1
|
Stanevich V, Oyeniran O, Somani S. Modeling Chromatography Binding through Molecular Dynamics Simulations with Resin Fragments. J Phys Chem B 2024; 128:5557-5566. [PMID: 38809811 PMCID: PMC11181327 DOI: 10.1021/acs.jpcb.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 05/31/2024]
Abstract
Accurate atomistic modeling of the interactions of a chromatography resin with a solute can inform the selection of purification conditions for a product, an important problem in the biotech and pharmaceutical industries. We present a molecular dynamics simulation-based approach for the qualitative prediction of interaction sites (specificity) and retention times (affinity) of a protein for a given chromatography resin. We mimicked the resin with an unrestrained ligand composed of the resin headgroup coupled with successively larger fragments of the agarose backbone. The interactions of the ligand with the protein are simulated in an explicit solvent using the Replica Exchange Molecular Dynamics enhanced sampling approach in conjunction with Hydrogen Mass Repartitioning (REMD-HMR). We computed the ligand interaction surface from the simulation trajectories and correlated the features of the interaction surface with experimentally determined retention times. The simulation and analysis protocol were first applied to a series of ubiquitin mutants for which retention times on Capto MMC resin are available. The ubiquitin simulations helped identify the optimal ligand that was used in subsequent simulations on six proteins for which Capto MMC elution times are available. For each of the six proteins, we computed the interaction surface and characterized it in terms of a range of simulation-averaged residue-level physicochemical descriptors. Modeling of the salt concentrations required for elution with respect to the descriptors resulted in a linear fit in terms of aromaphilicity and Kyte-Doolittle hydrophobicity that was robust to outliers, showed high correlation, and correctly ranked the protein elution order. The physics-based model building approach described here does not require a large experimental data set and can be readily applied to different resins and diverse biomolecules.
Collapse
Affiliation(s)
- Vitali Stanevich
- Protein
Therapeutics API Development, Janssen Research & Development,
LLC, a Johnson & Johnson company, Malvern, Pennsylvania 19355, United States
| | - Oluyemi Oyeniran
- Statistics
and Decision Sciences, Janssen Research & Development, LLC, a Johnson & Johnson company, Spring House, Pennsylvania 19002, United States
| | - Sandeep Somani
- In Silico
Discovery, Janssen Research & Development, LLC, a Johnson & Johnson company, Spring House, Pennsylvania 19002, United States
| |
Collapse
|
2
|
Beck J, Hochdaninger G, Carta G, Hahn R. Resin structure impacts two-component protein adsorption and separation in anion exchange chromatography. J Chromatogr A 2023; 1705:464208. [PMID: 37453173 DOI: 10.1016/j.chroma.2023.464208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The influence of the resin structure, on the competitive binding and separation of a two-component protein mixture with anion exchange resins is evaluated using conalbumin and green fluorescent protein as a model system. Two macroporous resins, one with large open pores and one with smaller pores, are compared to a resin with grafted polymers. Investigations include measurements of single and two-component isotherms, batch uptake kinetics and two-component column breakthrough. On both macroporous resins, the weaker binding protein, conalbumin, is displaced by the stronger binding green fluorescent protein. For the large pore resin, this results in a pronounced overshoot and efficient separation by frontal chromatography. The polymer-grafted resin exhibits superior capacity and kinetics for one-component adsorption, but is unable to achieve separation due to strongly hindered counter-diffusion. Intermediate separation efficiency is obtained with the smaller pore resin. Confocal laser scanning microscopy provides a mechanistic explanation of the underlying intra-particle diffusional phenomena revealing whether unhindered counter-diffusion of the displaced protein can occur or not. This study demonstrates that the resin's intra-particle structure and its effects on diffusional transport are crucial for an efficient separation process. The novelty of this work lies in its comprehensive nature which includes examples of the three most commonly used resin structures: a small pore agarose matrix, a large-pore polymeric matrix, and a polymer grafted resin. Comparison of the protein adsorption properties of these materials provides valuable clues about advantages and disadvantages of each for anion exchange chromatography applications.
Collapse
Affiliation(s)
- Jürgen Beck
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg Hochdaninger
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Giorgio Carta
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Rainer Hahn
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
3
|
Qiao L, Zhou Q, Du K. Protein adsorption to diethylaminoethyl-dextran grafted macroporous cellulose microspheres: A critical pore size for enhanced adsorption capacity and uptake kinetic. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Qiao L, Li Q, Xie J, Du K. Multi-size optimization of macroporous cellulose beads as protein anion exchangers: Effects of macropore size, protein size, and ligand length. J Chromatogr A 2023; 1702:464068. [PMID: 37236141 DOI: 10.1016/j.chroma.2023.464068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Multi-size optimization of ion exchangers based on protein characteristics and understanding of underlying mechanism is crucial to achieve maximum separation performance in terms of adsorption capacity and uptake kinetic. Herein, we characterize the effects of three different sizes, macropore size, protein size, and ligand length, on the protein adsorption capacity and uptake kinetic of macroporous cellulose beads, and provide insights into the underlying mechanism. In detail, (1) for smaller bovine serum albumin, macropore size has a negligible effect on the adsorption capacity, while for larger γ-globulin, larger macropores improve the adsorption capacity due to the high accessibility of binding sites; (2) there is a critical pore size (CPZ), at which the adsorption uptake kinetic is minimum. When pore sizes are higher than the CPZ, uptake kinetics are enhanced by pore diffusion. When pore sizes are lower than CPZ, uptake kinetics are enhanced by surface diffusion; (3) increasing ligand length improves the adsorption capacity by three-dimensionally extended polymer chains in pores and enhances uptake kinetic by improved surface diffusion. This study offers an integrated perspective to qualitatively assess the effects of multiple sizes, providing guidance for designing advanced ion exchangers for protein chromatography.
Collapse
Affiliation(s)
- Liangzhi Qiao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Qincong Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jiao Xie
- Cheng Du Best Graphite Tech Co., Ltd, No.8, Xinxian Industrial Park No.66, Antai 7th Road,West hi tech Zone, Chengdu 610065, China.
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China.
| |
Collapse
|
5
|
Sivanathan GT, Mallubhotla H, Suggala SV, Tholu MS. Separation of closely related monoclonal antibody charge variant impurities using poly(ethylenimine)-grafted cation-exchange chromatography resin. 3 Biotech 2022; 12:293. [PMID: 36276450 PMCID: PMC9515282 DOI: 10.1007/s13205-022-03350-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022] Open
Abstract
The removal of protein charge variants due to complex chemical and enzymatic modifications like glycosylation, fragmentation and deamidation presents a significant challenge in the purification of monoclonal antibodies (mAb) and complicates downstream processing. These protein modifications occur either in vivo or during fermentation and downstream processing. The presence of charge variants can lead to diminished biological activity, differences in pharmacokinetics, pharmacodynamics, stability and efficacy. Therefore, these different product variants should be appropriately controlled for the consistency of product quality and to ensure patient safety. This investigation focuses on the development of a chromatography step for the removal of the charge variants from a recombinant single-chain variable antibody fragment (scFv-Fc-Ab). Poly(ethyleneimine)-grafted cation-exchange resins (Poly CSX and Poly ABX) were evaluated and compared to traditional macroporous cation-exchange and tentacle cation-exchange resins. Linear salt gradient experiments were conducted to study the separation efficiency of scFv-Fc-Ab variants using different resins. A classical thermodynamic model was used to develop a mechanistic understanding of the differences in charge variant retention behaviour of different resins. High selectivity in separation of scFv-Fc-Ab charge variants is obtained in the Poly CSX resin.
Collapse
Affiliation(s)
- Ganesh T. Sivanathan
- Department of Chemical Engineering, JNTUA, Ananthapuramu, Andhra Pradesh 515002 India
- Biopharmaceutical Development, Syngene International Ltd., Bangalore, 560099 India
| | - Hanuman Mallubhotla
- Biopharmaceutical Development, Syngene International Ltd., Bangalore, 560099 India
| | | | | |
Collapse
|
6
|
Rakotondravao HM, Takahashi R, Takai T, Sakoda Y, Horiuchi JI, Kumada Y. Control of Accessible Surface Areas and Height Equivalent to a Theoretical Plate using Grafted Dextran during Anion-Exchange Chromatography of Therapeutic Proteins. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.22we035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Jun-Ichi Horiuchi
- Department of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Yoichi Kumada
- Department of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| |
Collapse
|
7
|
In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zhao L, Che X, Huang Y, Zhu K, Du Y, Gao J, Zhang R, Zhang Y, Ma G. Regulation on both Pore Structure and Pressure-resistant Property of Uniform Agarose Microspheres for High-resolution Chromatography. J Chromatogr A 2022; 1681:463461. [DOI: 10.1016/j.chroma.2022.463461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
9
|
Berg MC, Beck J, Karner A, Holzer K, Dürauer A, Hahn R. Mass transfer of proteins in chromatographic media: Comparison of pure and crude feed solutions. J Chromatogr A 2022; 1676:463264. [PMID: 35752146 DOI: 10.1016/j.chroma.2022.463264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/26/2022]
Abstract
Elucidation of intraparticle mass transfer mechanisms in protein chromatography is essential for process design. This study investigates the differences of adsorption and diffusion parameters of basic human fibroblast factor 2 (hFGF2) in a simple (purified) and a complex (clarified homogenate) feed solution on the grafted agarose-based strong cation exchanger Capto S. Microscopic investigations using confocal laser scanning microscopy revealed slower intraparticle diffusion of hFGF2 in the clarified homogenate compared to purified hFGF2. Diffusive adsorption fronts indicated a strong contribution of solid diffusion to the overall mass transfer flux. Protein adsorption methods such as batch uptake and shallow bed as well as breakthrough curve experiments confirmed a 40-fold reduction of the mass transfer flux for hFGF2 in the homogenate compared to pure hFGF2. The slower mass transfer was induced by components of the clarified homogenate. Essentially, the increased dynamic viscosity caused by a higher concentration of dsDNA and membrane lipids in the clarified homogenate contributed to this decrease in mass transfer. Moreover, binding capacity for hFGF2 was much lower in the clarified homogenate and substantially decreased the adsorbed phase driving force for mass transfer.
Collapse
Affiliation(s)
- Markus C Berg
- Austrian Center of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria
| | - Jürgen Beck
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Alex Karner
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Kerstin Holzer
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Astrid Dürauer
- Austrian Center of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Rainer Hahn
- Austrian Center of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria.
| |
Collapse
|
10
|
Affinity of Phenolic Compounds for Transition Metal Ions Immobilized on Cation-Exchange Columns. J Chromatogr A 2022; 1676:463277. [DOI: 10.1016/j.chroma.2022.463277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
|
11
|
Evaluation of hydrophobic charge-induction ligand efficiency for protein adsorption in one single cycle. J Chromatogr A 2022; 1668:462923. [DOI: 10.1016/j.chroma.2022.462923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/20/2022]
|
12
|
Yang X, Merenda A, AL-Attabi R, Dumée LF, Zhang X, Thang SH, Pham H, Kong L. Towards next generation high throughput ion exchange membranes for downstream bioprocessing: A review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Stein D, Thom V, Hubbuch J. Streamlined process development procedure incorporating the selection of various stationary phase types established in a mAb aggregate reduction study with different mixed mode ligands. Biotechnol Prog 2021; 38:e3230. [PMID: 34967498 DOI: 10.1002/btpr.3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 11/07/2022]
Abstract
In biopharmaceutical process development time, cost and reliability are the relevant keywords. During the development of chromatographic processes these targets are challenged by many possible scaffolds, ligands and process parameters. The common response to this diversity is the establishment of platform processes in the development of chromatographic unit operations. However, while developing a platform library to simplify and accelerate chromatographic processes, the potential combination of scaffold, ligands and process parameters need to be characterized. This challenge is addressed in a case study on novel mixed mode (MM) adsorber for the removal of monoclonal antibody (mAb) aggregates. We propose a rigorous strategy to reduce the various experimental design space resulting from possible combinations in scaffolds, backbones and ligands. This strategy is based on theoretical considerations, identification of adsorber selectivity and capacity for the identification of a suitable membrane system. For this system, each potential MM membrane adsorber (MA) candidate is investigated in its high molecular weight species (HMWS) reduction potential for a given mAb feed stream and referenced to the performance of Capto™ Adhere. The introduced strategy can reduce the developmental effort in an early stage from three to two possible stationary phases. Thereafter, initial examinations at different ionic capacities enlighten one favorable stationary phase. Finalizing the development strategy procedure by studying five different MM ligands by HTS and confirming the study with a 2-3 MV higher dynamic breakthrough capacity in benchtop experiments and provides an insight in the benefits of a living process platform library. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dominik Stein
- Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, D-37079, Goettingen, Germany.,Dept. of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Volkmar Thom
- Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, D-37079, Goettingen, Germany
| | - Jürgen Hubbuch
- Dept. of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
14
|
Cai F, Tang D, Wang J, Lin Y. Biomimetic -mineralized multifunctional nanoflowers for anodic-stripping voltammetric immunoassay of rehabilitation-related proteins. Analyst 2021; 147:80-86. [PMID: 34846386 DOI: 10.1039/d1an01934a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-reactive proteins (CRPs; an acute-phase protein) in patients with initial acute cerebral infarction neurological rehabilitation prediction have a significant correlation. In this work, a simple and sensitive anodic-stripping voltammetric (ASV) immunosensing system was innovatively designed for the quantitative screening of target CRPs using biomimetic-mineralized bifunctional antibody-Cu3(PO4)2 nanoflowers as molecular tags. In this system, a monoclonal anti-CRP antibody-anchored microtiter plate was utilized to specifically capture target CRPs from the sample. For detection, a sandwiched immunoreaction mode was employed with the antibody-Cu3(PO4)2 nanoflowers in the presence of analytes. Subsequent ASV measurement of copper ions (Cu2+) released under acidic conditions from the bifunctional nanoflowers was conducted at an in situ prepared mercury film electrode. The introduction of hybrid nanoflowers greatly increased the loading amount of copper ions on the molecular tag, thereby amplifying the detectable signal of electrochemical immunoassay. Meanwhile, factors influencing the analytical properties of the electrochemical immunoassay were investigated in detail. By combining the high-efficiency nanohybrids with signal amplification, the dynamic concentration range of electrochemical immunoassay spanned from 0.01 ng mL-1 to 100 ng mL-1 toward the target CRP. The limit of detection was calculated to be 0.0079 ng mL-1 at 3Sblank criterion. Intra- and interassay imprecisions (relative standard deviations: RSDs) were less than or equal to 6.72%. Good anti-interference ability, long-term storage stability, and acceptable accuracy for the evaluation of human serum specimens were observed during a series of procedures to determine the target protein. In addition, the bifunctional nanoflower-based immunosensing system offers promise for the simple, cost-effective analysis of disease-related proteins.
Collapse
Affiliation(s)
- Fan Cai
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, P.R. China. .,College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, P.R. China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Jun Wang
- Department of General Surgery at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, P.R. China.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, P.R. China.
| |
Collapse
|
15
|
You F, Shi QH. Kinetic investigation of protein adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation: The implication of the chromatographic mechanism. J Chromatogr A 2021; 1654:462460. [PMID: 34438303 DOI: 10.1016/j.chroma.2021.462460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
With the growing concerns of polymer-grafted ion-exchange chromatography, the importance of protein adsorption on charged polymer-grafted surfaces cannot be stressed enough. However, a full understanding in adsorption in polymer brushes is still a great challenge due to the lack of in situ characterization technique. In this work, we use quartz crystal microbalance with dissipation to in situ investigate adsorption kinetics of γ-globulin and recombinant human lactoferrin on poly(3-sulfopropyl methacrylate) (pSPM) sensors prepared via atom transfer radical polymerization. With an increase of chain length and grafting density, great increasing amounts of proteins on pSPM-grafted sensors revealed that protein underwent a transition from monolayer to multilayer adsorption. It was attributed to direct protein binding into charged brushes, in which more binding sites involved and more coupled water lost. However, such a strong binding and rigid structure of proteins limited the protein transport in pSPM brushes and "chain delivery" effect. With an increase in grafting density, moreover, denser brushes hindered adjustment in protein conformation in pSPM brushes and further exacerbated protein transport in pSPM brushes. Furthermore, the influence of buffer pH and salt concentration further validated the ion exchange characteristics of protein adsorption into pSPM brushes. The research provided a variety of in situ evidence of protein binding and conformation evolution in pSPM brushes and elucidated mechanism of protein adsorption in pSPM brushes.
Collapse
Affiliation(s)
- Fenfen You
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qing-Hong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
16
|
Patterns of protein adsorption in ion-exchange particles and columns: Evolution of protein concentration profiles during load, hold, and wash steps predicted for pore and solid diffusion mechanisms. J Chromatogr A 2021; 1653:462412. [PMID: 34320430 DOI: 10.1016/j.chroma.2021.462412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
Elucidation of protein transport mechanism in ion exchanges is essential to model separation performance. In this work we simulate intraparticle adsorption profiles during batch adsorption assuming typical process conditions for pore, solid and parallel diffusion. Artificial confocal laser scanning microscopy images are created to identify apparent differences between the different transport mechanisms. Typical sharp fronts for pore diffusion are characteristic for Langmuir equilibrium constants of KL ≥1. Only at KL = 0.1 and lower, the profiles are smooth and practically indistinguishable from a solid diffusion mechanism. During hold and wash steps, at which the interstitial buffer is removed or exchanged, continuation of diffusion of protein molecules is significant for solid diffusion due to the adsorbed phase concentration driving force. For pore diffusion, protein mobility is considerable at low and moderate binding strength. Only when pore diffusion if completely dominant, and the binding strength is very high, protein mobility is low enough to restrict diffusion out of the particles. Simulation of column operation reveals substantial protein loss when operating conditions are not adjusted appropriately.
Collapse
|
17
|
|
18
|
Chen C, Zhao D, Su Z, Luo J, Ma G, Zhang S, Li X. Effect of pore structure on protein adsorption mechanism on ion exchange media: A preliminary study using low field nuclear magnetic resonance. J Chromatogr A 2021; 1639:461904. [PMID: 33486445 DOI: 10.1016/j.chroma.2021.461904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
The adsorption process of bovine serum albumin (BSA), ovalbumin (OVA) and human immunoglobulin G (IgG) on agarose ion-exchange media Q Sepharose FF and two dextran-grafted agarose media including Q Sepharose XL and Capto Q were studied using low field nuclear magnetic resonance (NMR). The T2 relaxation time was found directly proportional to the pore size and diminished after protein adsorbed, therefore, a theoretical model describing the relationship between protein binding amount and T2 relaxation signals was established. The model parameters, a, which reflects the contact area between the adsorbed protein and media surface, and the δ, which defined as the ratio of the protein volume to the pore volume after adsorption, were found to describe the pore occupation states of proteins in media with different pore structures very well. For small proteins, such as BSA and OVA, monolayer adsorption occurred on Q Sepharose FF, which has no dextran chains. Therefore, the adsorbed protein only occupied 49.05% of the pore volume for BSA and 25.51% for OVA, and contact area of each protein on the media were also low, suggesting mostly monolayer adsorption occurred. In the contrast, their adsorption to Q Sepharose XL and Capto Q with dextran chains tended to form multilayer adsorption, thus higher contact area was obtained and the pore volumes were almost 100% occupied. For large protein, such as IgG, the adsorption to all these three media was similar and about 30% of the pore volume were occupied, probably due to the similar restriction for IgG to entering the media pore. Results of this study will help to elucidate the relationship between protein adsorption and pore size variation, which present the significance of low field NMR in understanding protein adsorption mechanism.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dawei Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jian Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiunan Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
19
|
Yu L, Sun Y. Recent advances in protein chromatography with polymer-grafted media. J Chromatogr A 2021; 1638:461865. [PMID: 33453656 DOI: 10.1016/j.chroma.2020.461865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/19/2023]
Abstract
The strategy of using polymer-grafted media is effective to create protein chromatography of high capacity and uptake rate, giving rise to an excellent performance in high-throughput protein separation due to its high dynamic binding capacity. Taking the scientific development and technological innovation of protein chromatography as the objective, this review is devoted to an overview of polymer-grafted media reported in the last five years, including their fabrication routes, protein adsorption and chromatography, mechanisms behind the adsorption behaviors, limitations of polymer-grafted media and chromatographic operation strategies. Particular emphasis is placed on the elaboration and discussion on the behaviors of ion-exchange chromatography (IEC) with polymer-grafted media because IEC is the most suitable chromatographic mode for this kind of media. Recent advances in both the theoretical and experimental investigations on polymer-grafted media are discussed by focusing on their implications to the rational design of novel chromatographic media and mobile phase conditions for the development of high-performance protein chromatography. It is concluded that polymer-grafted media are suitable for development of IEC and mixed-mode chromatography with charged and low hydrophobic ligands, but not for hydrophobic interaction chromatography with high hydrophobic ligands and affinity chromatography with ligands that have single binding site on the protein.
Collapse
Affiliation(s)
- Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
20
|
Yu L, Li C, Liu Y, Sun Y. Protein adsorption to poly(2-aminoethyl methacrylate)-grafted Sepharose gel: Effects of chain length and charge density. J Chromatogr A 2020; 1638:461869. [PMID: 33433375 DOI: 10.1016/j.chroma.2020.461869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
Abstract
Grafting functional polymer chains onto porous resins has been found to drastically increase both adsorption capacity and uptake rate in protein chromatography. In this work, 2-aminoethyl methacrylate (AEM) was used for grafting onto Sepharose FF gel, and six anion-exchangers of different polyAEM (pAEM) chain lengths (ionic capacities, ICs), FF-pAEM, were obtained for protein adsorption and chromatography. It was found that protein adsorption capacity (qm) increased with increasing pAEM chain length, but the uptake rate, represented by the ratio of effective pore diffusivity to the free solution diffusivity (De/D0), showed an up-down trend, reaching a peak value (De/D0=0.55) at an IC of 313 mmol/L. Partial charge neutralization of the AEM-grafted resin of the highest IC (513 mmol/L) by reaction with sodium acetate produced three charge-reduced resins, FF-pAEM513-R. With reducing the charge density, the adsorption capacity kept unchanged and then decreased, but the uptake rate monotonically increased, reaching a maximum (about 2-fold increase) at a residual IC of 263 mmol/L. It is notable that, at the same IC, the charge-reduced resin (FF-pAEM513-R) presented similar or even higher values of qm and De/D0 than its FF-pAEM counterpart. Particularly, at the same IC of 263 mmol/L, a ~50% enhancement of De/D0 was observed. Both adsorption capacity and uptake rate in the charge-reduced resin with a residual IC of 339 mmo/L (FF-pAEM513-R339) decreased more sharply with increasing NaCl concentration by comparison with FF-pAEM513, indicating its increased salt-sensitivity than FF-pAEM513. That is, charge reduction on the AEM-grafted resin could accelerate protein uptake at 0 mmol/L NaCl but decrease salt tolerance. Column breakthrough experiments showed that FF-pAEM513-R339 was favorable for high flow rate protein chromatography at low NaCl concentration (0 mmol/L), whereas FF-pAEM513 was a good choice in a wide range of salt concentrations at low flow rate. This research proved the excellent protein chromatography performance of the AEM-based anion-exchangers.
Collapse
Affiliation(s)
- Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Changsen Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yang Liu
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
21
|
Synthesis, Characterization, and Properties of Sulfonated Chitosan for Protein Adsorption. INT J POLYM SCI 2020. [DOI: 10.1155/2020/9876408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chitosan sulfate was prepared and characterized as a new chromatography media for protein separation. The degree of sulfonation of chitosan could be well controlled and impacted under conditions in the synthesis process. The prepared chitosan sulfate shows improved binding capacity with proteins. Sulfonated chitosan shows improved ion-exchange adsorption properties with proteins, which could have good potential in protein purification.
Collapse
|
22
|
Fang YM, Zhu HY, Lin DQ, Yao SJ. A novel dextran-grafted tetrapeptide resin for antibody purification. J Sep Sci 2020; 43:3816-3823. [PMID: 32729191 DOI: 10.1002/jssc.202000325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
Short peptide biomimetic affinity chromatography as a novel antibody separation chromatography is a potential alternative to protein A chromatography. However, if directly attaching ligand to matrix, the adsorption capacity and mass transfer rate would be affected by pore blockage and steric effect. Grafting resin is an effective method to solve this problem by using polymer as a bridge between matrix and ligand. In this work, a novel resin was prepared by grafting a tetrapeptide to the dextran-grafted matrix. Then, the adsorption properties for human immunoglobin G and BSA were determined. The results showed the saturation adsorption capacity could reach to 133 mg/g resin at pH 8.9 with a significantly low dissociation constant (0.03 mg/mL). The influence of flow rates to dynamic binding capacity of this resin was less than that of the non-grafted resin. The separation performance of the resin showed monoclonal antibody could be well isolated from the Chinese hamster ovary culture supernatant at pH 9.0 with the purity of 93.0% and yield of 84.7% by one step. Overall, this resin could achieve higher binding capacity by the possible of gaining higher ligand density, indicating its potential significance for separation in larger scale systems.
Collapse
Affiliation(s)
- Yu-Ming Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Hong-Yun Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
23
|
Kumar V, Lenhoff AM. Mechanistic Modeling of Preparative Column Chromatography for Biotherapeutics. Annu Rev Chem Biomol Eng 2020; 11:235-255. [DOI: 10.1146/annurev-chembioeng-102419-125430] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatography has long been, and remains, the workhorse of downstream processing in the production of biopharmaceuticals. As bioprocessing has matured, there has been a growing trend toward seeking a detailed fundamental understanding of the relevant unit operations, which for some operations include the use of mechanistic modeling in a way similar to its use in the conventional chemical process industries. Mechanistic models of chromatography have been developed for almost a century, but although the essential features are generally understood, the specialization of such models to biopharmaceutical processing includes several areas that require further elucidation. This review outlines the overall approaches used in such modeling and emphasizes current needs, specifically in the context of typical uses of such models; these include selection and improvement of isotherm models and methods to estimate isotherm and transport parameters independently. Further insights are likely to be aided by molecular-level modeling, as well as by the copious amounts of empirical data available for existing processes.
Collapse
Affiliation(s)
- Vijesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
24
|
Li C, Li X, Liu Y, Sun Y. Implications from the grafting density and ionic capacity effects on protein adsorption to poly (N,N-dimethylaminopropyl acrylamide)-grafted sepharose FF. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Understanding adsorption behavior of α-chymotrypsin onto cation exchanger using all-atom molecular dynamics simulations. J Chromatogr A 2020; 1614:460720. [DOI: 10.1016/j.chroma.2019.460720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 11/24/2022]
|
26
|
Protein cation exchangers derived by charge reversal from poly(ethylenimine)-Sepharose FF: Comparisons between two derivatization routes. J Chromatogr A 2020; 1611:460586. [DOI: 10.1016/j.chroma.2019.460586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
|
27
|
Calorimetric approach to understand pH and salt influence on the adsorption mechanism of lysozyme to a traditional cation exchanger. Colloids Surf B Biointerfaces 2020; 185:110589. [DOI: 10.1016/j.colsurfb.2019.110589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 11/22/2022]
|
28
|
Li Y, Stern D, Lock LL, Mills J, Ou SH, Morrow M, Xu X, Ghose S, Li ZJ, Cui H. Emerging biomaterials for downstream manufacturing of therapeutic proteins. Acta Biomater 2019; 95:73-90. [PMID: 30862553 DOI: 10.1016/j.actbio.2019.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022]
Abstract
Downstream processing is considered one of the most challenging phases of industrial manufacturing of therapeutic proteins, accounting for a large portion of the total production costs. The growing demand for therapeutic proteins in the biopharmaceutical market in addition to a significant rise in upstream titers have placed an increasing burden on the downstream purification process, which is often limited by high cost and insufficient capacities. To achieve efficient production and reduced costs, a variety of biomaterials have been exploited to improve the current techniques and also to develop superior alternatives. In this work, we discuss the significance of utilizing traditional biomaterials in downstream processing and review the recent progress in the development of new biomaterials for use in protein separation and purification. Several representative methods will be highlighted and discussed in detail, including affinity chromatography, non-affinity chromatography, membrane separations, magnetic separations, and precipitation/phase separations. STATEMENT OF SIGNIFICANCE: Nowadays, downstream processing of therapeutic proteins is facing great challenges created by the rapid increase of the market size and upstream titers, starving for significant improvements or innovations in current downstream unit operations. Biomaterials have been widely used in downstream manufacturing of proteins and efforts have been continuously devoted to developing more advanced biomaterials for the implementation of more efficient and economical purification methods. This review covers recent advances in the development and application of biomaterials specifically exploited for various chromatographic and non-chromatographic techniques, highlighting several promising alternative strategies.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Jason Mills
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Shih-Hao Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Marina Morrow
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States.
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
29
|
Sivanathan GT, Mallubhotla H, Suggala SV. Selective removal of closely related clipped protein impurities using poly(ethylenimine)- grafted anion-exchange chromatography resin. Prep Biochem Biotechnol 2019; 49:1020-1032. [PMID: 31407965 DOI: 10.1080/10826068.2019.1650373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Proteolytic degradation is a serious problem that complicates downstream processing during production of recombinant therapeutic proteins. It can lead to decreased product yield, diminished biological activity, and suboptimal product quality. Proteolytic degradation or protein truncation is observed in various expression hosts and is mostly attributed to the activity of proteases released by host cells. Since these clipped proteins can impact pharmacokinetics and immunogenicity in addition to potency, they need to be appropriately controlled to ensure consistency of product quality and patient safety. A chromatography step for the selective removal of clipped proteins from an intact protein was developed in this study. Poly(ethylenimine)-grafted anion- exchange resins (PolyQUAT and PolyPEI) were evaluated and compared to traditional macroporous anion-exchange and tentacled anion-exchange resins. Isocratic retention experiments were conducted to determine the retention factors (k') and charge factors (Z) were determined through the classical stoichiometric displacement model. High selectivity in separation of closely related clipped proteins was obtained with the PolyQUAT resin. A robust design space was established for the PolyQUAT chromatography through Design-Of-Experiments (DoE) based process optimization. Results showed a product recovery of up to 63% with purity levels >99.0%. Approximately, one-log clearance of host cell protein and two-logs clearance of host cell DNA were also obtained. The newly developed PolyQUAT process was compared with an existing process and shown to be superior with respect to the number of process steps, process time, process yield, and product quality.
Collapse
Affiliation(s)
- Ganesh T Sivanathan
- Department of Chemical Engineering, JNTUA , Ananthapuramu , India.,Biopharmaceutical Development, Syngene International Ltd , Bangalore , India
| | - Hanuman Mallubhotla
- Biopharmaceutical Development, Syngene International Ltd , Bangalore , India
| | | |
Collapse
|
30
|
Pereira Aguilar P, Schneider TA, Wetter V, Maresch D, Ling WL, Tover A, Steppert P, Jungbauer A. Polymer-grafted chromatography media for the purification of enveloped virus-like particles, exemplified with HIV-1 gag VLP. Vaccine 2019; 37:7070-7080. [PMID: 31300289 DOI: 10.1016/j.vaccine.2019.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
Abstract
Polymer-grafted chromatography media, especially ion exchangers, are high performance materials for protein purification. However, due to the pore size limitation, conventional chromatography beads are usually not considered for the downstream processing of large biomolecules such as virus-like particles (VLPs). Contrariwise, since the outer surface of the chromatography beads provides satisfactory binding capacity for VLPs and impurities of smaller size can bind inside of the beads, conventional porous beads should be considered for VLP capture and purification. We used HIV-1 gag VLPs with a diameter of 100-200 nm as a model to demonstrate that polymer-grafted anion exchangers are suitable for the purification of bionanoparticles. The equilibrium binding capacity was 1 × 1013 part/mL resin. Moderate salt concentration up to 100 mM NaCl did not affect binding, allowing direct loading of cell culture supernatant onto the column for purification. Dynamic binding capacity at 10% breakthrough, when loading cell culture supernatant, was approximately 6 × 1011 part/mL column; only 1-log lower than for monoliths. Endonuclease treatment of the cell culture supernatant did not increase the dynamic binding capacity, suggesting that dsDNA does not compete for the binding sites of VLPs. Nevertheless, due to simultaneous elution of particles and dsDNA, endonuclease treatment is required to reduce dsDNA contamination in the product. Proteomic analysis revealed that HIV-1 gag VLPs contain different host cell proteins in their cargo. This cargo is composed of conserved proteins and other proteins that vary from one particle population to another, as well as from batch to batch. This process allowed the separation of different particle populations. HIV-1 gag VLPs were directly captured and purified from cell culture supernatant with a total particle recovery in the elution of about 35%. Columns packed with beads can be scaled to practically any dimension and therefore a tailored design of the process is possible.
Collapse
Affiliation(s)
| | | | - Viktoria Wetter
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Daniel Maresch
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Petra Steppert
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria; Austrian Centre of Industrial Biotechnology, Vienna, Austria.
| |
Collapse
|
31
|
Poly(N,N-dimethylaminopropyl acrylamide)-grafted Sepharose FF: A new anion exchanger of very high capacity and uptake rate for protein chromatography. J Chromatogr A 2019; 1597:187-195. [DOI: 10.1016/j.chroma.2019.03.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
|
32
|
Singh N, Herzer S. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:115-178. [PMID: 28795201 DOI: 10.1007/10_2017_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased pressure on upstream processes to maximize productivity has been crowned with great success, although at the cost of shifting the bottleneck to purification. As drivers were economical, focus is on now on debottlenecking downstream processes as the main drivers of high manufacturing cost. Devising a holistically efficient and economical process remains a key challenge. Traditional and emerging protein purification strategies with particular emphasis on methodologies implemented for the production of recombinant proteins of biopharmaceutical importance are reviewed. The breadth of innovation is addressed, as well as the challenges the industry faces today, with an eye to remaining impartial, fair, and balanced. In addition, the scope encompasses both chromatographic and non-chromatographic separations directed at the purification of proteins, with a strong emphasis on antibodies. Complete solutions such as integrated USP/DSP strategies (i.e., continuous processing) are discussed as well as gains in data quantity and quality arising from automation and high-throughput screening (HTS). Best practices and advantages through design of experiments (DOE) to access a complex design space such as multi-modal chromatography are reviewed with an outlook on potential future trends. A discussion of single-use technology, its impact and opportunities for further growth, and the exciting developments in modeling and simulation of DSP rounds out the overview. Lastly, emerging trends such as 3D printing and nanotechnology are covered. Graphical Abstract Workflow of high-throughput screening, design of experiments, and high-throughput analytics to understand design space and design space boundaries quickly. (Reproduced with permission from Gregory Barker, Process Development, Bristol-Myers Squibb).
Collapse
Affiliation(s)
- Nripen Singh
- Bristol-Myers Squibb, Global Manufacturing and Supply, Devens, MA, 01434, USA.
| | - Sibylle Herzer
- Bristol-Myers Squibb, Global Manufacturing and Supply, Hopewell, NJ, 01434, USA
| |
Collapse
|
33
|
Li M, Wu Y, Liu Y, Sun Y. Protein adsorption to poly(allylamine)-modified Sepharose FF: Influences of polymer size and partial charge neutralization. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Zhao Y, Yu L, Dong X, Sun Y. Protein adsorption to poly(ethylenimine)-modified sepharose FF: VII. Complicated effects of pH. J Chromatogr A 2018; 1580:72-79. [DOI: 10.1016/j.chroma.2018.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/24/2022]
|
35
|
Hindered diffusion of proteins in mixture adsorption on porous anion exchangers and impact on flow-through purification of large proteins. J Chromatogr A 2018; 1585:121-130. [PMID: 30503698 DOI: 10.1016/j.chroma.2018.11.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023]
Abstract
Complex adsorption kinetics behaviors of proteins in mixtures hampers chromatographic process development and complicates model-based prediction of separation. We investigated the adsorption characteristics of mixtures comprised of a larger protein (secretory immunoglobulins or thyroglobulin) and a smaller protein (serum albumin or green fluorescence protein) on the small-pore anion exchanger Q Sepharose FF. Confocal laser scanning microscopy measurements revealed that binding of the large protein was extremely slow and eventually stopped completely after the adsorption front penetrated just a few μm into the particle. Binding capacities after 24 h of incubation were nevertheless around 35 mg/mL of particle which is relatively high when considering that only a fraction of the particle was saturated, suggesting that locally-high bound protein concentrations are attained in a layer close to the particle surface. During mixture adsorption, the bound protein layer also significantly hindered diffusion of the smaller proteins into the particles resulting in about three times slower adsorption kinetics compared to single component adsorption. The combined effects of restricted diffusion and protein binding explain why flow-through purification of these mixtures with the small-pore resin Q Sepharose FF is effective under practical conditions. In this resin, diffusion of secretory immunoglobulins (or thyroglobulin) is restricted in the small pores so that despite their intrinsically greater affinity for the resin, much less binds compared to small proteins. Using the large-pore resin POROS 50 HQ results in faster transport, but also in more binding of secretory immunoglobulins (or thyroglobulin) compared to smaller protein impurities, preventing effective flow-through purification.
Collapse
|
36
|
Li X, Wang Q, Dong X, Liu Y, Sun Y. Grafting glycidyl methacrylate-iminodiacetic acid conjugate to Sepharose FF for fabrication of high-capacity protein cation exchangers. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Xue A, Sun Y. Visualization and Modeling of Protein Adsorption and Transport in DEAE- and DEAE-Dextran-Modified Bare Capillaries. AIChE J 2018. [DOI: 10.1002/aic.16381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Aiying Xue
- Dept. of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin China
| | - Yan Sun
- Dept. of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin China
| |
Collapse
|
38
|
Investigating the impact of aromatic ring substitutions on selectivity for a multimodal anion exchange prototype library. J Chromatogr A 2018; 1569:101-109. [DOI: 10.1016/j.chroma.2018.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 11/17/2022]
|
39
|
Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1730-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Single-step purification of recombinant hepatitis B core antigen Y132A dimer from clarified Escherichia coli feedstock using a packed bed anion exchange chromatography. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Li M, Yu L, Liu Y, Sun Y. High uptake rate and extremely salt-tolerant behavior of protein adsorption to 900 kDa poly(allylamine)-modified Sepharose FF. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Characterization of new polymer-grafted protein cation exchangers developed by partial neutralization of carboxyl groups derivatized by modification of poly(ethylenimine)-Sepharose with succinic anhydride. J Chromatogr A 2018; 1550:28-34. [DOI: 10.1016/j.chroma.2018.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
|
43
|
Zhao Y, Dong X, Yu L, Liu Y, Sun Y. Implications from protein adsorption onto anion- and cation-exchangers derivatized by modification of poly(ethylenimine)-Sepharose FF with succinic anhydride. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Janakiraman VN, Solé M, Maria S, Pezzini J, Cabanne C, Santarelli X. Comparative study of strong cation exchangers: Structure-related chromatographic performances. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1080:1-10. [DOI: 10.1016/j.jchromb.2018.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 11/26/2022]
|
45
|
Protein adsorption onto diethylaminoethyl dextran modified anion exchanger: Effect of ionic strength and column behavior. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
46
|
Koshari SHS, Wagner NJ, Lenhoff AM. Effects of Resin Architecture and Protein Size on Nanoscale Protein Distribution in Ion-Exchange Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:673-684. [PMID: 29286243 DOI: 10.1021/acs.langmuir.7b03289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Knowledge of the nanoscale distribution of proteins in chromatographic resins is critical to our mechanistic understanding of separations performance. However, the nano- to mesoscale architecture of these materials is challenging to characterize using conventional techniques. Small-angle neutron scattering was used to probe (1) the nano- to mesoscale structure of chromatographic media and (2) protein sorption in these media in situ with protein-scale resolution. In particular, we characterize the effect of the architecture of cellulose-based and traditional and dextran-modified agarose-based ion-exchange resins on the nanoscale distribution of a relatively small protein (lysozyme) and two larger proteins (lactoferrin and a monoclonal antibody) at different protein loadings. Traditional agarose-based resins (SP Sepharose FF) can be envisioned as comprising long, thin strands of helical resin material around which the proteins adsorb, while higher static capacities are achieved in dextran-modified resins (SP Sepharose XL and Capto S) due to protein partitioning into the increased effective binding volume provided by the dextran. While protein size is shown not to affect the underlying sorption behavior in agarose-based resins such as SP Sepharose FF and XL, it plays an important role in the cellulose-based S HyperCel and the more highly cross-linked agarose-based Capto S, where size-exclusion effects prevent larger proteins from binding to the base matrix resin strands. Based on the data, we propose that entropic partitioning effects such as depletion forces may drive the observed protein crowding. In general, these observations elucidate the structure and point to the mechanism of protein partitioning in different classes of chromatographic materials, providing guidance for optimizing their performance.
Collapse
Affiliation(s)
- Stijn H S Koshari
- Center for Molecular and Engineering Thermodynamics, Department of Chemical and Biomolecular Engineering, University of Delaware , 150 Academy Street, Newark, Delaware 19716, United States
| | - Norman J Wagner
- Center for Molecular and Engineering Thermodynamics, Department of Chemical and Biomolecular Engineering, University of Delaware , 150 Academy Street, Newark, Delaware 19716, United States
| | - Abraham M Lenhoff
- Center for Molecular and Engineering Thermodynamics, Department of Chemical and Biomolecular Engineering, University of Delaware , 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
47
|
Großhans S, Wang G, Fischer C, Hubbuch J. An integrated precipitation and ion-exchange chromatography process for antibody manufacturing: Process development strategy and continuous chromatography exploration. J Chromatogr A 2017; 1533:66-76. [PMID: 29229331 DOI: 10.1016/j.chroma.2017.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022]
Abstract
In the past decades, research was carried out to find cost-efficient alternatives to Protein A chromatography as a capture step in monoclonal antibody (mAb) purification processes. In this work, polyethylene glycol (PEG) precipitation has shown promising results in the case of mAb yield and purity. Especially with respect to continuous processing, PEG precipitation has many advantages, like low cost of goods, simple setup, easy scalability, and the option to handle perfusion reactors. Nevertheless, replacing Protein A has the disadvantage of renouncing a platform unit operation as well. Furthermore, PEG precipitation is not capable of reducing high molecular weight impurities (HMW) like aggregates or DNA. To overcome these challenges, an integrated process strategy combining PEG precipitation with cation-exchange chromatography (CEX) for purification of a mAb is presented. This work discusses the process strategy as well as the associated fast, easy, and material-saving process development platform. These were implemented through the combination of high-throughput methods with empirical and mechanistic modeling. The strategy allows the development of a common batch process. Additionally, it is feasible to develop a continuous process. In the presented case study, a mAb provided from cell culture fluid (HCCF) was purified. The precipitation and resolubilization conditions as well as the chromatography method were optimized, and the mutual influence of all steps was investigated. A mAb yield of over 95.0% and a host cell protein (HCP) reduction of over 99.0% could be shown. At the same time, the aggregate level was reduced from 3.12% to 1.20% and the DNA level was reduced by five orders of magnitude. Furthermore, the mAb was concentrated three times to a final concentration of 11.9mg/mL.
Collapse
Affiliation(s)
- Steffen Großhans
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Gang Wang
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Christian Fischer
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany.
| |
Collapse
|
48
|
Zhang SL, Zhao M, Yang W, Luo J, Sun Y, Shi QH. A novel polymer-grafted cation exchanger for high-capacity protein chromatography: The role of polymer architecture. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Steinebach F, Wälchli R, Pfister D, Morbidelli M. Adsorption Behavior of Charge Isoforms of Monoclonal Antibodies on Strong Cation Exchangers. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/01/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Fabian Steinebach
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences; ETH Zurich 8093 Zurich Switzerland
| | - Ruben Wälchli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences; ETH Zurich 8093 Zurich Switzerland
| | | | - Massimo Morbidelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences; ETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
50
|
Li X, Liu Y, Sun Y. Alginate-grafted Sepharose FF: A novel polymeric ligand-based cation exchanger for high-capacity protein chromatography. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|