazole-based hydrophobic charge-induction resins. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Wang HY, Sun Y, Zhang SL, Luo J, Shi QH. Fabrication of high-capacity cation-exchangers for protein chromatography by atom transfer radical polymerization. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Angelo JM, Lenhoff AM. Determinants of protein elution rates from preparative ion-exchange adsorbents. J Chromatogr A 2016; 1440:94-104. [PMID: 26948763 PMCID: PMC4795180 DOI: 10.1016/j.chroma.2016.02.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/05/2016] [Accepted: 02/14/2016] [Indexed: 11/26/2022]
Abstract
The rate processes involved in elution in preparative chromatography can affect both peak resolution and hence selectivity as well as practical factors such as facility fit. These processes depend on the physical structure of the adsorbent particles, the amount of bound solute, the solution conditions for operation or some combination of these factors. Ion-exchange adsorbents modified with covalently attached or grafted polymer layers have become widely used in preparative chromatography. Their often easily accessible microstructures offer substantial binding capacities for biomolecules, but elution has sometimes been observed to be undesirably slow. In order to determine which physicochemical phenomena control elution behavior, commercially available cellulosic, dextran-grafted and unmodified agarose materials were characterized here by their elution profiles at various conditions, including different degrees of loading. Elution data were analyzed under the assumption of purely diffusion-limited control, including the role of pore structure properties such as porosity and tortuosity. In general, effective elution rates decreased with the reduction of accessible pore volume, but differences among different proteins indicated the roles of additional factors. Additional measurements and analysis, including the use of confocal laser scanning microscopy to observe elution within single chromatographic particles, indicated the importance of protein association within the particle during elution. The use of protein stabilizing agents was explored in systems presenting atypical elution behavior, and l-arginine and disaccharide excipients were shown to alleviate the effects for one protein, lysozyme, in the presence of sodium chloride. Incorporation of these excipients into eluent buffer gave rise to faster elution and significantly lower pool volumes in elution from polymer-modified adsorbents.
Collapse
Affiliation(s)
- James M Angelo
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
22
|
Protein adsorption to poly(ethylenimine)-modified Sepharose FF: VI. Partial charge neutralization drastically increases uptake rate. J Chromatogr A 2016; 1427:102-10. [DOI: 10.1016/j.chroma.2015.11.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/20/2015] [Accepted: 11/26/2015] [Indexed: 01/18/2023]
|
23
|
Double-peak elution profile of a monoclonal antibody in cation exchange chromatography is caused by histidine-protonation-based charge variants. J Chromatogr A 2015; 1424:92-101. [DOI: 10.1016/j.chroma.2015.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 12/13/2022]
|
24
|
Adsorption equilibrium and kinetics of monomer–dimer monoclonal antibody mixtures on a cation exchange resin. J Chromatogr A 2015; 1402:46-59. [DOI: 10.1016/j.chroma.2015.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/22/2022]
|
25
|
Protein adsorption to poly(ethylenimine)-modified Sepharose FF: V. Complicated effects of counterions. J Chromatogr A 2015; 1404:44-50. [DOI: 10.1016/j.chroma.2015.05.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 04/29/2015] [Accepted: 05/20/2015] [Indexed: 11/19/2022]
|
26
|
Liu T, Lin DQ, Zhang QL, Yao SJ. Characterization of immunoglobulin adsorption on dextran-grafted hydrophobic charge-induction resins: Cross-effects of ligand density and pH/salt concentration. J Chromatogr A 2015; 1396:45-53. [DOI: 10.1016/j.chroma.2015.03.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/14/2015] [Accepted: 03/25/2015] [Indexed: 12/01/2022]
|
27
|
Liu N, Wang Z, Liu X(M, Yu L, Sun Y. Characterization of novel mixed-mode protein adsorbents fabricated from benzoyl-modified polyethyleneimine-grafted Sepharose. J Chromatogr A 2014; 1372C:157-165. [DOI: 10.1016/j.chroma.2014.10.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/26/2014] [Indexed: 02/03/2023]
|
28
|
Liu T, Lin DQ, Lu HL, Yao SJ. Preparation and evaluation of dextran-grafted agarose resin for hydrophobic charge-induction chromatography. J Chromatogr A 2014; 1369:116-24. [DOI: 10.1016/j.chroma.2014.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022]
|
29
|
Traylor SJ, Xu X, Li Y, Jin M, Li ZJ. Adaptation of the pore diffusion model to describe multi-addition batch uptake high-throughput screening experiments. J Chromatogr A 2014; 1368:100-6. [DOI: 10.1016/j.chroma.2014.09.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/08/2014] [Accepted: 09/23/2014] [Indexed: 11/17/2022]
|
30
|
Borg N, Brodsky Y, Moscariello J, Vunnum S, Vedantham G, Westerberg K, Nilsson B. Modeling and robust pooling design of a preparative cation-exchange chromatography step for purification of monoclonal antibody monomer from aggregates. J Chromatogr A 2014; 1359:170-81. [DOI: 10.1016/j.chroma.2014.07.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 06/19/2014] [Accepted: 07/14/2014] [Indexed: 01/14/2023]
|
31
|
Protein adsorption to poly(ethylenimine)-modified Sepharose FF. IV. Dynamic adsorption and elution behaviors. J Chromatogr A 2014; 1362:218-24. [PMID: 25179288 DOI: 10.1016/j.chroma.2014.08.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 11/21/2022]
Abstract
We have previously investigated bovine serum albumin (BSA) uptake to poly(ethylenimine) (PEI)-grafted Sepharose FF. It was found that there was a critical ionic capacity (cIC; 600mmol/L) for BSA, above which the protein adsorption capacity and uptake kinetics increased drastically. In this work, two poly(ethylenimine) (PEI)-grafted resins with IC values of 271mmol/L (FF-PEI-L270) and 683mmol/L (FF-PEI-L680), which were below and above the cIC, respectively, were chosen to investigate the breakthrough and linear gradient elution (LGE) behaviors of BSA. Commercially available anion exchanger, Q Sepharose FF, was used for comparison. The DBC values of FF-PEI-L680 were much higher in the entire residence time range (2-10min) than the other two resins due to its high static adsorption capacity and uptake kinetics. At a residence time of 5.0min, the DBC of FF-PEI-L680 (104mg/mL) was about seven times that of FF-PEI-L270 and three times that of Q Sepharose FF. A rise-fall trend of the DBCs with increasing ionic strength (IS) was found for all the three resins studied, indicating the presence of electrostatic exclusion for protein uptake at low IS. With increasing NaCl concentration from 20 to 200mmol/L, FF-PEI-L680 kept very high DBC values (64-114mg/mL). In addition, FF-PEI-L270 showed more favorable adsorption properties than Q Sepharose FF at 100-300mmol/L NaCl. These results proved that the three-dimensional grafting ion exchange layer on the PEI resins enhanced their tolerance to IS. In the study of LGE, the three resins showed similar elution behaviors and no distinct peak tailings were observed. The salt concentrations at the elution peaks (IR) were in the order of FF-PEI-L680>FF-PEI-L270>Q Sepharose FF, indicating that the elution for the PEI resins needed higher salt concentrations, which was also an appearance of the salt-tolerant feature of the PEI resins. When protein loading amount was increased to the value equivalent to the DBC at 10% breakthrough, the adsorbed BSA could be eluted at lower salt concentrations. The chromatographic study has provided new insights into the practical application of the PEI-based anion exchangers.
Collapse
|
32
|
Vetter TA, Ferreira G, Robbins D, Carta G. Predicting Retention and Resolution of Protein Charge Variants in Mixed-Beds of Strong and Weak Anion Exchange Resins with Step-Induced pH Gradients. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2014.907810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part I. Chromatographic elution and batch adsorption behavior. J Chromatogr A 2014; 1356:117-28. [DOI: 10.1016/j.chroma.2014.06.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 11/20/2022]
|
34
|
Hong Y, Liu N, Wei W, Yu LL, Ma G, Sun Y. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: III. Comparison between different proteins. J Chromatogr A 2014; 1342:30-6. [DOI: 10.1016/j.chroma.2014.03.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
35
|
Traylor SJ, Bowes BD, Ammirati AP, Timmick SM, Lenhoff AM. Fluorescence recovery after photobleaching investigation of protein transport and exchange in chromatographic media. J Chromatogr A 2014; 1340:33-49. [PMID: 24685162 DOI: 10.1016/j.chroma.2014.02.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Abstract
A fully-mechanistic understanding of protein transport and sorption in chromatographic materials has remained elusive despite the application of modern continuum and molecular observation techniques. While measuring overall uptake rates in proteins in chromatographic media is relatively straightforward, quantifying mechanistic contributions is much more challenging. Further, at equilibrium in fully-loaded particles, measuring rates of kinetic exchange and diffusion can be very challenging. As models of multicomponent separations rely on accurate depictions of protein displacement and elution, a straightforward method is desired to measure the mobility of bound protein in chromatographic media. We have adapted fluorescence recovery after photobleaching (FRAP) methods to study transport and exchange of protein at equilibrium in a single particle. Further, we have developed a mathematical model to capture diffusion and desorption rates governing fluorescence recovery and investigate how these rates vary as a function of protein size, binding strength and media type. An emphasis is placed on explaining differences between polymer-modified and traditional media, which in the former case is characterized by rapid uptake, slow displacement and large elution pools, differences that have been postulated to result from steric and kinetic limitations. Finally, good qualitative agreement is achieved predicting flow confocal displacement profiles in polymer-modified materials, based solely on estimates of kinetic and diffusion parameters from FRAP observations.
Collapse
Affiliation(s)
- Steven J Traylor
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Brian D Bowes
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Anthony P Ammirati
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Steven M Timmick
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
36
|
Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: Advantages of gigaporous media beyond enhanced binding capacity. J Chromatogr A 2014; 1331:69-79. [DOI: 10.1016/j.chroma.2014.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 11/18/2022]
|
37
|
Adsorption of polyethylene-glycolated bovine serum albumin on macroporous and polymer-grafted anion exchangers. J Chromatogr A 2014; 1326:29-38. [DOI: 10.1016/j.chroma.2013.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/27/2013] [Accepted: 12/04/2013] [Indexed: 11/24/2022]
|
38
|
Protein adsorption to poly(ethylenimine)-modified Sepharose FF: I. A critical ionic capacity for drastically enhanced capacity and uptake kinetics. J Chromatogr A 2013; 1305:76-84. [DOI: 10.1016/j.chroma.2013.07.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 11/18/2022]
|
39
|
Yu LL, Sun Y. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: II. Effect of ionic strength. J Chromatogr A 2013; 1305:85-93. [DOI: 10.1016/j.chroma.2013.07.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 11/29/2022]
|
40
|
Estimation of methacrylate monolith binding capacity from pressure drop data. J Chromatogr A 2013; 1272:50-5. [DOI: 10.1016/j.chroma.2012.11.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/20/2012] [Accepted: 11/22/2012] [Indexed: 11/20/2022]
|
41
|
Perez-Almodovar EX, Wu Y, Carta G. Multicomponent adsorption of monoclonal antibodies on macroporous and polymer grafted cation exchangers. J Chromatogr A 2012; 1264:48-56. [DOI: 10.1016/j.chroma.2012.09.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/20/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022]
|
42
|
Hahn R. Methods for characterization of biochromatography media. J Sep Sci 2012; 35:3001-32. [DOI: 10.1002/jssc.201200770] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Rainer Hahn
- Department of Biotechnology; University of Natural Resources and Life Sciences; Vienna Austria
- Austrian Centre of Industrial Biotechnology; Vienna Austria
| |
Collapse
|
43
|
Counterion effects on protein adsorption equilibrium and kinetics in polymer-grafted cation exchangers. J Chromatogr A 2012; 1253:83-93. [DOI: 10.1016/j.chroma.2012.06.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/24/2022]
|
44
|
Yu LL, Sun Y. Trace adsorption of positively charged proteins onto Sepharose FF and Sepharose FF-based anion exchangers. J Chromatogr A 2012; 1253:105-9. [DOI: 10.1016/j.chroma.2012.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
45
|
Łącki KM. High-throughput process development of chromatography steps: Advantages and limitations of different formats used. Biotechnol J 2012; 7:1192-202. [DOI: 10.1002/biot.201100475] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/23/2012] [Accepted: 06/28/2012] [Indexed: 11/12/2022]
|
46
|
Technology trends in antibody purification. J Chromatogr A 2012; 1221:57-70. [DOI: 10.1016/j.chroma.2011.10.034] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 10/09/2011] [Accepted: 10/12/2011] [Indexed: 01/21/2023]
|
47
|
Tao Y, Chen N, Carta G, Ferreira G, Robbins D. Modeling multicomponent adsorption of monoclonal antibody charge variants in cation exchange columns. AIChE J 2011. [DOI: 10.1002/aic.13718] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Guiochon G, Beaver LA. Separation science is the key to successful biopharmaceuticals. J Chromatogr A 2011; 1218:8836-58. [DOI: 10.1016/j.chroma.2011.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
|
49
|
Tao Y, Almodovar EXP, Carta G, Ferreira G, Robbins D. Adsorption kinetics of deamidated antibody variants on macroporous and dextran-grafted cation exchangers. III. Microscopic studies. J Chromatogr A 2011; 1218:8027-35. [DOI: 10.1016/j.chroma.2011.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
|
50
|
|