1
|
Sanna D, Fadda A. Oxidative Stability of Sunflower Oil: Effect of Blending with an Oil Extracted from Myrtle Liqueur By-Product. Antioxidants (Basel) 2025; 14:300. [PMID: 40227300 PMCID: PMC11939490 DOI: 10.3390/antiox14030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
Myrtle oil extracted from the spent berries of myrtle liqueur production, using 2-methyltetrahydrofuran, was used to increase the oxidative stability of sunflower oil (SFO). Three blending ratios (5%, 10%, and 15% w/w) and the SFO without any addition were subjected to forced aging conditions at 70 °C for 21 days. The changes in peroxide value (PV), p-anisidine value (AV), total oxidation value (totox), and conjugated dienes and trienes were evaluated during forced aging. The oxidative stability of the blends was also assessed by the spin trapping method coupled with Electron Paramagnetic Resonance spectroscopy. Myrtle oil at 5% provided the best results, increasing the oxidative stability of SFO by reducing the PV and slowing the onset of secondary oxidation products, as measured by the AV and conjugated trienes. The 15% blend, despite its high levels of PV, AV, conjugated dienes, and trienes during storage, protects SFO from oxidation. The blends of SFO with unconventional oils, like myrtle oil, could represent a sustainable approach to increase its oxidative stability during storage.
Collapse
Affiliation(s)
- Daniele Sanna
- Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca, 3, 07100 Sassari, Italy
| | - Angela Fadda
- Institute of the Sciences of the Food Productions, National Research Council, Traversa La Crucca, 3, 07100 Sassari, Italy
| |
Collapse
|
2
|
Hennebelle M, Villeneuve P, Durand E, Lecomte J, van Duynhoven J, Meynier A, Yesiltas B, Jacobsen C, Berton-Carabin C. Lipid oxidation in emulsions: New insights from the past two decades. Prog Lipid Res 2024; 94:101275. [PMID: 38280491 DOI: 10.1016/j.plipres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Lipid oxidation constitutes the main source of degradation of lipid-rich foods, including food emulsions. The complexity of the reactions at play combined with the increased demand from consumers for less processed and more natural foods result in additional challenges in controlling this phenomenon. This review provides an overview of the insights acquired over the past two decades on the understanding of lipid oxidation in oil-in-water (O/W) emulsions. After introducing the general structure of O/W emulsions and the classical mechanisms of lipid oxidation, the contribution of less studied oxidation products and the spatiotemporal resolution of these reactions will be discussed. We then highlight the impact of emulsion formulation on the mechanisms, taking into consideration the new trends in terms of emulsifiers as well as their own sensitivity to oxidation. Finally, novel antioxidant strategies that have emerged to meet the recent consumer's demand will be detailed. In an era defined by the pursuit of healthier, more natural, and sustainable food choices, a comprehensive understanding of lipid oxidation in emulsions is not only an academic quest, but also a crucial step towards meeting the evolving expectations of consumers and ensuring the quality and stability of lipid-rich food products.
Collapse
Affiliation(s)
- Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Unilever Food Innovation Centre, Wageningen, the Netherlands
| | | | - Betül Yesiltas
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte Jacobsen
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes 44300, France; Laboratory of Food Process Engineering, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
3
|
Velasco J, García-González A, Zamora R, Hidalgo FJ, Ruiz-Méndez MV. Quality and Nutritional Changes of Traditional Cupcakes in the Processing and Storage as a Result of Sunflower Oil Replacements with Refined Olive Pomace Oil. Foods 2023; 12:foods12112125. [PMID: 37297368 DOI: 10.3390/foods12112125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Recent nutritional studies have shown that the regular consumption of olive pomace oil (OPO) contributes to cardiovascular and cardiometabolic disease prevention. OPO could be a healthier alternative to the polyunsaturated oils employed in a number of bakery foods. However, little is known about the quality and nutritional changes of OPO in these products, especially the amounts of its bioactive components that finally reach consumers. The aim of this research was to evaluate refined OPO as a substitute for sunflower oil (SO) in cupcakes specially manufactured with a 6-month shelf-life. The influence of processing and storage on lipid oxidative changes and the levels of OPO bioactive components was studied. OPO samples exhibited much higher resistance to oxidative degradation in the processing and especially after storage, which had a greater oxidative impact. OPO reduced considerably the levels of oxidised lipids. HPLC analysis showed hydroperoxide triglyceride concentrations of 0.25 (±0.03) mmol/kg fat against 10.90 (±0.7) mmol/kg in the control containing SO. Sterols, triterpenic alcohols and triterpenic acids remained unchanged, and only slight losses of squalene (8 wt%) and α-tocopherol (13 wt%) were observed in OPO after processing and storage, respectively. Therefore, OPO preserved its nutritional properties and improved the quality and nutritional value of the cupcakes.
Collapse
Affiliation(s)
- Joaquín Velasco
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC) Carretera de Utrera, km 1, 41013 Sevilla, Spain
| | - Aída García-González
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC) Carretera de Utrera, km 1, 41013 Sevilla, Spain
| | - Rosario Zamora
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC) Carretera de Utrera, km 1, 41013 Sevilla, Spain
| | - Francisco J Hidalgo
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC) Carretera de Utrera, km 1, 41013 Sevilla, Spain
| | - María-Victoria Ruiz-Méndez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC) Carretera de Utrera, km 1, 41013 Sevilla, Spain
| |
Collapse
|
4
|
Hu X, Peng B, Wang S, Tu Z, Li J, Wang H, Hu Y, Zhong B. Oxidative stabilities of grass carp oil: possible mechanisms of volatile species formation in hydroperoxylated metabolites at high temperature. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Zhang Y, Wang M, Zhang X, Qu Z, Gao Y, Li Q, Yu X. Mechanism, indexes, methods, challenges, and perspectives of edible oil oxidation analysis. Crit Rev Food Sci Nutr 2021:1-15. [PMID: 34845958 DOI: 10.1080/10408398.2021.2009437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Edible oils are indispensable food components, because they are used for cooking or frying. However, during processing, transport, storage, and consumption, edible oils are susceptible to oxidation, during which various primary and secondary oxidative products are generated. These products may reduce the nutritional value and safety of edible oils and even harm human health. Therefore, analyzing the oxidation of edible oil is essential to ensure the quality and safety of oil. Oxidation is a complex process with various oxidative products, and the content of these products can be evaluated by corresponding indexes. According to the structure and properties of the oxidative products, analytical methods have been employed to quantify these products to analyze the oxidation of oil. Combined with proper chemometric analytical methods, qualitative identification has been performed to discriminate oxidized and nonoxidized oils. Oxidative products are complex and diverse. Thus, proper indexes and analytical methods should be selected depending on specific research objectives. Expanding the mechanism of the correspondence between oxidative products and analytical methods is crucial. The underlying mechanism, conventional indexes, and applications of analytical methods are summarized in this review. The challenges and perspectives for future applications of several methods in determining oxidation are also discussed. This review may serve as a reference in the selection, establishment, and improvement of methods for analyzing the oxidation of edible oil. HighlightsThe mechanism of edible oil oxidation analysis was elaborated.Conventional oxidation indexes and their limited values were discussed.Analytical methods for the determination of oxidative products and qualitative identification of oxidized and non-oxidized oils were reviewed.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China
| | - Mengzhu Wang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xuping Zhang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China
| | - Zhihao Qu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China
| | - Yuan Gao
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China
| | - Qi Li
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, P. R. China
| |
Collapse
|
6
|
Liang N, Hennebelle M, Gaul S, Johnson CD, Zhang Z, Kirpich IA, McClain CJ, Feldstein AE, Ramsden CE, Taha AY. Feeding mice a diet high in oxidized linoleic acid metabolites does not alter liver oxylipin concentrations. Prostaglandins Leukot Essent Fatty Acids 2021; 172:102316. [PMID: 34403987 PMCID: PMC9157566 DOI: 10.1016/j.plefa.2021.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
The oxidation of dietary linoleic acid (LA) produces oxidized LA metabolites (OXLAMs) known to regulate multiple signaling pathways in vivo. Recently, we reported that feeding OXLAMs to mice resulted in liver inflammation and apoptosis. However, it is not known whether this is due to a direct effect of OXLAMs accumulating in the liver, or to their degradation into bioactive shorter chain molecules (e.g. aldehydes) that can provoke inflammation and related cascades. To address this question, mice were fed a low or high LA diet low in OXLAMs, or a low LA diet supplemented with OXLAMs from heated corn oil (high OXLAM diet). Unesterified oxidized fatty acids (i.e. oxylipins), including OXLAMs, were measured in liver after 8 weeks of dietary intervention using ultra-high pressure liquid chromatography coupled to tandem mass-spectrometry. The high OXLAM diet did not alter liver oxylipin concentrations compared to the low LA diet low in OXLAMs. Significant increases in several omega-6 derived oxylipins and reductions in omega-3 derived oxylipins were observed in the high LA dietary group compared to the low LA group. Our findings suggest that dietary OXLAMs do not accumulate in liver, and likely exert pro-inflammatory and pro-apoptotic effects via downstream secondary metabolites.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, Unites States
| | - Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, Unites States
| | - Susanne Gaul
- Department of Pediatrics, University of California San Diego, La Jolla, CA, Unites States; Klinik und Poliklinik für Kardiologie, University Hospital Leipzig, Leipzig University, Germany
| | - Casey D Johnson
- Department of Pediatrics, University of California San Diego, La Jolla, CA, Unites States
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, Unites States
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, KY; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY; Department of Pharmacology and Toxicology and University of Louisville Alcohol Center
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, KY; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY; Department of Pharmacology and Toxicology and University of Louisville Alcohol Center; Veterans Affairs San Diego Healthcare System, San Diego, CA; and Robley Rex Veterans Medical Center, Louisville, KY
| | - Ariel E Feldstein
- Department of Pediatrics, University of California San Diego, La Jolla, CA, Unites States
| | - Christopher E Ramsden
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, Unites States; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, Unites States.
| |
Collapse
|
7
|
Shen Q, Zhang Z, Emami S, Chen J, Leite Nobrega de Moura Bell JM, Taha AY. Triacylglycerols are preferentially oxidized over free fatty acids in heated soybean oil. NPJ Sci Food 2021; 5:7. [PMID: 33795687 PMCID: PMC8016982 DOI: 10.1038/s41538-021-00086-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/13/2021] [Indexed: 01/20/2023] Open
Abstract
In oil, free fatty acids (FFAs) are thought compared the efficiency of hydrolysis wto be the preferred substrate for lipid oxidation although triacylglycerols (TAGs) are the predominant lipid class. We determined the preferential oxidation substrate (TAGs versus FFAs) in soybean oil heated at 100 °C for 24 h, after validating a method for quantifying esterified and free lipid oxidation products (i.e., oxylipins) with mass-spectrometry. Reaction velocities and turnover (velocity per unit substrate) of FFA, and free and TAG-bound (esterified) oxylipins were determined. FFA hydrolysis rate and turnover were orders of magnitude greater (16-4217 fold) than that of esterified and free oxylipin formation. The velocity and turnover of TAG-bound oxylipins was significantly greater than free oxylipins by 282- and 3-fold, respectively. The results suggest that during heating, TAGs are preferentially oxidized over FFAs, despite the rapid hydrolysis and availability of individual FFAs as substrates for oxidation. TAG-bound oxylipins may serve as better markers of lipid oxidation.
Collapse
Affiliation(s)
- Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Shiva Emami
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Juliana Maria Leite Nobrega de Moura Bell
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA
- Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA.
| |
Collapse
|
8
|
Ramsden CE, Hennebelle M, Schuster S, Keyes GS, Johnson CD, Kirpich IA, Dahlen JE, Horowitz MS, Zamora D, Feldstein AE, McClain CJ, Muhlhausler BS, Makrides M, Gibson RA, Taha AY. Effects of diets enriched in linoleic acid and its peroxidation products on brain fatty acids, oxylipins, and aldehydes in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1206-1213. [PMID: 30053599 PMCID: PMC6180905 DOI: 10.1016/j.bbalip.2018.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/12/2018] [Accepted: 07/21/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Linoleic acid (LA) is abundant in modern industrialized diets. Oxidized LA metabolites (OXLAMs) and reactive aldehydes, such as 4-hydroxy-2-nonenal (4-HNE), are present in heated vegetable oils and can be endogenously synthesized following consumption of dietary LA. OXLAMs have been implicated in cerebellar degeneration in chicks; 4-HNE is linked to neurodegenerative conditions in mammals. It unknown whether increasing dietary LA or OXLAMs alters the levels of oxidized fatty acids (oxylipins), precursor fatty acids, or 4-HNE in mammalian brain. OBJECTIVES To determine the effects of increases in dietary OXLAMs and dietary LA, on levels of fatty acids, oxylipins, and 4-HNE in mouse brain tissues. METHODS Mice (n = 8 per group) were fed one of three controlled diets for 8 weeks: (1) a low LA diet, (2) a high LA diet, or (3) the low LA diet with added OXLAMs. Brain fatty acids, oxylipins, and 4-HNE were quantified in mouse cerebellum and cerebral cortex by gas chromatography-flame ionization detection, liquid chromatography-tandem mass spectrometry, and immunoblot, respectively. RESULTS Increasing dietary LA significantly increased omega-6 fatty acids, decreased omega-3 fatty acids, and increased OXLAMs in brain. Dietary OXLAMs had minimal effect on oxidized lipids but did decrease both omega-6 and omega-3 fatty acids. Neither dietary LA nor OXLAMs altered 4-HNE levels. CONCLUSION Brain fatty acids are modulated by both dietary LA and OXLAMs, while brain OXLAMs are regulated by endogenous synthesis from LA, rather than incorporation of preformed OXLAMs.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; FOODplus Research Center, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia.
| | - Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Susanne Schuster
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Gregory S Keyes
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Casey D Johnson
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Irina A Kirpich
- School of Medicine, University of Louisville, Louisville, KY, USA
| | - Jeff E Dahlen
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, University of California, San Diego, USA
| | - Mark S Horowitz
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Daisy Zamora
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Craig J McClain
- School of Medicine, University of Louisville, Louisville, KY, USA
| | - Beverly S Muhlhausler
- FOODplus Research Center, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Maria Makrides
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Robert A Gibson
- FOODplus Research Center, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
9
|
Velasco J, Morales-Barroso A, Ruiz-Méndez MV, Márquez-Ruiz G. Quantitative determination of major oxidation products in edible oils by direct NP-HPLC-DAD analysis. J Chromatogr A 2018; 1547:62-70. [PMID: 29559268 DOI: 10.1016/j.chroma.2018.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/10/2018] [Indexed: 12/12/2022]
Abstract
The objective of the present study was to explore the possibilities of the direct analysis of vegetable oils by normal-phase HPLC-DAD to evaluate the amounts of the main oxidation products of triacylglycerols containing linoleate, i.e. hydroperoxy-, keto- and hydroxy-dienes. A follow-up of oxidation at 40 °C of trilinolein, used as a simplified model lipid system, high-linoleic sunflower oil and high-oleic sunflower oil was performed to evaluate samples with different fatty acid compositions and different oxidation levels. The results showed that the HPLC-DAD method proposed allows for determining the concentrations of mono-hydroperoxydienes in edible oils without applying any isolation or derivatization step. The method was found to be direct, sensitive (LOQ 0.06 mmol/kg oil), precise (CV ≤ 5%) and also accurate, with 99% of analyte recovery. It also enabled the estimation of the minor amounts of ketodienes, but not those of hydroxydienes, which presented wide chromatographic bands and coeluted with a number of different minor oxidation compounds.
Collapse
Affiliation(s)
- Joaquín Velasco
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Ctra. de Utrera, km 1, E-41013, Sevilla, Spain.
| | - Arturo Morales-Barroso
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Ctra. de Utrera, km 1, E-41013, Sevilla, Spain
| | - M Victoria Ruiz-Méndez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Ctra. de Utrera, km 1, E-41013, Sevilla, Spain
| | - Gloria Márquez-Ruiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (CSIC), c/José Antonio Novais, 10, E-28040, Madrid, Spain
| |
Collapse
|
10
|
Xia W, Budge SM. Simultaneous quantification of epoxy and hydroxy fatty acids as oxidation products of triacylglycerols in edible oils. J Chromatogr A 2017; 1537:83-90. [PMID: 29370919 DOI: 10.1016/j.chroma.2017.12.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/20/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Epoxy and hydroxy fatty acids are important intermediates during lipid oxidation; quantification of both structures may help evaluate the extent of competition among various lipid oxidation pathways. This article describes a method to simultaneously determine saturated- and unsaturated- epoxy and hydroxy fatty acids derived from oxidation of vegetable oils. The experimental procedures employed transesterification with sodium methoxide, separation of epoxy and hydroxy fatty acid methyl esters (FAME) using solid-phase extraction (SPE), and trimethylsilyl (TMS) derivatization of hydroxy groups. GC-MS was used to identify the epoxy and hydroxy FAME in two different SPE fractions, while GC-flame ionization detection (GC-FID) was used to determine their quantities. Epoxy-octadecanoate/octadecenoate and hydroxy-octadecanoate/octadecenoate/octadecadienoate were determined as lipid oxidation products generated from oxidation of sunflower and canola oils. An isomer of methyl 13-hydroxyoctadeca-9,11-dienoate (13-HODE) TMS ether co-eluted with methyl 15-hydroxyoctadeca-9,12-dienoate TMS ether, which was only present in canola oil; thus, GC-MS-selected ion monitoring (GC-MS-SIM) was used to determine the concentration of 13-HODE. The proposed method has been successfully applied to monitor epoxy and hydroxy fatty acids in sunflower oil and canola oil oxidized at 40 °C.
Collapse
Affiliation(s)
- Wei Xia
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Suzanne M Budge
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
11
|
Xia W, Budge SM. Techniques for the Analysis of Minor Lipid Oxidation Products Derived from Triacylglycerols: Epoxides, Alcohols, and Ketones. Compr Rev Food Sci Food Saf 2017; 16:735-758. [PMID: 33371569 DOI: 10.1111/1541-4337.12276] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/18/2022]
Abstract
Lipid oxidation can lead to flavor and safety issues in fat-containing foods. In order to measure the extent of lipid oxidation, hydroperoxides and their scission products are normally targeted for analytical purposes. In recent years, the formation of rarely monitored oxygenated products, including epoxides, alcohols, and ketones, has also raised concerns. These products are thought to form from alternative pathways that compete with chain scissions, and should not be neglected. In this review, a number of instrumental techniques and approaches to determine epoxides, alcohols, and ketones are discussed, with a focus on their selectivity and sensitivity in applications to food lipids and oils. Special attention is given to methods employing gas chromatography (GC), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR). For characterization purposes, GC-mass spectrometry (GC-MS) provides valuable information regarding the structures of individual oxygenated fatty acids, typically as methyl esters, isolated from oxygenated triacylglycerols (TAGs), while the use of liquid chromatography-MS (LC-MS) techniques allows analysis of intact oxygenated TAGs and offers information about the position of the oxygenated acyl chain on the glycerol backbone. For quantitative purposes, traditional chromatography methods have exhibited excellent sensitivity, while spectroscopic methods, including NMR, are superior to chromatography for their rapid analytical cycles. Future studies should focus on the development of a routine quantitative method that is both selective and sensitive.
Collapse
Affiliation(s)
- Wei Xia
- Dept. of Process Engineering and Applied Science, Dalhousie Univ., Halifax, NS, B3H 4R2, Canada
| | - Suzanne M Budge
- Dept. of Process Engineering and Applied Science, Dalhousie Univ., Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
12
|
Richardson CE, Hennebelle M, Otoki Y, Zamora D, Yang J, Hammock BD, Taha AY. Lipidomic Analysis of Oxidized Fatty Acids in Plant and Algae Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1941-1951. [PMID: 28157307 PMCID: PMC5581005 DOI: 10.1021/acs.jafc.6b05559] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Linoleic acid (LA) and α-linolenic acid (ALA) in plant or algae oils are precursors to oxidized fatty acid metabolites known as oxylipins. Liquid chromatography tandem mass spectrometry was used to quantify oxylipins in soybean, corn, olive, canola, and four high-oleic acid algae oils at room temperature or after heating for 10 min at 100 °C. Flaxseed oil oxylipin concentrations were determined in a follow-up experiment that compared it to soybean, canola, corn, and olive oil. Published consumption data for soybean, canola, corn, and olive oil were used to estimate daily oxylipin intake. The LA and ALA fatty acid composition of the oils was generally related to their respective oxylipin metabolites, except for olive and flaxseed oil, which had higher LA derived monohydroxy and ketone oxylipins than other oils, despite their low LA content. Algae oils had the least amount of oxylipins. The change in oxylipin concentrations was not significantly different among the oils after short-term heating. The estimated oxylipin intake from nonheated soybean, canola, corn, and olive oil was 1.1 mg per person per day. These findings suggest that oils represent a dietary source of LA and ALA derived oxylipins and that the response of oils to short-term heating does not differ among the various oils.
Collapse
Affiliation(s)
- Christine E. Richardson
- Graduate Group in Nutritional Biology, College of Agriculture and Environmental Sciences, University of California, Davis, USA
| | - Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, USA
| | - Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, USA
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Daisy Zamora
- Department of Psychiatry, University of North Carolina-Chapel Hill, NC, USA
| | - Jun Yang
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, USA
| | - Bruce D. Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, USA
| | - Ameer Y. Taha
- Graduate Group in Nutritional Biology, College of Agriculture and Environmental Sciences, University of California, Davis, USA
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, USA
- Corresponding author: Ameer Y. Taha, Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, , Tel: 530-752-7096
| |
Collapse
|
13
|
Inhibition of Hydroperoxy-, Keto- and Hydroxy-FAME by Alpha- and Delta-Tocopherol at Rancimat Conditions. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2748-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
|
15
|
Zhang Q, Qin W, Li M, Shen Q, Saleh AS. Application of Chromatographic Techniques in the Detection and Identification of Constituents Formed during Food Frying: A Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Qing Zhang
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Wen Qin
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Meiliang Li
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Qun Shen
- Natl. Engineering and Technology Research Center for Fruits and Vegetables; College of Food Science and Nutritional Engineering, China Agricultural Univ.; Beijing 100083 China
| | - Ahmed S.M. Saleh
- Dept. of Food Science and Technology; Faculty of Agriculture, Assiut Univ.; Assiut 71526 Egypt
| |
Collapse
|
16
|
Zeb A. Chemistry and liquid chromatography methods for the analyses of primary oxidation products of triacylglycerols. Free Radic Res 2015; 49:549-64. [PMID: 25824968 DOI: 10.3109/10715762.2015.1022540] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Triacylglycerols (TAGs) are one of the major components of the cells in higher biological systems, which can act as an energy reservoir in the living cells. The unsaturated fatty acid moiety is the key site of oxidation and formation of oxidation compounds. The TAG free radical generates several primary oxidation compounds. These include hydroperoxides, hydroxides, epidioxides, hydroperoxy epidioxides, hydroxyl epidioxides, and epoxides. The presence of these oxidized TAGs in the cell increases the chances of several detrimental processes. For this purpose, several liquid chromatography (LC) methods were reported in their analyses. This review is therefore focused on the chemistry, oxidation, extraction, and the LC methods reported in the analyses of oxidized TAGs. The studies on thin-layer chromatography were mostly focused on the total oxidized TAGs separation and employ hexane as major solvent. High-performance LC (HPLC) methods were discussed in details along with their merits and demerits. It was found that most of the HPLC methods employed isocratic elution with methanol and acetonitrile as major solvents with an ultraviolet detector. The coupling of HPLC with mass spectrometry (MS) highly increases the efficiency of analysis as well as enables reliable structural elucidation. The use of MS was found to be helpful in studying the oxidation chemistry of TAGs and needs to be extended to the complex biological systems.
Collapse
Affiliation(s)
- A Zeb
- Department of Biotechnology, University of Malakand , Chakdara , Pakistan
| |
Collapse
|
17
|
Formation of oxidation products in edible vegetable oils analyzed as FAME derivatives by HPLC-UV-ELSD. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Morales A, Marmesat S, Dobarganes MC, Márquez-Ruiz G, Velasco J. Evaporative light scattering detector in normal-phase high-performance liquid chromatography determination of FAME oxidation products. J Chromatogr A 2012; 1254:62-70. [DOI: 10.1016/j.chroma.2012.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 11/28/2022]
|