1
|
Cao H, Liu Q, Liu Y, Zhao J, Qiao W, Wang Y, Liu Y, Chen L. Progress in triacylglycerol isomer detection in milk lipids. Food Chem X 2024; 22:101433. [PMID: 38764784 PMCID: PMC11101684 DOI: 10.1016/j.fochx.2024.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
In triacylglycerols (TAGs), position differences of fatty acids on the glycerol skeleton produce various TAG isomers. These TAG isomers have different pathways of digestion, absorption, and utilization in infants, thereby affecting TAG nutritional properties of TAGs. Here, we review the progress of research on methods for detecting TAG isomers, and identify direction and thought for improving these methods, including novel chromatographic combinations, perfect algorithm, and improved equipment. The ensuing optimization of these methods is expected to provide robust guarantee for the gradual improvement of milk-derived TAG isomer detection, and is an important prerequisite for infant formula to mimic the structured lipids of human milk.
Collapse
Affiliation(s)
- Huiru Cao
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yuru Wang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| |
Collapse
|
2
|
Ianni F, Carotti A, Protti M, Favilli A, Gerli S, Furlanetto S, Mercolini L, Sardella R. Chiral high-performance liquid chromatography analysis of mono-, di-, and triacylglycerols with amylose- and cellulose-phenylcarbamate-based stationary phases. J Pharm Biomed Anal 2023; 236:115720. [PMID: 37729743 DOI: 10.1016/j.jpba.2023.115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
The ever-increasing technological advancement in the (ultra)high-performance liquid chromatography tandem (high-resolution) mass spectrometry platforms have largely contributed to steeply intensify the interest towards lipidomics research. However, mass spectrometers alone are unable to distinguish between enantiomers. This obstacle is especially evident in the case of glycerolipids analysis due the prochiral nature of glycerol. Until a couple of decades ago, the stereoselective analysis of triacylglycerols (TAGs) was performed on the end products generated either from their enzymatic or chemical hydrolysis, namely on mono- or diacyl-sn-glycerols (MAGs and DAGs, respectively). These were then mostly analyzed with Pirkle-type chiral stationary phases (CSPs) after dedicated multi-step derivatization procedures. One of the most significant drawbacks of these traditional methods for enantioselective TAGs analysis (actually of the produced MAGs and DAGs, often investigated as target species per se) was the difficulty to totally abolish the migration of fatty acyls between glycerol positions. This made difficult to control and keep unaltered the stereochemistry of the original molecules. Over the last two decades, it has been widely demonstrated that the enantioselective analysis of intact TAGs as well as of non-derivatized MAGs and DAGs can be efficiently obtained using polysaccharide-based CSPs incorporating either amylose- or cellulose-phenylcarbamate derivatives chiral selectors. In this paper, the enantioselective methods developed with these CSPs for the enantioselective direct LC analysis of MAGs, DAGs and TAGs embedding different types of fatty acid residues are comprehensively reviewed.
Collapse
Affiliation(s)
- Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Alessandro Favilli
- Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Sandro Gerli
- Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy; Center for Perinatal and Reproductive Medicine, University of Perugia, Santa Maria della Misericordia University Hospital, 06132 Perugia, Italy
| | - Sandra Furlanetto
- Department of Chemistry "U. Schiff", University of Florence, Via U. Schiff 6, 50019 Florence, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy; Center for Perinatal and Reproductive Medicine, University of Perugia, Santa Maria della Misericordia University Hospital, 06132 Perugia, Italy.
| |
Collapse
|
3
|
Tozawa K, Makino K, Tanaka Y, Nakamura K, Inagaki A, Tabata H, Oshitari T, Natsugari H, Kuroda N, Kanemaru K, Oda Y, Takahashi H. Conversion of Racemic Alkyl Aryl Sulfoxides into Pure Enantiomers Using a Recycle Photoreactor: Tandem Use of Chromatography on Chiral Support and Photoracemization on Solid Support. J Org Chem 2023. [PMID: 37155937 DOI: 10.1021/acs.joc.3c00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chiral sulfoxides are valuable in the fields of medicinal chemistry and organic synthesis. A recycle photoreactor utilizing the concept of deracemization, where a racemate is converted into a pure enantiomer, is developed and successfully applied in the syntheses of chiral alkyl aryl sulfoxides. The recycling system consists of rapid photoracemization using an immobilized photosensitizer and separation of the enantiomers via chiral high-performance liquid chromatography, and the desired pure chiral sulfoxides are obtained after 4-6 cycles. The key to the success of the system is the photoreactor site, wherein the photosensitizer 2,4,6-triphenylpyrylium is immobilized on the resin and irradiated (405 nm) to enable the rapid photoracemizations of the sulfoxides. As the green recycle photoreactor requires no chiral components, it should be a useful alternative system for application in producing chiral compounds.
Collapse
Affiliation(s)
- Kumi Tozawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Kosho Makino
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Yuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Kayo Nakamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Akiko Inagaki
- Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Hidetsugu Tabata
- Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tetsuta Oshitari
- Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hideaki Natsugari
- Graduate School of Pharmaceutical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noritaka Kuroda
- YMC Co., Ltd., 284 Daigo, Karasuma Nishiiru Gojo-dori, Shimogyo-ku, Kyoto 600-8106, Japan
| | - Kunio Kanemaru
- IWASAKI ELECTRIC CO., LTD., 1-1, Ichiriyama-cho, Gyoda-shi, Saitama 361-8505, Japan
| | - Yuji Oda
- IWASAKI ELECTRIC CO., LTD., 1-1, Ichiriyama-cho, Gyoda-shi, Saitama 361-8505, Japan
| | - Hideyo Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| |
Collapse
|
4
|
Yoshinaga K, Yamazaki K, Nagai T, Tanaka S, Gotoh N. Stable Isotope Tracer to Reveal the Interconversion between 3-Monochloro-1,2-propanediol Ester and Glycidyl Ester during the Deodorization Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15955-15961. [PMID: 36480579 DOI: 10.1021/acs.jafc.2c06706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, the effects of the deodorization process on the interconversion between 3-monochloro-1,2-propanediol ester (3-MCPDE) and glycidyl ester (GE) using 3-MCPDE or GE standards containing deuterium-labeled palmitic acid (*P), oleic acid (*O), or linoleic acid (*L) were examined. Deuterium-labeled 3-MCPDE or GE was added to palm oil then deodorized at 250 °C for 20, 40, or 60 min. In the 3-MCPDE-spiked palm oil, the deuterium-labeled 3-MCPDE content decreased with deodorization time. Moreover, GE containing *P or *O was detected, but there was no GE containing *L in the 3-MCPDE-spiked palm oil. In the GE-spiked oil, GE containing *O or *L decreased with deodorization time, but the content of GE containing *P did not change over the time. Furthermore, deuterium-labeled 3-MCPDE was not detected in the GE-spiked oil. These results suggest that 3-MCPDE is converted into GE and that fatty acid species bound to 3-MCPDE or GE may affect their interconversion.
Collapse
Affiliation(s)
- Kazuaki Yoshinaga
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | - Kaori Yamazaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Toshiharu Nagai
- Tsukishima Foods Industry Co., Ltd., 3-17-9 Higashi Kasai, Edogawa-ku, Tokyo 134-8520, Japan
| | - Seiya Tanaka
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
5
|
Duan Y, Zuo Z, Chen Y, Song Q, Yu M, Yang Y. A validated LC-MS/MS method for the determination of L-hyoscyamine in human plasma: Application in clinical study. Biomed Chromatogr 2022; 36:e5485. [PMID: 35996811 DOI: 10.1002/bmc.5485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022]
Abstract
Atropine is a racemic mixture of D- and L-hyoscyamine, while L-hyoscyamine is the only effective ingredient. In this study, a new sensitive, stable, and selective LC/MS assay was developed for determination of L-hyoscyamine and applied to the clinical study. The parent-product (m/z) transition pair of L-hyoscyamine was 290.1→124.1. Chromatographic separations were performed using a Chiral MZ column (250 mm×4.6 mm, 5.0 μm) by a stepwise gradient elution mode with n-hexane, isopropanol and diethylamine as mobile phases. L-hyoscyamine in human plasma were extracted using liquid-liquid extraction process. This assay displayed a good linearity over a concentration range of 20.0-400 pg/mL for L-hyoscyamine. The accuracy of the validation assay for L-hyoscyamine ranged from -2.7% to 4.5%, and the precision were within 6.3% coefficient of variation. L-hyoscyamine in human plasma were stable at different storage conditions. The method has been successfully applied to plasma samples obtained from a safety study in human.
Collapse
Affiliation(s)
- Yunhai Duan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Suzhou Haike Medical Technology Co. Ltd., Suzhou, China
| | - Zhenglong Zuo
- Suzhou Haike Medical Technology Co. Ltd., Suzhou, China
| | - Yinchun Chen
- Suzhou Haike Medical Technology Co. Ltd., Suzhou, China
| | - Qingqing Song
- Suzhou Haike Medical Technology Co. Ltd., Suzhou, China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yong Yang
- Suzhou Haike Medical Technology Co. Ltd., Suzhou, China
| |
Collapse
|
6
|
Regio- and Stereospecific Analysis of Triacylglycerols—A Brief Overview of the Challenges and the Achievements. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The efforts to reveal, in detail, the molecular and intramolecular structures of one of the main lipid classes, namely, triacyl-sn-glycerols, which are now known to affect their specific and important role in all living organisms, are briefly overviewed. Some milestones of significance in the gradual but continuous development and improvement of the analytical methodology to identify the triacylglycerol regio- and stereoisomers in complex lipid samples are traced throughout the years: the use of chromatography based on different separation principles; the improvements in the chromatographic technique; the development and use of different detection techniques; the attempts to simplify and automatize the analysis without losing the accuracy of identification. The spectacular recent achievements of two- and multidimensional methods used as tools in lipidomics are presented.
Collapse
|
7
|
Kalpio M, Linderborg KM, Fabritius M, Kallio H, Yang B. Strategy for stereospecific characterization of natural triacylglycerols using multidimensional chromatography and mass spectrometry. J Chromatogr A 2021; 1641:461992. [PMID: 33706165 DOI: 10.1016/j.chroma.2021.461992] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
Stereoisomeric determination of individual triacylglycerols (TAGs) in natural oils and fats is a challenge due to similar physicochemical properties of TAGs with different fatty acid combinations. In this study, we present a strategy to resolve the enantiomeric composition of nutritionally important TAGs in sea buckthorn (Hippophaë rhamnoides) as an example food matrix. The targeted strategy combines 1) fatty acid profiling with GC, 2) separation of TAGs with RP-HPLC, 3) stereospecific separation with chiral-phase HPLC and 4) structural characterization with MS. Three major asymmetric diacid- and triacid-TAG species were analyzed in sea buckthorn pulp oil. Off-line coupling of RP-HPLC and chiral-phase HPLC allowed separation of several TAG regioisomers and enantiomers, which could not be resolved using one-dimensional techniques. Enantiomeric ratios were determined and specific structural analysis of separated TAGs was performed using direct inlet ammonia negative ion chemical ionization method. Of the TAG 16:0/16:1/16:1 palmitic acid (C16:0) was located predominantly in a primary position and the enantiomeric ratio of TAG sn-16:1-16:1-16:0 to sn-16:0-16:1-16:1 was 70.5/29.5. Among the TAGs 16:0/16:0/18:2 and 16:0/16:0/16:1, only ca 5% had C16:0 in the sn-2 position, thus, ca 95% were symmetric sn-16:0-18:2-16:0 and sn-16:0-16:1-16:0. The enantiomeric ratio of triacid-TAGs containing C16:0 and two unsaturated fatty acids (palmitoleic C16:1, oleic C18:1 or linoleic acids C18:2) could not be resolved due to lack of commercial enantiopure reference compounds. However, it became clear that the targeted strategy presented offer unique and convenient method to study the enantiomeric structure of individual TAGs.
Collapse
Affiliation(s)
- Marika Kalpio
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| | - Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Mikael Fabritius
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
8
|
Palyzová A, Cajthaml T, Řezanka T. Separation of regioisomers and enantiomers of triacylglycerols containing branched fatty acids (iso and/or anteiso). Electrophoresis 2021; 42:1832-1843. [DOI: 10.1002/elps.202000320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Andrea Palyzová
- Institute of Microbiology The Czech Academy of Sciences Prague 4 Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology The Czech Academy of Sciences Prague 4 Czech Republic
- Institute for Environmental Studies Faculty of Science Charles University Prague 2 Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology The Czech Academy of Sciences Prague 4 Czech Republic
| |
Collapse
|
9
|
Palyzová A, Řezanka T. Separation and identification of diacylglycerols containing branched chain fatty acids by liquid chromatography-mass spectrometry. J Chromatogr A 2020; 1635:461708. [PMID: 33223151 DOI: 10.1016/j.chroma.2020.461708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
A combination of two chromatographic and two enzymatic methods was used for the analysis of molecular species of lipids from Gram-positive bacteria of the genus Kocuria. Gram-positive bacteria contain a majority of branched fatty acids (FAs), especially iso- and/or anteiso-FAs. Two strains K. rhizophila were cultivated at three different temperatures (20, 28, and 37°C) and the majority phospholipid, i.e., the mixture of molecular species of phosphatidylglycerols (PGs) was separated by means of hydrophilic interaction liquid chromatography (HILIC). After enzymatic hydrolysis of PGs by phospholipase C and derivatization of the free OH group, the sn-1,2-diacyl-3-acetyl triacylglycerols (AcTAGs) were separated by reversed phase HPLC. Molecular species such as i-15:0/i-15:0/2:0, ai-15:0/ai-15:0/2:0, and 15:0/15:0/2:0 (straight chains) were identified by liquid chromatography-positive electrospray ionization mass spectrometry. The tandem mass spectra of both standards and natural compounds containing iso, anteiso and straight chain FAs with the same carbons were identical. Therefore, for identification of the ratio of two regioisomers, i.e. i-15:0/ai-15:0/2:0 vs. ai-15:0/i-15:0/2:0, they were cleavage by pancreatic lipase. The mixture of free fatty acids (FFAs) and 2-monoacylglycerols (2-MAGs) was obtained. After their separation by TLC and esterification and/or transesterification, the fatty acid methyl esters were quantified by GC-MS and thus the ratio of regioisomers was determined. It has been shown that the ratio of PG (containing as majority i-15: 0 / i-15: 0, i-15: 0 / ai-15: 0 and / or ai-15: 0 / i-15: 0 and ai-15: 0 / ai-15: 0 molecular species) significantly affected the membrane flow of bacterial cells cultured at different temperatures.
Collapse
Affiliation(s)
- Andrea Palyzová
- Institute of Microbiology, the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology, the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
10
|
Masuda K, Abe K, Murano Y. A Practical Method for Analysis of Triacylglycerol Isomers Using Supercritical Fluid Chromatography. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Koji Masuda
- Central Research Laboratory The Nisshin OilliO Group, Ltd 1 Shinmori‐cho, Isogo‐ku Yokohama Kanagawa 235‐8558 Japan
| | - Kosuke Abe
- Nisshin Global Research Center SDN. BHD c/o Intercontinental Specialty Fats Sdn Bhd 2nd Floor, Lot.1, Lebuh Sultan Hishamudin 2, Kawasan 20, Bandar Sultan Suleiman, 42009 Port Klang Selangor Darul Ehsan Malaysia
| | - Yoshihiro Murano
- Central Research Laboratory The Nisshin OilliO Group, Ltd 1 Shinmori‐cho, Isogo‐ku Yokohama Kanagawa 235‐8558 Japan
| |
Collapse
|
11
|
Simultaneous Quantification of Mixed-Acid Triacylglycerol Positional Isomers and Enantiomers in Palm Oil and Lard by Chiral High-Performance Liquid Chromatography Coupled with Mass Spectrometry. Symmetry (Basel) 2020. [DOI: 10.3390/sym12091385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Palm oil and lard are edible fats which are rich in palmitic (P) and oleic acids (O). In this study, triacylglycerol (TAG) positional isomers (symmetric and asymmetric isomers) and enantiomers (asymmetric isomers) in palm oil and lard were quantified simultaneously by using liquid chromatography/mass spectrometry. The CHIRALPAK IF-3 column used in our previous study recognized the difference of TAG isomers consisting of P and O in palm oil and lard, separated sn-OPP/sn-PPO/sn-POP and sn-OPO/sn-OOP/sn-POO into each isomer peak, and enabled the quantification of these TAG isomers with good recovery (95–120%). Although sn-POP and sn-OPO were the major TAGs in palm oil and lard, a comparison of the abundance ratios of TAG enantiomers such as sn-PPO/sn-OPP and sn-OOP/sn-POO revealed that there were slightly more TAG enantiomers with O at the sn-1 position and P at the sn-3 position in palm oil and P at the sn-1 position and O at the sn-3 position in lard. These results were consistent with previous reports for the positional distribution of fatty acids of palm oil and lard. This is the first study that has enabled all TAG isomers consisting of P and O in natural oils and fats to be individually quantified by mass spectrometry.
Collapse
|
12
|
Separation of triacylglycerols containing allenic and acetylenic fatty acids by enantiomeric liquid chromatography-mass spectrometry. J Chromatogr A 2020; 1623:461161. [DOI: 10.1016/j.chroma.2020.461161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/25/2023]
|
13
|
Synthesis and enantiospecific analysis of enantiostructured triacylglycerols containing n-3 polyunsaturated fatty acids. Chem Phys Lipids 2020; 231:104937. [PMID: 32603657 DOI: 10.1016/j.chemphyslip.2020.104937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022]
Abstract
The stereospecific structure of triacylglycerols (TAGs) affects the bioavailability of fatty acids. Lack of enantiopure reference compounds and effective enantiospecific methods have hindered the stereospecific analysis of individual TAGs. Twelve novel enantiostructured AAB-type TAGs were synthesized containing one of the three n-3 polyunsaturated fatty acid: α-linolenic acid (ALA), eicosapentaenoic acid (EPA), or docosahexaenoic acid (DHA) in sn-1 or sn-3 position. These compounds formed six enantiomer pairs, which were separated with recycling high-performance liquid chromatography using chiral columns and UV detection. The chromatographic retention behavior of the enantiomers and the stereospecific elution order were studied. The enantiomer with an n-3 PUFA in the sn-1 position eluted faster than the enantiomer with the n-3 PUFA in the sn-3 position, regardless of the carbon chain length and number of double bonds of the PUFA. TAG enantiomers containing DHA exhibited highly different retention on the chiral column and were separated after the first column, whereas recycling was needed to separate the enantiomer pairs containing ALA or EPA. The system using two identical columns and one mobile phase, without sample derivatization, proved to be very effective also for peak purity assessment, confirming the enantiopurity of the synthesized structured TAGs being higher than 98 % (96 % ee).
Collapse
|
14
|
|
15
|
Rapid securing of reference substances from Peucedanum japonicum Thunberg by recycling preparative high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1133:121835. [DOI: 10.1016/j.jchromb.2019.121835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
|
16
|
Kostanyan A, Martynova M, Erastov A, Belova V. Simultaneous concentration and separation of target compounds from multicomponent mixtures by closed-loop recycling countercurrent chromatography. J Chromatogr A 2018; 1560:26-34. [DOI: 10.1016/j.chroma.2018.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
|
17
|
Minarik M, Franc M, Minarik M. High performance liquid chromatography column efficiency enhancement by zero dead volume recycling and practical approach using park and recycle arrangement. J Chromatogr A 2018; 1554:1-7. [PMID: 29706399 DOI: 10.1016/j.chroma.2018.03.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 11/26/2022]
Abstract
A new instrumental approach to recycling HPLC is described. The concept is based on fast reintroduction of incremental peak sections back onto the separation column. The re-circulation is performed within a closed loop containing only the column and two synchronized switching valves. By having HPLC pump out of the cycle, the method minimizes peak broadening due to dead volume. As a result the efficiency is dramatically increased allowing for the most demanding analytical applications. In addition, a parking loop is employed for temporary storage of analytes from the middle section of the separated mixture prior to their recycling.
Collapse
Affiliation(s)
- Marek Minarik
- Watrex Praha s.r.o., Drnovska 1112/60, CZ - 161 00 Prague, Czech Republic; Department of Analytical Chemistry, Faculty of Sciences, Charles University, Albertov 6, CZ - 128 43 Prague, Czech Republic
| | - Martin Franc
- Watrex Praha s.r.o., Drnovska 1112/60, CZ - 161 00 Prague, Czech Republic.
| | - Milan Minarik
- Watrex Praha s.r.o., Drnovska 1112/60, CZ - 161 00 Prague, Czech Republic
| |
Collapse
|
18
|
Kostanyan AE. Non-Steady-State Convective Diffusion in a One-Dimensional Closed Loop. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2018. [DOI: 10.1134/s0040579517060082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Kostanyan AE. Theoretical study of separation and concentration of solutes by closed-loop recycling liquid-liquid chromatography with multiple sample injection. J Chromatogr A 2017; 1506:82-92. [DOI: 10.1016/j.chroma.2017.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 11/27/2022]
|
20
|
Beppu F, Kawamatsu T, Yamatani Y, Nagai T, Yoshinaga K, Mizobe H, Yoshida A, Kubo A, Kanda J, Gotoh N. Comparison of Catabolic Rates of <i>sn</i>-1, <i>sn</i>-2, and <i>sn</i>-3 Fatty Acids in Triacylglycerols Using <sup>13</sup>CO<sub>2</sub> Breath Test in Mice. J Oleo Sci 2017; 66:85-91. [DOI: 10.5650/jos.ess16124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fumiaki Beppu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Takashi Kawamatsu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Yoshio Yamatani
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | | | | | | | | | - Atsushi Kubo
- Department of Ocean Science, Tokyo University of Marine Science and Technology
| | - Jota Kanda
- Department of Ocean Science, Tokyo University of Marine Science and Technology
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
21
|
Shibata T, Shinkura S, Ohnishi A, Ueda K. Achiral Molecular Recognition of Aromatic Position Isomers by Polysaccharide-Based CSPs in Relation to Chiral Recognition. Molecules 2016; 22:molecules22010038. [PMID: 28036038 PMCID: PMC6155686 DOI: 10.3390/molecules22010038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 11/16/2022] Open
Abstract
Chromatographic separation of several sets of aromatic position isomers on three cellulose- and one amylose-based chiral stationary phases was performed to evaluate the potential of a polysaccharide-based chiral stationary phase (CSP) in the separation of isomeric or closely similar molecules, and to understand the interaction mechanism of this type of CSP with analytes. Their ability of molecular recognition was quite outstanding, but the selection rule was particular to each polysaccharide derivative. In the series of analytes, cellulose tris(4-methylbenzoate) and tris(3,5-dimethylphenylcarbamate) exhibited a contrasting selection rule, and the recognition mechanism was considered based on the computer-simulation of the former polymer.
Collapse
Affiliation(s)
- Tohru Shibata
- Daicel Corporation, Life Science Development Center, Himeji 671-1283, Japan.
| | - Satoshi Shinkura
- Daicel Corporation, Life Science Development Center, Himeji 671-1283, Japan.
| | - Atsushi Ohnishi
- Daicel Corporation, Life Science Development Center, Himeji 671-1283, Japan.
| | - Kazuyoshi Ueda
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
22
|
Kostanyan AE. Modeling of preparative closed-loop recycling liquid-liquid chromatography with specified duration of sample loading. J Chromatogr A 2016; 1471:94-101. [DOI: 10.1016/j.chroma.2016.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 11/16/2022]
|
23
|
Kostanyan AE, Erastov AA. Theoretical study of closed-loop recycling liquid-liquid chromatography and experimental verification of the theory. J Chromatogr A 2016; 1462:55-62. [DOI: 10.1016/j.chroma.2016.07.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
|
24
|
Kostanyan AE. Simple equations to simulate closed-loop recycling liquid–liquid chromatography: Ideal and non-ideal recycling models. J Chromatogr A 2015; 1423:71-8. [DOI: 10.1016/j.chroma.2015.10.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
|
25
|
Gudmundsdottir AV, Hansen KA, Magnusson CD, Haraldsson GG. Synthesis of reversed structured triacylglycerols possessing EPA and DHA at their terminal positions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Kostanyan AE. Modeling of closed-loop recycling liquid-liquid chromatography: Analytical solutions and model analysis. J Chromatogr A 2015; 1406:156-64. [PMID: 26116190 DOI: 10.1016/j.chroma.2015.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/02/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
In closed-loop recycling (CLR) chromatography, the effluent from the outlet of a column is directly returned into the column through the sample feed line and continuously recycled until the required separation is reached. To select optimal operating conditions for the separation of a given feed mixture, an appropriate mathematical description of the process is required. This work is concerned with the analysis of models for the CLR separations. Due to the effect of counteracting mechanisms on separation of solutes, analytical solutions of the models could be helpful to understand and optimize chromatographic processes. The objective of this work was to develop analytical expressions to describe the CLR counter-current (liquid-liquid) chromatography (CCC). The equilibrium dispersion and cell models were used to describe the transport and separation of solutes inside a CLR CCC column. The Laplace transformation is applied to solve the model equations. Several possible CLR chromatography methods for the binary and complex mixture separations are simulated.
Collapse
Affiliation(s)
- Artak E Kostanyan
- Kurnakov Institute of General & Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 31, Moscow 119991, Russia.
| |
Collapse
|
27
|
Kalpio M, Nylund M, Linderborg KM, Yang B, Kristinsson B, Haraldsson GG, Kallio H. Enantioselective chromatography in analysis of triacylglycerols common in edible fats and oils. Food Chem 2015; 172:718-24. [DOI: 10.1016/j.foodchem.2014.09.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/12/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
28
|
Řezanka T, Lukavský J, Sigler K, Nedbalová L, Vítová M. Temperature dependence of production of structured triacylglycerols in the alga Trachydiscus minutus. PHYTOCHEMISTRY 2015; 110:37-45. [PMID: 25564261 DOI: 10.1016/j.phytochem.2014.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
This study describes the identification of regioisomers and enantiomers of triacylglycerols of C20 polyunsaturated fatty acids (PUFAs) in the alga Trachydiscus minutus cultivated at different temperatures using reversed- and chiral-phase liquid chromatography-mass spectrometry. The use of the two different phases contributes to ready identification, both qualitative and semiquantitative, of regioisomers and enantiomers of triacylglycerols containing eicosapentaenoic and arachidonic in the molecule. The ratio of regioisomers and enantiomers of triacylglycerols (TAG) depends on the temperature of cultivation; with lowering temperature the proportion of the achiral TAG increases and the enantiomer ratio diverges from 1:1.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Jaromír Lukavský
- Institute of Botany, Academy of Sciences of the Czech Republic, Biorefinery Res. Centre of Competence, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Karel Sigler
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Milada Vítová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Laboratory of Cell Cycles of Algae, Centre Algatech, Opatovický mlýn 237, 379 81 Třeboň, Czech Republic
| |
Collapse
|
29
|
Nagai T, Watanabe N, Yoshinaga K, Mizobe H, Kojima K, Kuroda I, Odanaka Y, Saito T, Beppu F, Gotoh N. Abundances of Triacylglycerol Positional Isomers and Enantiomers Comprised of a Dipalmitoylglycerol Backbone and Short- or Medium-chain Fatty Acids in Bovine Milk Fat. J Oleo Sci 2015; 64:943-52. [DOI: 10.5650/jos.ess15040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Natsuko Watanabe
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology
| | | | | | | | | | | | - Tadao Saito
- Graduate School of Agricultural Science, Tohoku University
| | - Fumiaki Beppu
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology
| | - Naohiro Gotoh
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
30
|
Kuroda N, Kobayashi M. Efficient and Economical Flow Organic Synthesis and Chromatography Using Recycling Technique. J SYN ORG CHEM JPN 2015. [DOI: 10.5059/yukigoseikyokaishi.73.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Separation of Enantiomeric Triacylglycerols by Chiral-Phase HPLC. Lipids 2014; 49:1251-60. [DOI: 10.1007/s11745-014-3959-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/26/2014] [Indexed: 11/25/2022]
|
32
|
Liu Q, Xiao J, Yu J, Xie Y, Chen X, Yang H. Improved enantioseparation via the twin-column based recycling high performance liquid chromatography. J Chromatogr A 2014; 1363:236-41. [DOI: 10.1016/j.chroma.2014.07.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 01/06/2023]
|
33
|
Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:193-9. [DOI: 10.1016/j.jchromb.2014.01.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 11/20/2022]
|
34
|
Řezanka T, Lukavský J, Nedbalová L, Sigler K. Production of structured triacylglycerols from microalgae. PHYTOCHEMISTRY 2014; 104:95-104. [PMID: 24833034 DOI: 10.1016/j.phytochem.2014.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Structured triacylglycerols (TAGs) were isolated from nine cultivated strains of microalgae belonging to different taxonomic groups, i.e. Audouinella eugena, Balbiania investiens, Myrmecia bisecta, Nannochloropsis limnetica, Palmodictyon varium, Phaeodactylum tricornutum, Pseudochantransia sp., Thorea ramosissima, and Trachydiscus minutus. They were separated and isolated by means of NARP-LC/MS-APCI and chiral LC and the positional isomers and enantiomers of TAGs with two polyunsaturated, i.e. arachidonic (A) and eicosapentaenoic (E) acids and one saturated, i.e. palmitic acid (P) were identified. Algae that produce eicosapentaenoic acid were found to biosynthesize more asymmetrical TAGs, i.e. PPE or PEE, whereas algae which produced arachidonic acid give rise to symmetrical TAGs, i.e. PAP or APA, irrespective of their taxonomical classification. Nitrogen and phosphorus starvation consistently reversed the ratio of asymmetrical and symmetrical TAGs.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| | - Jaromír Lukavský
- Institute of Botany, Academy of Sciences of the Czech Republic, Centre for Bioindication and Revitalization, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Linda Nedbalová
- Institute of Botany, Academy of Sciences of the Czech Republic, Centre for Bioindication and Revitalization, Dukelská 135, 379 82 Třeboň, Czech Republic; Charles University in Prague, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Karel Sigler
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| |
Collapse
|
35
|
Optimization of Triacylglycerol-estolide Analysis by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2437-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
|
37
|
Abstract
Natural compounds occur as various isomeric or closely related structures in biological matrices. These compounds are difficult to separate from the complex mixtures, and hence, the need for effective and innovative separation techniques arises. Recycle HPLC allows the recycling of sample, in part or full, and increases the separation efficiency of the process while keeping the peak dispersion to a minimum. Recycling in an HPLC system has been used in the isolation and purification of different types of natural products including enantiomers, diastereomers, epimers, positional isomers, and structurally related or unrelated compounds having similar retention characteristics. The present paper overviews the development of instrumentation and setup of recycle HPLC and its applications in the separation of natural products.
Collapse
|
38
|
Structures and Binary Mixing Characteristics of Enantiomers of 1-Oleoyl-2,3-dipalmitoyl-sn-glycerol (S-OPP) and 1,2-Dipalmitoyl-3-oleoyl-sn-glycerol (R-PPO). J AM OIL CHEM SOC 2013. [DOI: 10.1007/s11746-013-2339-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Řezanka T, Kolouchová I, Čejková A, Cajthaml T, Sigler K. Identification of regioisomers and enantiomers of triacylglycerols in different yeasts using reversed- and chiral-phase LC-MS. J Sep Sci 2013; 36:3310-20. [DOI: 10.1002/jssc.201300657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Irena Kolouchová
- Department of Biotechnology; Institute of Chemical Technology Prague; Prague Czech Republic
| | - Alena Čejková
- Department of Biotechnology; Institute of Chemical Technology Prague; Prague Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Karel Sigler
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|
40
|
Lísa M, Holčapek M. Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols. Anal Chem 2013; 85:1852-9. [PMID: 23298510 DOI: 10.1021/ac303237a] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, the first systematic characterization of triacylglycerol (TG) enantiomers in real samples using chiral high-performance liquid chromatography (HPLC) with atmospheric pressure chemical ionization mass spectrometry (APCI-MS) is performed. Our chiral HPLC/APCI-MS method is based on the use of two cellulose-tris-(3,5-dimethylphenylcarbamate) columns connected in series using a gradient of hexane-2-propanol mobile phase. All TG enantiomers containing 1-8 DBs and different fatty acyl chain lengths are separated using our chiral HPLC method except for TGs having a combination of saturated and di- or triunsaturated fatty acyls in sn-1 and sn-3 positions. In our work, the randomization reaction of monoacyl TG standards is used for the preparation of all TG enantiomers and regioisomers in a mixture, while the stereospecific esterification of 1,2- or 2,3-isopropylidene-sn-glycerols by selected fatty acids is used for the synthesis of TG enantiomers. The composition of TG enantiomers and regioisomers in hazelnut oil and human plasma samples is determined. Unsaturated fatty acids are preferentially esterified in sn-2 position in hazelnut oil, while no significant preference of saturated or unsaturated fatty acyls is observed in case of human plasma sample. Fatty acids with the higher number of DBs are preferred in sn-1 position of TG enantiomers in hazelnut oil unlike to moderate sn-3 preference in human plasma. The characterization of cholesteryl esters from TG fraction of human plasma sample using our chiral HPLC/APCI-MS method is presented as well.
Collapse
Affiliation(s)
- Miroslav Lísa
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic.
| | | |
Collapse
|
41
|
Yoshinaga K, Nagai T, Mizobe H, Kojima K, Gotoh N. Simple method for the quantification of milk fat content in foods by LC-APCI-MS/MS using 1,2-dipalmitoyl-3-butyroyl-glycerol as an indicator. J Oleo Sci 2013; 62:115-21. [DOI: 10.5650/jos.62.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Rezanka T, Lukavský J, Nedbalová L, Kolouchová I, Sigler K. Effect of starvation on the distribution of positional isomers and enantiomers of triacylglycerol in the diatom Phaeodactylum tricornutum. PHYTOCHEMISTRY 2012; 80:17-27. [PMID: 22704815 DOI: 10.1016/j.phytochem.2012.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 06/01/2023]
Abstract
The diatom Phaeodactylum tricornutum was cultivated in a standard medium and under sulfur, silicon, nitrogen and phosphorus starvation and its triacylglycerols (TAGs) were analyzed by RP-HPLC/MS-APCI. Nearly 100 molecular species of polyunsaturated TAGs were identified. RP-HPLC was used to isolate positional isomers of TAGs, which were further separated by chiral HPLC. First eluted were those TAGs that have an eicosapentaenoic acid moiety in the sn-1 position. The ratios of symmetrical to asymmetrical TAGs in P. tricornutum were affected under sulfur-, nitrogen-, phosphorus- and silica-starvation, i.e. in cultivations involving cells in nutrient stress. The ratios of positional TAGs and also the proportions of enantiomers were changed. The ratios of symmetrical to asymmetrical TAGs in the control and under N- and P-starvation were very close. In the control, the ratio of 1,2-dipalmitoyl-3-eicosapentaenoyl-rac-glycerol to 1,3-dipalmitoyl-2-eicosapentaenoyl-rac-glycerol was 3:1 and the ratio of 1,2-dieicosapentaenoyl-3-palmitoyl-rac-glycerol to 1,3-dieicosapentaenoyl-2-palmitoyl-rac-glycerol was 9:1. Under N-starvation the ratios were reversed irrespective of the presence or absence of silicate in the medium. A similar pattern was found in P- and S-starvation.
Collapse
Affiliation(s)
- Tomáš Rezanka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 0 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
43
|
Liquid Chromatographic Separation of Darunavir Enantiomers on Coated and Immobilized Amylose Tris(3, 5-Dimethylphenylcarbamate) Chiral Stationary Phases. Chirality 2012; 24:652-60. [DOI: 10.1002/chir.22060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Gotoh N, Wada S, Nagai T. Separation of asymmetric triacylglycerols into their enantiomers by recycle high-performance liquid chromatography. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/lite.201100105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Itabashi Y. Development and application of chromatographic methods for glycerolipid analysis. CHROMATOGRAPHY 2011. [DOI: 10.15583/jpchrom.2011.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|