1
|
Zhang X, Qi A, Gong F, Yang L. Impact of oil-extraction/port activities on distribution and exchange of PAHs/APAHs/NPAHs/OPAHs in water and sediment of the Yellow River Delta, China. J Environ Sci (China) 2025; 155:290-302. [PMID: 40246466 DOI: 10.1016/j.jes.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 04/19/2025]
Abstract
The Yellow River Delta (YRD) is rich in oil, natural gas, and land resources. With the expansion of an important oil production base in North China, the increased discharge of Polycyclic aromatic hydrocarbons (PAHs) and alkylated/nitrated/oxygenated PAHs (APAHs/NPAHs/OPAHs) into the Yellow River poses a potential risk to the aquatic ecosystem and human health. A total of 42 samples were gathered from trunk streams and tributaries within the YRD region during the wet and dry seasons, and 19 PAHs, 5 APAHs, 16 NPAHs, and 7 OPAHs were measured. The concentrations of ƩPAHs, ƩAPAHs, ƩNPAHs and ƩOPAHs ranged between 29 and 620 ng/L, 6.9-81 ng/L, 0.64-9.0 ng/L, and 7.2-81 ng/L in water, respectively, and 27-420 ng/g, 5.1-130 ng/g, 0.19-1.8 ng/g and 3.9-51 ng/g in sediment, respectively. The oil extraction activities resulted in an increased presence of middle-high molecular weight PAHs and APAHs in sediment, and port activities had a notable influence on the proportion of 1-methylpyrene in both water and sediment. The fugacity fraction analysis suggested that sediment was a secondary source of OPAHs, while benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, and 5-methylchrysene migrated from water to sediment. The main contributors to PAHs, APAHs, NPAHs, and OPAHs in water and sediment were combustion and petroleum sources. Compared to water, sediment displayed a heightened ecological risk associated with PAHs, APAHs, NPAHs, and OPAHs. Adults residing in the YRD region were at higher risk of cancer than children, which deserves special attention.
Collapse
Affiliation(s)
- Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Anan Qi
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Feijie Gong
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing 210093, China.
| |
Collapse
|
2
|
Ge L, Wang S, Cui N, Wang Z, Zhang P. Insight into the environmental photochemistry of nitrated polycyclic aromatic hydrocarbons in water and in ice: kinetics, pathways and photo-modified toxicity. ENVIRONMENTAL RESEARCH 2025; 279:121749. [PMID: 40311906 DOI: 10.1016/j.envres.2025.121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/12/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are contaminants of emerging concern due to their various sources and widespread existence in the environment. This study demonstrated an in-depth comparison of the aqueous and ice photochemistry of three nitro-PAHs: 1-nitropyrene (1-Npyr), 2-nitrofluorene (2-Nflu) and 9-nitrophenanthrene (9-Nphe). Upon exposure to the simulating solar irradiation (λ > 290 nm), their apparent photolysis followed pseudo-first-order kinetics, with apparent quantum yields (Φs) and half-lives (t1/2) depending on the chemical structures or the reaction media (water/ice). Based on the ROS scavenging experiments, 1-Npyr was found to suffer from self-sensitized photo-oxidation by hydroxyl radicals (·OH), while 2-Nflu and 9-Nphe underwent singlet-oxygen (1O2) mediated self-sensitized photolysis. Moreover, the contributions of the self-sensitized photolysis via ·OH/1O2 in ice were lower than in water for all the nitro-PAHs (p < 0.05), which may be ascribed to the lower fluidity of the molecules in ice and insufficient ·OH/1O2 generated to participate in the reactions. The product identification by HPLC-MS/MS indicated that the main photodegradation pathways involved photoinduced hydroxylation, photooxidation and isomerization. Interestingly, isomerization reaction only occurred in the ice phase, attributing to the freezing concentration effect that led to the enrichment of solutes at the crystal boundaries of the ice crystals and facilitated the generation of isomers in ice. Furthermore, the photo-modified toxicities of the nitro-PAHs to Vibrio fischeri were examined in the two phases, indicating that the higher or comparable toxicities persisted in their intermediates. The toxicities of the individual intermediates to multiple trophic-level organisms were further assayed by the ECOSAR software, indicating consistency with the results of the bioassay using Vibrio fischeri. These results showed that the similarities and differences between aqueous and ice photochemistry of nitro-PAHs, which has crucial implications for how we undertake assessments of environmental persistence for the group of chemicals in cold regions.
Collapse
Affiliation(s)
- Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Siyuan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Nannan Cui
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Ziyu Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
3
|
Tao Q, Ma P, Chen B, Qu X, Fu H. Hierarchically spherical assembly of carbon nanorods derived from metal-organic framework as solid-phase microextraction coating for nitrated polycyclic aromatic hydrocarbon analysis. J Chromatogr A 2024; 1736:465352. [PMID: 39255650 DOI: 10.1016/j.chroma.2024.465352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are pervasive contaminants in aquatic environments. They are characterized by persistence, toxicity, bioaccumulation, and long-range transport, significantly threatening human health. The development of sensitive methods for nitro-PAH analysis in environmental samples is in great need. This study developed a novel carbonaceous SPME coating derived from metal-organic framework (MOF), namely a spherical assembly consisting of carbon nanorods with hierarchical porosity (HP-MOF-C), for the extraction and determination of nitro-PAHs in waters. The HP-MOF-C coated fiber demonstrated superior nitro-PAH extraction efficiencies, with enrichment factors 2∼70 times higher than commercial fibers. This enhancement was due to the strong hydrophobic, π-π electron coupling/stacking, and π-π electron donor-acceptor interactions between the carbonaceous framework of HP-MOF-C and the nitro-PAHs. Moreover, the unique hierarchical porous structure of HP-MOF-C accelerated the diffusion of nitro-PAHs, further facilitating their enrichment. The fiber also exhibited good thermal stability, remarkable chemical stabilities against common acid, base, and polar/non-polar solvents, and long service life (> 150 SPME cycles). The nitro-PAH determination method based on HP-MOF-C coating yielded wide linear ranges, low detection limits (0.4∼5.0 ng L-1), satisfactory repeatability and reproducibility, and good recoveries in real water samples. The proposed method was considered to be green according to the Analytical GREEnness assessment. The present study not only offers an efficient SPME coating for the enrichment of nitro-PAHs, but also provides insights into the design of porous coating materials.
Collapse
Affiliation(s)
- Qingwen Tao
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Pu Ma
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Beining Chen
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China.
| |
Collapse
|
4
|
Sarma H, Gogoi B, Guan CY, Yu CP. Nitro-PAHs: Occurrences, ecological consequences, and remediation strategies for environmental restoration. CHEMOSPHERE 2024; 356:141795. [PMID: 38548078 DOI: 10.1016/j.chemosphere.2024.141795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/24/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are persistent pollutants that have been introduced into the environment as a result of human activities. They are produced when PAHs undergo oxidation and are highly resistant to degradation, resulting in prolonged exposure and significant health risks for wildlife and humans. Nitro-PAHs' potential to induce cancer and mutations has raised concerns about their harmful effects. Furthermore, their ability to accumulate in the food chain seriously threatens the ecosystem and human health. Moreover, nitro-PAHs can disrupt the normal functioning of the endocrine system, leading to reproductive and developmental problems in humans and other organisms. Reducing nitro-PAHs in the environment through source management, physical removal, and chemical treatment is essential to mitigate the associated environmental and human health risks. Recent studies have focused on improving nitro-PAHs' phytoremediation by incorporating microorganisms and biostimulants. Microbes can break down nitro-PAHs into less harmful substances, while biostimulants can enhance plant growth and metabolic activity. By combining these elements, the effectiveness of phytoremediation for nitro-PAHs can be increased. This study aimed to investigate the impact of introducing microbial and biostimulant agents on the phytoremediation process for nitro-PAHs and identify potential solutions for addressing the environmental risks associated with these pollutants.
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Bhoirob Gogoi
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University. B.S., Civil Engineering, National Taiwan University, Taiwan
| |
Collapse
|
5
|
Adjal C, Timón V, Guechtouli N, Boussassi R, Hammoutène D, Senent ML. The Role of Water in the Adsorption of Nitro-Organic Pollutants on Activated Carbon. J Phys Chem A 2023; 127:8146-8158. [PMID: 37748125 PMCID: PMC10561263 DOI: 10.1021/acs.jpca.3c03877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Indexed: 09/27/2023]
Abstract
The density functional theory (DFT) is applied to theoretically study the capture and storage of three different nitro polycyclic aromatic hydrocarbons, 4-nitrophenol, 2-nitrophenol, and 9-nitroanthracene by activated carbon, with and without the presence of water. These species are pollutants derived from vehicle and industry emissions. The modeling of adsorption is carried out at the molecular level using a high-level density functional theory with the B3LYP-GD(BJ)/6-31+G(d,p) level of theory. The adsorption energies of polluting gases considered isolated and in a humid environment are compared to better understand the role of water. The calculations reveal different possible pathways involving the formation of chemical bonds between adsorbent and adsorbate on the formation of intermolecular van der Waals interactions. The negative adsorption energy on AC for the three species is obtained when they are treated individually and in mixture with H2O. The basis-set superposition error, estimated using the counterpoise correction, varies the adsorption energies by 2-13%. Dispersion effects were also taken into account. The adsorption energy ranges from -10 to -414 kJ/mol suggesting a diversity of pathways. The resulting analysis suggests three preferred pathways for capture. The main pathway is physical interaction due to π-π stacking. Other means are capture due to the formation of hydrogen bonds resulting from water adsorbed on the surface and the simultaneous adsorption of pollutant and water where water can act as a link that promotes adsorption. The thermodynamic properties give a clue to the most eco-friendly approaches for molecular adsorption.
Collapse
Affiliation(s)
- Celia Adjal
- Laboratory
of Thermodynamics and Molecular Modeling, Faculty of Chemistry, USTHB, BP32, El Alia, Bab Ezzouar,Algiers 16111, Algeria
- Instituto
de Estructura de la Materia, CSIC, Serrano 121, Madrid 28006, Spain
| | - Vicente Timón
- Instituto
de Estructura de la Materia, CSIC, Serrano 121, Madrid 28006, Spain
| | - Nabila Guechtouli
- Laboratory
of Thermodynamics and Molecular Modeling, Faculty of Chemistry, USTHB, BP32, El Alia, Bab Ezzouar,Algiers 16111, Algeria
- Faculty
of Sciences, Department of Chemistry, Mouloud
Mammeri University of Tizi Ouzou, UMMTO, Tizi Ouzou 15000, Algeria
| | - Rahma Boussassi
- Laboratory
of Thermodynamics and Molecular Modeling, Faculty of Chemistry, USTHB, BP32, El Alia, Bab Ezzouar,Algiers 16111, Algeria
| | - Dalila Hammoutène
- Laboratory
of Thermodynamics and Molecular Modeling, Faculty of Chemistry, USTHB, BP32, El Alia, Bab Ezzouar,Algiers 16111, Algeria
| | - María Luisa Senent
- Instituto
de Estructura de la Materia, CSIC, Serrano 121, Madrid 28006, Spain
| |
Collapse
|
6
|
Zhao K, Peng G, Wang K, Li F. Distribution, sources, and health risk of polycyclic aromatic hydrocarbons and their derivatives in the watershed: the case of Yitong River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68536-68547. [PMID: 37126174 DOI: 10.1007/s11356-023-27042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and substituted PAHs (SPAHs) are persistent organic pollutants prevalent globally, and SPAHs have received widespread attention in recent years due to their stronger toxicity and carcinogenicity compared to PAHs. There is a lack of systematic examination of PAHs and their derivatives in watersheds. Thus, to clarify the current status, possible sources, and potential risks of PAHs and their derivatives in watersheds, a study was conducted on Yitong River in China. The results showed that the concentrations of ∑PAHs, ∑OPAHs, and ∑NPAHs ranged from 297.9-1158.3 ng/L, 281.1-587.2 ng/L, and 65.7-269.1 ng/L, respectively. Diagnostic ratio analysis showed that the PAHs were mainly derived from petroleum sources, agricultural waste, and coal combustion. Nitrated PAHs (NPAHs) were mainly derived from liquid combustion sources, and oxygenated PAHs (OPAHs) were derived mainly from petroleum source emissions and atmospheric deposition. The exposure risk model of PAHs revealed that 86% of the studied sites would pose carcinogenic risks after dermal contact. The contaminant causing a major carcinogenic risk was DahA, and none of the sites produced non-carcinogenic risks. The lifetime carcinogenic risk of NPAHs was 8.85 × 10-10-1.44 × 10-4, and some surface waters presented with potential carcinogenic risks.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Guosong Peng
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Kaixuan Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Kong J, Ma T, Cao X, Li W, Zhu F, He H, Sun C, Yang S, Li S, Xian Q. Occurrence, partition behavior, source and ecological risk assessment of nitro-PAHs in the sediment and water of Taige Canal, China. J Environ Sci (China) 2023; 124:782-793. [PMID: 36182183 DOI: 10.1016/j.jes.2022.02.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/16/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (NPAHs) are widespread organic pollutants that possess carcinogenic and mutagenic properties, so they may pose a risk to the environment and human health. In this study, the concentrations of 15 NPAHs and 16 polycyclic aromatic hydrocarbons (PAHs) in 30 surface water samples and 26 sediment samples were measured in 2018 from the Taige Canal, one of the main rivers flowing into Taihu Lake, China. The total NPAH concentrations in water and sediment ranged from 14.7 to 235 ng/L and 22.9 to 96.5 ng/g dw, respectively. 9-nitrophenanthrene (nd-76.3 ng/L) was the dominant compound in surface water, while 2+3-nitrofluoranthene (1.73-18.1 ng/g dw) dominated in sediment. Among PAHs, concentration ranging from 1,097 to 2,981 ng/L and 1,089 to 4,489 ng/g dw in surface water and sediment, respectively. There was a strong positive correlation between the log octanol-water partition coefficient (Kow) and log sediment-water partition coefficient due to hydrophobic interaction. The fugacity fraction value increased with the decrease of log Kow, and chrysene was transferred from water into sediment. The residual NPAHs in surface water and sediment of the Taige Canal have partial correlation. Diesel engine and coal combustion emissions were probably the principal sources of NPAHs in surface water and sediment. The results of ecological risk assessment showed that some NPAHs in water (e.g, 1-nitropyrene and 6-nitrochrysene) and sediment (e.g., 2-nitrobiphenyl, 5-nitroacenaphthene, 9-nitrophenanthrene and 2+3-nitrofluoranthene) had moderate ecological risks, which should be of concern.
Collapse
Affiliation(s)
- Jijie Kong
- School of Environment, Nanjing Normal University, Nanjing 210023, China; School of Geography, Nanjing Normal University, Nanjing 210023, China; The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tao Ma
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaoyu Cao
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Weidi Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Fujian Provincial Key laboratory of Eco-Industrial Green Technology, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, China.
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Qiming Xian
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Wang Z, Zhang Y, Chang G, Li J, Yang X, Zhang S, Zang X, Wang C, Wang Z. Triazine-based covalent organic polymer: A promising coating for solid-phase microextraction. J Sep Sci 2021; 44:3608-3617. [PMID: 34329505 DOI: 10.1002/jssc.202100442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/08/2022]
Abstract
Advancement of novel coating materials for solid-phase microextraction is highly needed for sample pretreatment. Herein, a triazine-based covalent organic polymer was constructed from the monomers of cyanuric chloride and trans-stilbene via the Friedel-Crafts reaction and thereafter used as a solid-phase microextraction fiber coating for the extraction of polycyclic aromatic hydrocarbons and their nitrated and oxygenated derivatives. The newly-developed solid-phase microextraction method coupled with gas chromatography/flame ionization detection gives enhancement factors of 548-1236 and limits of detection of 0.40-2.81 ng/L for the determination of polycyclic aromatic hydrocarbons and their derivatives. The one fiber precision for five replicate determinations of the analytes and the fiber-to-fiber precision with three parallel prepared fibers, expressed as relative standard deviations, was in the range of 4.6-9.4% and 6.2-10.9%, respectively. The relative recoveries of the analytes for environmental water samples were in the range of 88.6-106.4% with the relative standard deviations ranging from 4.0 to 11.7% (n = 5).
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Ying Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Guifen Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Jinqiu Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Xiumin Yang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| |
Collapse
|
9
|
Li J, Zhao B, Guo L, Wang Z, Wang C, Wang Z, Zhang S, Wu Q. Synthesis of hypercrosslinked polymers for efficient solid-phase microextraction of polycyclic aromatic hydrocarbons and their derivatives followed by gas chromatography-mass spectrometry determination. J Chromatogr A 2021; 1653:462428. [PMID: 34329956 DOI: 10.1016/j.chroma.2021.462428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
Three novel hypercrosslinked polymers (HCPs) were synthesized via Friedel-Crafts reaction employing 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene as alkylating agent, and triphenylbenzene, tetraphenylethylene and p-quaterphenyl as the aromatic units, respectively. The prepared HCPs were applied as solid-phase microextraction coatings for direct immersion extraction of polycyclic aromatic hydrocarbons (PAHs) and their oxygenated and nitrated derivatives in environmental water samples. The key factors affecting the extraction efficiency including extraction time, extraction temperature, stirring rate, ionic strength and desorption conditions, were carefully studied. Coupled with gas chromatography mass spectrometry analysis, a new method for determining PAHs and their derivatives was developed. Under the optimized conditions, the limits of detection (S/N=3) and limits of quantitation (the lowest concentration for quantification) of the method were in the range of 2.5-25.0 and 7.5-75.0 ng L-1, respectively. The recoveries of spiked samples were in the range of 73.1-118.3% with relative standard deviations less than 13.0%. The developed method was applied for the simultaneous determination of nine PAHs and their derivatives in environmental water samples, showing good accuracy and reliability.
Collapse
Affiliation(s)
- Jinqiu Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Bin Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Liying Guo
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhuo Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Shuaihua Zhang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
10
|
Kong J, Dai Y, Han M, He H, Hu J, Zhang J, Shi J, Xian Q, Yang S, Sun C. Nitrated and parent PAHs in the surface water of Lake Taihu, China: Occurrence, distribution, source, and human health risk assessment. J Environ Sci (China) 2021; 102:159-169. [PMID: 33637241 DOI: 10.1016/j.jes.2020.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (NPAHs) have toxic potentials that are higher than those of their corresponding parent polycyclic aromatic hydrocarbons (PAHs) and thus have received increasing attention in recent years. In this study, the occurrence, distribution, source, and human health risk assessment of 15 NPAHs and 16 PAHs were investigated in the surface water from 20 sampling sites of Lake Taihu during the dry, normal, and flood seasons of 2018. The ΣPAH concentrations ranged from 255 to 7298 ng/L and the ΣNPAH concentrations ranged from not-detected (ND) to 212 ng/L. Among the target analytes, 2-nitrofluorene (2-nFlu) was the predominant NPAH, with a detection frequency ranging from 85% to 90% and a maximum concentration of 56.2 ng/L. The three-ringed and four-ringed NPAHs and PAHs comprised the majority of the detected compounds. In terms of seasonal variation, the highest levels of the ΣNPAHs and ΣPAHs were in the dry season and flood season, respectively. Diagnostic ratio analysis indicated that the prime source of NPAHs was direct combustion, whereas in the case of PAHs the contribution was predominantly from a mixed pattern including pollution from unburned petroleum and petroleum combustion. The human health risk of NPAHs and PAHs was evaluated using a lifetime carcinogenic risk assessment model. The carcinogenic risk level of the targets ranged from 2.09 × 10-7 to 5.75 × 10-5 and some surface water samples posed a potential health risk.
Collapse
Affiliation(s)
- Jijie Kong
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuxuan Dai
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengshu Han
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China.
| | - Jiapeng Hu
- College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
| | - Junyi Zhang
- Wuxi Environmental Monitoring Centre, Wuxi 214121, China
| | - Junzhe Shi
- Wuxi Environmental Monitoring Centre, Wuxi 214121, China
| | - Qiming Xian
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Wang C, Liu J, Chen Y, Zhang L, Li L, Xu R, Xing G, Yuan M. Quantitation of ultra-trace nitrated polycyclic aromatic hydrocarbons isomers in water by online solid-phase extraction coupled-liquid chromatography-mass spectrometry. J Chromatogr A 2020; 1635:461738. [PMID: 33302136 DOI: 10.1016/j.chroma.2020.461738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 10/23/2022]
Abstract
An online solid-phase extraction (SPE)-coupled liquid chromatography-mass spectrometry (LC-MS) method was established for the determination of 10 nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in water. Water samples were mixed with methanol to generate 40% methanol solutions (v/v), and filtered by 0.45 μm membrane. The filtration with polytetrafluoroethylene(PTFE) membrane got higher recovery rates than nylon membrane, especially for 4-ring and 5-ring nitro-PAHs. 2.5 mL solution was directly injected into online SPE flow path to allow for online purification and enrichment of target analytes in the SPE column. The nitro-PAHs eluted from the SPE column were automatically transferred to the analytical flow path by a well-designed valve-switching system. With the optimization of LC and MS condition, ten nitro-PAH isomers was separated and detected from each other by LC-MS/MS with negative atmospheric pressure chemical ionization (APCI). It was firstly found that nitro-PAHs could produce strong [M-H]- precursor ions in the primary MS besides [M+e]- and [M+15]-. In the secondary MS, the precursor ions mainly lose NO neutral molecule (30 Daltons) to produce daughter ions. The online SPE and LC-MS analysis process was completed in 15.5 min. The linear correlation coefficients of 10 nitro-PAH standard curves were higher than 0.99. The detection limits of nitro-PAHs were about 1.2~22.2 ng/L (S/N=3). The intra-day and inter-day reproducibility (RSD, n=6) were 1.6%~8.4% and 5.3%~16.9%, respectively. The recoveries of 10, 40 and 200 ng/L in tap water were 71.7%~106.4%, 79.7%~100.9% and 73.0%~105.5%, with the corresponding RSD of 2.4%~10.5%, 2.1%~8.6% and 2.7%~6.2%, respectively.
Collapse
Affiliation(s)
- Chao Wang
- China National Environmental Monitoring Centre, Beijing, 100012, China.
| | - Jinbin Liu
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Ye Chen
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Linlin Zhang
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Lijun Li
- SCIEX China, Beijing, 100015, China
| | - Renji Xu
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Guanhua Xing
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Mao Yuan
- China National Environmental Monitoring Centre, Beijing, 100012, China
| |
Collapse
|
12
|
Sun C, Qu L, Wu L, Wu X, Sun R, Li Y. Advances in analysis of nitrated polycyclic aromatic hydrocarbons in various matrices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Martínez-Pérez-Cejuela H, Guiñez M, Simó-Alfonso EF, Amorós P, El Haskouri J, Herrero-Martínez JM. In situ growth of metal-organic framework HKUST-1 in an organic polymer as sorbent for nitrated and oxygenated polycyclic aromatic hydrocarbon in environmental water samples prior to quantitation by HPLC-UV. Mikrochim Acta 2020; 187:301. [DOI: 10.1007/s00604-020-04265-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
|
14
|
Zhang J, Chen H, He H, Cheng X, Ma T, Hu J, Yang S, Li S, Zhang L. Adsorption behavior and mechanism of 9-Nitroanthracene on typical microplastics in aqueous solutions. CHEMOSPHERE 2020; 245:125628. [PMID: 31864060 DOI: 10.1016/j.chemosphere.2019.125628] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Microplastics and Nitropolycyclic aromatic hydrocarbons (NPAHs) are two types of emerging pollutants that are strong potential threats to aquatic ecosystems and organisms. The adsorption of NPAHs on microplastics may explain the fate and effects of NPAHs in natural environments. In this study, the adsorption behavior of 9-Nitroanthrene (9-NAnt) on polyethylene (PE), polypropylene (PP) and polystyrene (PS) was investigated. Kinetic experiments revealed that 9-NAnt was inclined to be adsorbed onto microplastics, especially PE, which had a large adsorption amount of 734 μg g-1. A linear isothermal model better described the isothermal adsorption process for 9-NAnt, which indicated that a hydrophobic distribution may be the main adsorption mechanism in an aqueous solution. Water environment factors, such as the pH and ionic strength, had negligible effects on the adsorption for PE. In contrast, alkaline and high ionic strength conditions resulted in the inhibition of adsorption of PP and PS. In addition, the particle size of microplastics was negatively correlated with the log Kd of 9-NAnt, and the performance of transient aging treatments on microplastics reduced their affinity for 9-NAnt, due to the addition of oxygen-containing functional groups. Above all, hydrophobic and electrostatic processes were the main adsorption mechanisms between microplastics and 9-NAnt.
Collapse
Affiliation(s)
- Jinghua Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Huangbo Chen
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, PR China.
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Tao Ma
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Jiapeng Hu
- College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, PR China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Limin Zhang
- Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
15
|
Purge-assisted and temperature-controlled headspace solid-phase microextraction combined with gas chromatography–mass spectrometry for determination of six common phthalate esters in aqueous samples. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00430-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
In situ fabricated porous carbon coating derived from metal-organic frameworks for highly selective solid-phase microextraction. Anal Chim Acta 2019; 1078:70-77. [DOI: 10.1016/j.aca.2019.05.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/29/2023]
|
17
|
Nagato EG, Hayakawa K. The presence of nitroarenes formed by secondary atmospheric processes in the Japanese freshwater environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:554-558. [PMID: 31026703 DOI: 10.1016/j.envpol.2019.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
In this study, the concentrations and distributions of nitrated polycyclic aromatic hydrocarbons (NPAHs) were characterized in the freshwater environment of a Japanese city. While the NPAHs were few in number, they were found in pg/L concentrations and the specific isomers suggested the deposition of NPAHs formed via the atmospheric transformation of PAHs. The absence of NPAHs formed via primary combustion processes such as automobile exhaust, suggests that improvements in emission standards are being reflected in the environment, though the NPAHs formed by secondary atmospheric processes are still a significant ecotoxicological threat. The stability of the NPAHs was also examined in spiked freshwater matrices. There was a significant decrease in spiked NPAHs over this period, suggesting that they were either being sorbed or transformed and are therefore not long lived in the freshwater environment. This indicates that the NPAHs found in freshwater samples are from recent deposition.
Collapse
Affiliation(s)
- Edward G Nagato
- Institute of Nature and Environmental Technology, Kanazawa University, 〒923-1224, Ishikawa, Nomi, Wakemachi O-24, Japan.
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, 〒923-1224, Ishikawa, Nomi, Wakemachi O-24, Japan
| |
Collapse
|
18
|
Zhao J, Tian W, Liu S, Wang Z, Du Z, Xie W. Existence, removal and transformation of parent and nitrated polycyclic aromatic hydrocarbons in two biological wastewater treatment processes. CHEMOSPHERE 2019; 224:527-537. [PMID: 30836248 DOI: 10.1016/j.chemosphere.2019.02.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and nitrated polycyclic aromatic hydrocarbons (NPAHs) are pollutants commonly present in the environment. Some NPAHs are considered to have more severe toxic effects than their parent PAHs. The existence of 16 PAHs (678.5-3817.8 ng/L in wastewater, 499.9 ng/g-1239.6 ng/g in sludge) and 5 NPAHs (175.8-1392.4 ng/L in wastewater, 483.5 ng/g-2763.1 ng/g in sludge) was determined in a biological wastewater treatment plant (WWTP) in Qingdao, China. Anthracene and naphthalene were the predominant PAHs, and 2-nitrofluorene and 9-nitroanthracene were the predominant NPAHs. Petroleum, liquid fossil fuel combustion and exhaust emissions were the main sources of PAHs and NPAHs in this study. In both the sequencing batch reactor/moving-bed biofilm (SBR/MBBR) and the anaerobic-anoxic-aerobic (A2O) process, low-molecular-weight PAHs were mainly removed through volatilization and biodegradation/biotransformation. Meanwhile, the removal of high-molecular-weight PAHs and NPAHs depended on adsorption and sedimentation. The transformation from PAHs to NPAHs mainly occurred in the aqueous-phase, especially in summer and that was confirmed by mass flow and ratios variation. Overall, the removal capacity of the A2O process for PAHs and NPAHs was better than that of the SBR/MBBR process. Tertiary treatment processes had little effect or even a negative effect on the removal of PAHs and NPAHs.
Collapse
Affiliation(s)
- Jing Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China.
| | - Shuhui Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zhe Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zhaoyang Du
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Wenlong Xie
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
19
|
Ghiasvand AR, Abdolhosseini S, Heidari N, Paull B. Evaluation of polypyrrole/silver/polyethylene glycol nanocomposite sorbent for electroenhanced direct-immersion solid-phase microextraction of carvacrol and thymol from medicinal plants. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1447-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Guiñez M, Bazan C, Martinez LD, Cerutti S. Determination of nitrated and oxygenated polycyclic aromatic hydrocarbons in water samples by a liquid–liquid phase microextraction procedure based on the solidification of a floating organic drop followed by solvent assisted back-extraction and liquid chromatography–tandem mass spectrometry. Microchem J 2018. [DOI: 10.1016/j.microc.2018.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Borges B, Melo A, Ferreira IM, Mansilha C. Dispersive liquid–liquid microextraction for the simultaneous determination of parent and nitrated polycyclic aromatic hydrocarbons in water samples. ACTA CHROMATOGR 2018. [DOI: 10.1556/1326.2017.00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Bárbara Borges
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Armindo Melo
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Portugal
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Isabel M.P.L.V.O. Ferreira
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Catarina Mansilha
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- LAQV/REQUIMTE, Universidade do Porto, Porto, Portugal
| |
Collapse
|
22
|
Kong J, Han M, Liu Y, He H, Gao Z, Xian Q, Yang S, Sun C, Li S, Zhang L. Analysis of trace-level nitrated polycyclic aromatic hydrocarbons in water samples by solid-phase microextraction with gas chromatography and mass spectrometry. J Sep Sci 2018; 41:2681-2687. [DOI: 10.1002/jssc.201701271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jijie Kong
- The State Key Laboratory of Pollution Control and Resource Reuse; School of the Environment; Nanjing University; Nanjing China
| | - Mengshu Han
- The State Key Laboratory of Pollution Control and Resource Reuse; School of the Environment; Nanjing University; Nanjing China
| | - Ying Liu
- The State Key Laboratory of Pollution Control and Resource Reuse; School of the Environment; Nanjing University; Nanjing China
| | - Huan He
- School of Environment; Nanjing Normal University; Nanjing China
| | - Zhanqi Gao
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic pollutants in Surface Water; Environment Monitoring Center of Jiangsu Province; Nanjing China
| | - Qiming Xian
- The State Key Laboratory of Pollution Control and Resource Reuse; School of the Environment; Nanjing University; Nanjing China
| | - Shaogui Yang
- School of Environment; Nanjing Normal University; Nanjing China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse; School of the Environment; Nanjing University; Nanjing China
| | - Shiyin Li
- School of Environment; Nanjing Normal University; Nanjing China
| | - Limin Zhang
- School of Environment; Nanjing Normal University; Nanjing China
| |
Collapse
|
23
|
Zhang Y, Li R, Fang J, Wang C, Cai Z. Simultaneous determination of eighteen nitro-polyaromatic hydrocarbons in PM 2.5 by atmospheric pressure gas chromatography-tandem mass spectrometry. CHEMOSPHERE 2018; 198:303-310. [PMID: 29421744 DOI: 10.1016/j.chemosphere.2018.01.131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/21/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
A new atmospheric pressure gas chromatography-tandem mass spectrometry (APGC-MS/MS) was developed to simultaneously separate, identify and quantify 18 nitro-polyaromatic hydrocarbons (NPAHs) in air fine particulate matter (PM2.5). Compared with traditional negative chemical ionization (NCI) or electron impact ionization (EI)-MS/MS methods, APGC-MS/MS equipped with an atmospheric pressure chemical ionization (APCI) source provided better sensitivity and selectivity for NPAHs analysis in PM2.5.18 NPAHs were completely separated, and satisfactory linear response (R2 > 0.99), low instrumental detection limits (0.20-2.18 pg mL-1) and method detection limits (0.001-0.015 pg m-3) were achieved. Due to the reliable performance of the instrument, only minimal sample pretreatment is needed. It ensured the satisfactory method recovery (70%-120%) and qualified repeatability (RSD: 1.1%-17.2%), which met the requirement of trace analysis of NAPHs in the real environmental PM2.5. Using the developed method, the actual PM2.5 samples collected from Taiyuan, China in both summer and winter were analyzed, and 17 NPAHs but 2-nitrofluorene were detected and quantified. According to the obtained NAPH concentration results, the generation mechanism of NPAHs in PM2.5 and the effects on NPAHs formation caused by some ambient air pollutants were preliminarily discussed: secondary photochemical reaction might be the dominant source of NPAHs in PM2.5 collected from Taiyuan in both summer and winter; ambient air pollutants (NO2, SO2, CO) had more contribution on the NPAHs secondary formation of PM2.5 in winter.
Collapse
Affiliation(s)
- Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ruijin Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Jing Fang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chen Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
24
|
Jia Y, Zhao Y, Zhao M, Wang Z, Chen X, Wang M. Core–shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons. J Chromatogr A 2018; 1551:21-28. [DOI: 10.1016/j.chroma.2018.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 12/26/2022]
|
25
|
Ultrasensitive direct determination of BTEX in polluted soils using a simple and novel pressure-controlled solid-phase microextraction setup. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1302-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
In situ hydrothermal growth of a zirconium-based porphyrinic metal-organic framework on stainless steel fibers for solid-phase microextraction of nitrated polycyclic aromatic hydrocarbons. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2403-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Bandowe BAM, Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:237-257. [PMID: 28069306 DOI: 10.1016/j.scitotenv.2016.12.115] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 05/07/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are derivatives of PAHs with at least one nitro-functional group (-NO2) on the aromatic ring. The toxic effects of several nitro-PAHs are more pronounced than those of PAHs. Some nitro-PAHs are classified as possible or probable human carcinogens by the International Agency for Research on Cancer. Nitro-PAHs are released into the environment from combustion of carbonaceous materials (e.g. fossil fuels, biomass, waste) and post-emission transformation of PAHs. Most studies on nitro-PAHs are about air (gas-phase and particulate matter), therefore less is known about the occurrence, concentrations, transport and fate of nitro-PAHs in soils, aquatic environment and biota. Studies on partition and exchange of nitro-PAHs between adjacent environmental compartments are also sparse. The concentrations of nitro-PAHs cannot easily be predicted from the intensity of anthropogenic activity or easily related to those of PAHs. This is because anthropogenic source strengths of nitro-PAHs are different from those of PAHs, and also nitro-PAHs have additional sources (formed by photochemical conversion of PAHs). The fate and transport of nitro-PAHs could be considerably different from their related PAHs because of their higher molecular weights and considerably different sorption mechanisms. Hence, specific knowledge on nitro-PAHs is required. Regulations on nitro-PAHs are also lacking. We present an extensive review of published literature on the sources, formation, physico-chemical properties, methods of determination, occurrence, concentration, transport, fate, (eco)toxicological and adverse health effects of nitro-PAHs. We also make suggestions and recommendations about data needs, and future research directions on nitro-PAHs. It is expected that this review will stimulate scientific discussion and provide the basis for further research and regulations on nitro-PAHs.
Collapse
Affiliation(s)
- Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012 Bern, Switzerland.
| | - Hannah Meusel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| |
Collapse
|
28
|
Dispersive liquid–liquid microextraction based on solidification of floating organic drop and fluorescence detection for the determination of nitrated polycyclic aromatic hydrocarbons in aqueous samples. Microchem J 2017. [DOI: 10.1016/j.microc.2016.10.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Lévy M, Fournier E, Heyrich Y, Millet M. Coupling ASE, SPE and SPME for the Extraction and Quantification of PAH in Passive Samplers and Biological Materials (Pine Needles). Polycycl Aromat Compd 2016. [DOI: 10.1080/10406638.2016.1253595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marine Lévy
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
| | - Eugénie Fournier
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
| | - Yasmine Heyrich
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
| | - Maurice Millet
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
| |
Collapse
|
30
|
Itouyama N, Matsui T, Yamamoto S, Imasaka T, Imasaka T. Analysis of Parent/Nitrated Polycyclic Aromatic Hydrocarbons in Particulate Matter 2.5 Based on Femtosecond Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:293-300. [PMID: 26419772 DOI: 10.1007/s13361-015-1276-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/29/2015] [Accepted: 09/03/2015] [Indexed: 05/28/2023]
Abstract
Particulate matter 2.5 (PM2.5), collected from ambient air in Fukuoka City, was analyzed by gas chromatography combined with multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (267 nm) as the ionization source. Numerous parent polycyclic aromatic hydrocarbons (PPAHs) were observed in a sample extracted from PM2.5, and their concentrations were determined to be in the range from 30 to 190 pg/m(3) for heavy PPAHs. Standard samples of nitrated polycyclic aromatic hydrocarbons (NPAHs) were examined, and the limits of detection were determined to be in the picogram range. The concentration of NPAH adsorbed on PM2.5 in the air was less than 900-1300 pg/m(3). Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Noboru Itouyama
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Taiki Matsui
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shigekazu Yamamoto
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Fukuoka, 818-0135, Japan
| | - Tomoko Imasaka
- Laboratory of Chemistry, Graduate School of Design, Kyushu University, Minami-ku, Fukuoka, 815-8540, Japan
| | - Totaro Imasaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.
- Division of Optoelectronics and Photonics, Center for Future Chemistry, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
31
|
Hu C, He M, Chen B, Zhong C, Hu B. Sorptive extraction using polydimethylsiloxane/metal–organic framework coated stir bars coupled with high performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in environmental water samples. J Chromatogr A 2014; 1356:45-53. [DOI: 10.1016/j.chroma.2014.06.062] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 11/26/2022]
|
32
|
Qiao M, Qi W, Liu H, Qu J. Oxygenated, nitrated, methyl and parent polycyclic aromatic hydrocarbons in rivers of Haihe River System, China: occurrence, possible formation, and source and fate in a water-shortage area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 481:178-185. [PMID: 24598148 DOI: 10.1016/j.scitotenv.2014.02.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
Substituted polycyclic aromatic hydrocarbons (SPAHs) occur ubiquitously in the whole global environment as a result of their persistence and widely-spread sources. Some SPAHs show higher toxicities and levels than the corresponding PAHs. Three types of most frequently existing SPAHs, oxygenated-PAHs (OPAHs), nitrated-PAHs (NPAHs), and methyl-PAHs (MPAHs), as well as the 16 priority PAHs were investigated in this study. The purpose was to identify the occurrence, possible transformation, and source and fate of these target compounds in a water shortage area of North China. We took a river system in the water-shortage area in China, the Haihe River System (HRS), as a typical case. The rivers are used for irrigating the farmland in the North of China, which probably introduce these pollutants to the farmland of this area. The MPAHs (0.02-0.40 μg/L in dissolved phase; 0.32-16.54 μg/g in particulate phase), OPAHs (0.06-0.19 μg/L; 0.41-17.98 μg/g), and PAHs (0.16-1.20 μg/L; 1.56-79.38 μg/g) were found in the water samples, but no NPAHs were detected. The concentrations of OPAHs were higher than that of the corresponding PAHs. Seasonal comparison results indicated that the OPAHs, such as anthraquinone and 2-methylanthraquinone, were possibly transformed from the PAHs, particularly at higher temperature. Wastewater treatment plant (WWTP) effluent was deemed to be the major source for the MPAHs (contributing 62.3% and 87.6% to the receiving river in the two seasons), PAHs (68.5% and 89.4%), and especially OPAHs (80.3% and 93.2%) in the rivers. Additionally, the majority of MPAHs (12.4 kg, 80.0% of the total input), OPAHs (16.2 kg, 83.5%), and PAHs (65.9 kg, 93.3%) in the studied months entered the farmland through irrigation.
Collapse
Affiliation(s)
- Meng Qiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiao Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
33
|
Xia Y, Zhang F, Wang W, Guo Y. Analysis of Volatile Compounds from Siraitia grosvenorii by Headspace Solid-Phase Microextraction and Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. J Chromatogr Sci 2014; 53:1-7. [DOI: 10.1093/chromsci/bmu012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Determination of polycyclic aromatic hydrocarbons in leather products using solid-phase microextraction coupled with gas chromatography–mass spectrometry. Microchem J 2014. [DOI: 10.1016/j.microc.2013.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
MATSUI T, IMASAKA T. Signal Enhancement by Crossing the Sample Flow at a Small Angle against the Laser Beam in Multiphoton Ionization Mass Spectrometry. ANAL SCI 2014; 30:445-9. [DOI: 10.2116/analsci.30.445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Taiki MATSUI
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Totaro IMASAKA
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
- Division of Optoelectronics and Photonics, Center for Future Chemistry, Kyushu University
| |
Collapse
|
36
|
Mehdinia A, Aziz-Zanjani MO. Advances for sensitive, rapid and selective extraction in different configurations of solid-phase microextraction. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.05.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Qiao M, Qi W, Liu H, Qu J. Simultaneous determination of typical substituted and parent polycyclic aromatic hydrocarbons in water and solid matrix by gas chromatography–mass spectrometry. J Chromatogr A 2013; 1291:129-36. [DOI: 10.1016/j.chroma.2013.03.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
38
|
Watabe Y, Kubo T, Tanigawa T, Hayakawa Y, Otsuka K, Hosoya K. Trace level determination of polycyclic aromatic hydrocarbons in river water with automated pretreatment HPLC. J Sep Sci 2013; 36:1128-34. [DOI: 10.1002/jssc.201201096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshiyuki Watabe
- Global Application Development Center; Shimadzu Corporation; Kyoto Japan
| | - Takuya Kubo
- Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Tetsuya Tanigawa
- Graduate School of Environmental Studies; Tohoku University; Sendai Japan
| | - Yoshihiro Hayakawa
- Global Application Development Center; Shimadzu Corporation; Kyoto Japan
| | - Koji Otsuka
- Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - Ken Hosoya
- Graduate School of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto Japan
| |
Collapse
|