1
|
Qiao L, Pan Y, Xie J, Du K. Sequential diethylaminoethyl dextran-grafting and diethylaminoethyl modification improve the adsorption performance of anion exchangers. J Chromatogr A 2024; 1730:465119. [PMID: 38936165 DOI: 10.1016/j.chroma.2024.465119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/25/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Ion exchangers with high adsorption capacity, fast mass transfer, and high salt-tolerance synchronously are highly desired for high-performance protein purification. Here, we propose a sequential diethylaminoethyl dextran-grafting and diethylaminoethyl chloride modification strategy to achieve high-performance anion exchangers. The advantages of the double-modification strategy lie in: (1) the introduction of diethylaminoethyl in the second modification has no diffusion limitation due to the small molecular size, thus a high ionic capacity; (2) the grafting ligands not only provide three-dimensional adsorption space for high adsorption capacitybut alsofacilitate surface diffusion of protein by chain delivery. The maximum adsorption capacity of the obtained anion exchangers for bovine serum albumin reaches 333 mg/mL, the ratio of effective pore diffusivity (De) to free solution diffusivity (D0) reaches 0.69, and the adsorption amount reaches 97 mg/mL even in 100 mmol/L NaCl concentration,. All these results demonstrate the proposed sequential modification strategy are promising for the preparation of high-performance ion exchangers.
Collapse
Affiliation(s)
- Liangzhi Qiao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yikai Pan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jiao Xie
- Cheng Du Best Graphite Tech Co., Ltd, Chengdu 610065, PR China.
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
2
|
Mi X, Wang SC, Winters MA, Carta G. Protein adsorption on core-shell resins for flow-through purifications: Effect of protein molecular size, shape, and salt concentration. Biotechnol Prog 2023; 39:e3300. [PMID: 36101005 DOI: 10.1002/btpr.3300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022]
Abstract
This work addresses the functional properties of the core-shell resins Capto Core 400 and 700 for a broad range of proteins spanning 66.5 to 660 kDa in molecular mass, including bovine serum albumin (BSA) in monomer and dimer form, fibronectin, thyroglobulin, and BSA conjugates with 10 and 30 kDa poly(ethylene glycol) chains. Negatively charged latex nanoparticles (NPs) with nominal diameters of 20, 40, and 100 nm are also studied as surrogates for bioparticles. Protein binding and its trends with respect to salt concentration depend on the protein size and are different for the two agarose-based multimodal resins. For the smaller proteins, the amount of protein bound over practical time scales is limited by the resin surface area and is larger for Capto Core 400 compared with Capto Core 700. For the larger proteins, diffusion is severely restricted in Capto Core 400, resulting in lower binding capacities than those observed for Capto Core 700 despite the larger surface area. Adding 500 mM NaCl reduces the local bound protein concentration and diffusional hindrance resulting in higher binding capacities for the large proteins in Capto Core 400 compared with low ionic strength conditions. The NPs are essentially completely excluded from the Capto Core 400 pores. However, 20 and 40 nm NPs bind significantly to Capto Core 700, further hindering protein diffusion. A model is provided to predict the dynamic binding capacities as a function of residence time.
Collapse
Affiliation(s)
- Xue Mi
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Sheng-Ching Wang
- Vaccine Process Research & Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Michael A Winters
- Vaccine Process Research & Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Giorgio Carta
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Sivanathan GT, Mallubhotla H, Suggala SV, Tholu MS. Separation of closely related monoclonal antibody charge variant impurities using poly(ethylenimine)-grafted cation-exchange chromatography resin. 3 Biotech 2022; 12:293. [PMID: 36276450 PMCID: PMC9515282 DOI: 10.1007/s13205-022-03350-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022] Open
Abstract
The removal of protein charge variants due to complex chemical and enzymatic modifications like glycosylation, fragmentation and deamidation presents a significant challenge in the purification of monoclonal antibodies (mAb) and complicates downstream processing. These protein modifications occur either in vivo or during fermentation and downstream processing. The presence of charge variants can lead to diminished biological activity, differences in pharmacokinetics, pharmacodynamics, stability and efficacy. Therefore, these different product variants should be appropriately controlled for the consistency of product quality and to ensure patient safety. This investigation focuses on the development of a chromatography step for the removal of the charge variants from a recombinant single-chain variable antibody fragment (scFv-Fc-Ab). Poly(ethyleneimine)-grafted cation-exchange resins (Poly CSX and Poly ABX) were evaluated and compared to traditional macroporous cation-exchange and tentacle cation-exchange resins. Linear salt gradient experiments were conducted to study the separation efficiency of scFv-Fc-Ab variants using different resins. A classical thermodynamic model was used to develop a mechanistic understanding of the differences in charge variant retention behaviour of different resins. High selectivity in separation of scFv-Fc-Ab charge variants is obtained in the Poly CSX resin.
Collapse
Affiliation(s)
- Ganesh T. Sivanathan
- Department of Chemical Engineering, JNTUA, Ananthapuramu, Andhra Pradesh 515002 India
- Biopharmaceutical Development, Syngene International Ltd., Bangalore, 560099 India
| | - Hanuman Mallubhotla
- Biopharmaceutical Development, Syngene International Ltd., Bangalore, 560099 India
| | | | | |
Collapse
|
4
|
Fuks PE, Carta G. Preparation and characterization of agarose-encapsulated ceramic hydroxyapatite particles for flow-through chromatography. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2026388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Preston E. Fuks
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Giorgio Carta
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Sánchez-Trasviña C, Flores-Gatica M, Enriquez-Ochoa D, Rito-Palomares M, Mayolo-Deloisa K. Purification of Modified Therapeutic Proteins Available on the Market: An Analysis of Chromatography-Based Strategies. Front Bioeng Biotechnol 2021; 9:717326. [PMID: 34490225 PMCID: PMC8417561 DOI: 10.3389/fbioe.2021.717326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023] Open
Abstract
Proteins, which have inherent biorecognition properties, have long been used as therapeutic agents for the treatment of a wide variety of clinical indications. Protein modification through covalent attachment to different moieties improves the therapeutic's pharmacokinetic properties, affinity, stability, confers protection against proteolytic degradation, and increases circulation half-life. Nowadays, several modified therapeutic proteins, including PEGylated, Fc-fused, lipidated, albumin-fused, and glycosylated proteins have obtained regulatory approval for commercialization. During its manufacturing, the purification steps of the therapeutic agent are decisive to ensure the quality, effectiveness, potency, and safety of the final product. Due to the robustness, selectivity, and high resolution of chromatographic methods, these are recognized as the gold standard in the downstream processing of therapeutic proteins. Moreover, depending on the modification strategy, the protein will suffer different physicochemical changes, which must be considered to define a purification approach. This review aims to deeply analyze the purification methods employed for modified therapeutic proteins that are currently available on the market, to understand why the selected strategies were successful. Emphasis is placed on chromatographic methods since they govern the purification processes within the pharmaceutical industry. Furthermore, to discuss how the modification type strongly influences the purification strategy, the purification processes of three different modified versions of coagulation factor IX are contrasted.
Collapse
Affiliation(s)
- Calef Sánchez-Trasviña
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Miguel Flores-Gatica
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Daniela Enriquez-Ochoa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| |
Collapse
|
6
|
Yu L, Sun Y. Recent advances in protein chromatography with polymer-grafted media. J Chromatogr A 2021; 1638:461865. [PMID: 33453656 DOI: 10.1016/j.chroma.2020.461865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/19/2023]
Abstract
The strategy of using polymer-grafted media is effective to create protein chromatography of high capacity and uptake rate, giving rise to an excellent performance in high-throughput protein separation due to its high dynamic binding capacity. Taking the scientific development and technological innovation of protein chromatography as the objective, this review is devoted to an overview of polymer-grafted media reported in the last five years, including their fabrication routes, protein adsorption and chromatography, mechanisms behind the adsorption behaviors, limitations of polymer-grafted media and chromatographic operation strategies. Particular emphasis is placed on the elaboration and discussion on the behaviors of ion-exchange chromatography (IEC) with polymer-grafted media because IEC is the most suitable chromatographic mode for this kind of media. Recent advances in both the theoretical and experimental investigations on polymer-grafted media are discussed by focusing on their implications to the rational design of novel chromatographic media and mobile phase conditions for the development of high-performance protein chromatography. It is concluded that polymer-grafted media are suitable for development of IEC and mixed-mode chromatography with charged and low hydrophobic ligands, but not for hydrophobic interaction chromatography with high hydrophobic ligands and affinity chromatography with ligands that have single binding site on the protein.
Collapse
Affiliation(s)
- Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
7
|
Li X, Liu Y, Sun Y. Development of poly(methacrylate)-grafted Sepharose FF for cation-exchange chromatography of proteins. J Chromatogr A 2020; 1634:461669. [DOI: 10.1016/j.chroma.2020.461669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
|
8
|
Li C, Li X, Liu Y, Sun Y. Implications from the grafting density and ionic capacity effects on protein adsorption to poly (N,N-dimethylaminopropyl acrylamide)-grafted sepharose FF. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Development and Characterization of PEGylated Chromatographic Monoliths as a Novel Platform for the Separation of PEGylated RNase a Isomers. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/5067028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PEGylated or polyethylene glycol-modified proteins have been used as therapeutic agents in different diseases. However, the major drawback in their procurement is the purification process to separate unreacted proteins and the PEGylated species. Several efforts have been done to separate PEGylation reactions by chromatography using different stationary phases and modified supports. In this context, this study presents the use of chromatographic monoliths modified with polyethylene glycol (PEG) to separate PEGylated Ribonuclease A (RNase A). To do this, Convective Interaction Media (CIM) Ethylenediamine (EDA) monolithic disks were PEGylated using three PEG molecular weights (1, 10, and 20 kDa). The PEGylated monoliths were used to separate PEGylated RNase A modified, as well, with three PEG molecular weights (5, 20, and 40 kDa) by hydrophobic interaction chromatography. Performance results showed that Bovine Serum Albumin (BSA) can bind to PEGylated monoliths and the amount of bound BSA increases when ammonium sulfate concentration and flow rate increase. Furthermore, when PEGylated RNase A was loaded into the PEGylated monoliths, PEG-PEG interactions predominated in the separation of the different PEGylated species (i.e., mono and di-PEGylated). It was also observed that the molecular weight of grafted PEG chains to the monolith impacts strongly in the operation resolution. Interestingly, it was possible to separate, for the first time, isomers of 40 kDa PEGylated RNase A by hydrophobic interaction chromatography. This technology, based on PEGylated monoliths, represents a new methodology to efficiently separate proteins and PEGylated proteins. Besides, it could be used to separate other PEGylated molecules of biopharmaceutical or biotechnological interest.
Collapse
|
10
|
Sivanathan GT, Mallubhotla H, Suggala SV. Selective removal of closely related clipped protein impurities using poly(ethylenimine)- grafted anion-exchange chromatography resin. Prep Biochem Biotechnol 2019; 49:1020-1032. [PMID: 31407965 DOI: 10.1080/10826068.2019.1650373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Proteolytic degradation is a serious problem that complicates downstream processing during production of recombinant therapeutic proteins. It can lead to decreased product yield, diminished biological activity, and suboptimal product quality. Proteolytic degradation or protein truncation is observed in various expression hosts and is mostly attributed to the activity of proteases released by host cells. Since these clipped proteins can impact pharmacokinetics and immunogenicity in addition to potency, they need to be appropriately controlled to ensure consistency of product quality and patient safety. A chromatography step for the selective removal of clipped proteins from an intact protein was developed in this study. Poly(ethylenimine)-grafted anion- exchange resins (PolyQUAT and PolyPEI) were evaluated and compared to traditional macroporous anion-exchange and tentacled anion-exchange resins. Isocratic retention experiments were conducted to determine the retention factors (k') and charge factors (Z) were determined through the classical stoichiometric displacement model. High selectivity in separation of closely related clipped proteins was obtained with the PolyQUAT resin. A robust design space was established for the PolyQUAT chromatography through Design-Of-Experiments (DoE) based process optimization. Results showed a product recovery of up to 63% with purity levels >99.0%. Approximately, one-log clearance of host cell protein and two-logs clearance of host cell DNA were also obtained. The newly developed PolyQUAT process was compared with an existing process and shown to be superior with respect to the number of process steps, process time, process yield, and product quality.
Collapse
Affiliation(s)
- Ganesh T Sivanathan
- Department of Chemical Engineering, JNTUA , Ananthapuramu , India.,Biopharmaceutical Development, Syngene International Ltd , Bangalore , India
| | - Hanuman Mallubhotla
- Biopharmaceutical Development, Syngene International Ltd , Bangalore , India
| | | |
Collapse
|
11
|
Characterization of dextran-grafted hydrophobic charge-induction resins: Structural properties, protein adsorption and transport. J Chromatogr A 2017; 1517:44-53. [DOI: 10.1016/j.chroma.2017.07.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/09/2017] [Accepted: 07/28/2017] [Indexed: 12/23/2022]
|
12
|
Javadi A, Mehr HS, Soucek MD. (Meth)acrylated poly(ethylene glycol)s as precursors for rheology modifiers, superplasticizers and electrolyte membranes: a review. POLYM INT 2017. [DOI: 10.1002/pi.5432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ali Javadi
- Department of Polymer Engineering; University of Akron; Akron OH USA
| | | | - Mark D Soucek
- Department of Polymer Engineering; University of Akron; Akron OH USA
| |
Collapse
|
13
|
Zhang S, Iskra T, Daniels W, Salm J, Gallo C, Godavarti R, Carta G. Structural and performance characteristics of representative anion exchange resins used for weak partitioning chromatography. Biotechnol Prog 2017; 33:425-434. [DOI: 10.1002/btpr.2412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/21/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Shaojie Zhang
- Dept. of Chemical Engineering; University of Virginia; Charlottesville VA
| | | | | | | | | | | | - Giorgio Carta
- Dept. of Chemical Engineering; University of Virginia; Charlottesville VA
| |
Collapse
|
14
|
Chi H, Chen P, Cao L, Wu X, Wang J. Characterization and adsorptive properties of cross-linked poly (1-vinylimidazole)-iron (III) complex synthesized in supercritical carbon dioxide. E-POLYMERS 2016. [DOI: 10.1515/epoly-2016-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this study, poly (1-vinylimidazole)-iron(III) [PVIm-Fe(III)] complex was investigated along with adsorption behavior of bovine serum albumin (BSA). The cross-linked PVIm-Fe(III) was synthesized in supercritical carbon dioxide by using N,N′-methylenebisacrylamide (BIS) as a cross-linker. The obtained products were analyzed using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) analysis. The results reveal that iron ion is complexed by coordination with basic (-N) functional groups of 1-vinylimidazole successfully. The effects of the operating pressure, the ratio of iron and cross-linker concentration were investigated. A fine and yellow powder was obtained at high yield and crosslinking degrees at 20 MPa, 70°C. Additionally, the property of PVIm-Fe(III) complexes in terms of BSA adsorption has been studied, and the higher adsorption capacity was 660 mg/g.
Collapse
Affiliation(s)
- Hui Chi
- 1Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, P.R. China
| | - Pei Chen
- 1Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, P.R. China
| | - Liqin Cao
- 2Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, P.R. China, Tel.: +86 991 8581018, Fax: +86 991 8582807
| | - Xiujuan Wu
- 1Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, P.R. China
| | - Jide Wang
- 1Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, P.R. China
| |
Collapse
|
15
|
Yu L, Gong L, Bai S, Sun Y. Surface DEAE groups facilitate protein transport on polymer chains in DEAE-modified-and-DEAE-dextran-grafted resins. AIChE J 2016. [DOI: 10.1002/aic.15412] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Linling Yu
- Dept. of Biochemical Engineering and Key Laboratory of Systems Bioengineering of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 P.R. China
| | - Lingli Gong
- Dept. of Biochemical Engineering and Key Laboratory of Systems Bioengineering of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 P.R. China
| | - Shu Bai
- Dept. of Biochemical Engineering and Key Laboratory of Systems Bioengineering of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 P.R. China
| | - Yan Sun
- Dept. of Biochemical Engineering and Key Laboratory of Systems Bioengineering of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 P.R. China
| |
Collapse
|
16
|
Wang Q, Yu L, Sun Y. Grafting glycidyl methacrylate to Sepharose gel for fabricating high-capacity protein anion exchangers. J Chromatogr A 2016; 1443:118-25. [DOI: 10.1016/j.chroma.2016.03.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022]
|
17
|
|
18
|
Adsorption equilibrium and kinetics of monomer–dimer monoclonal antibody mixtures on a cation exchange resin. J Chromatogr A 2015; 1402:46-59. [DOI: 10.1016/j.chroma.2015.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/22/2022]
|
19
|
Creasy A, Barker G, Yao Y, Carta G. Systematic interpolation method predicts protein chromatographic elution from batch isotherm data without a detailed mechanistic isotherm model. Biotechnol J 2015; 10:1400-11. [PMID: 26015091 DOI: 10.1002/biot.201500089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/21/2015] [Accepted: 05/19/2015] [Indexed: 01/09/2023]
Abstract
Predicting protein elution for overloaded ion exchange columns requires models capable of describing protein binding over broad ranges of protein and salt concentrations. Although approximate mechanistic models are available, they do not always have the accuracy needed for precise predictions. The aim of this work is to develop a method to predict protein chromatographic behavior from batch isotherm data without relying on a mechanistic model. The method uses a systematic empirical interpolation (EI) scheme coupled with a lumped kinetic model with rate parameters determined from HETP measurements for non-binding conditions, to numerically predict the column behavior. For two experimental systems considered in this work, predictions based on the EI scheme are in excellent agreement with experimental elution profiles under highly overloaded conditions without using any adjustable parameters. A qualitative study of the sensitivity of predicting protein elution profiles to the precision, granularity, and extent of the batch adsorption data shows that the EI scheme is relatively insensitive to the properties of the dataset used, requiring only that the experimental ranges of protein and salt concentrations overlap those under which the protein actually elutes from the column and possess a ± 10% measurement precision.
Collapse
Affiliation(s)
- Arch Creasy
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Gregory Barker
- Biologics Process Development, Bristol-Myers Squibb, Hopewell, NJ, USA
| | - Yan Yao
- Biologics Process Development, Bristol-Myers Squibb, Hopewell, NJ, USA
| | - Giorgio Carta
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|