1
|
Liang X, Li Q, Zhao H, He Q, Wang Z, Li G, Qin G, Xu D. Removal of homodimer species with MabSelect VH3 during the purification of an asymmetric bispecific antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1260:124634. [PMID: 40349551 DOI: 10.1016/j.jchromb.2025.124634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/27/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
By-products are continuously generated during the manufacturing process of bispecific antibodies, among which homodimers represent the most critical impurity. The effective removal of homodimers is essential, as their presence compromises product purity and may adversely affect therapeutic safety and efficacy. Affinity chromatography, which exploits the highly selective molecular interactions between target antibodies and immobilized ligands, remains the gold-standard purification technique for monoclonal (mAbs) and bispecific antibodies (bsAbs). In this study, we evaluated the separation efficiency of homodimers using three commercially available Protein A resins with distinct binding sites: MabSelect PrismA, MabSelect SuRe LX, and MabSelect VH3. Both the Fc and VH3 regions of the bispecific antibodies (bsAbs) and homodimers in this study have different binding capacities to the affinity resin. Comparative analysis revealed that MabSelect VH3, which relies exclusively on VH3 domain interactions, achieved the highest separation performance with final product purity exceeding 98.9 %. In contrast to MabSelect SuRe LX's single Fc-binding mechanism, separation efficiency was compromised by MabSelect PrismA's dual-binding (Fc and VH3) interactions. Additionally, the differential Fc affinities were identified as the dominant factor influencing resolution under concurrent Fc-binding and VH3 domain disparities between the bsAb and homodimer. These findings provide valuable insights for downstream process optimization in bsAb production, emphasizing the importance of strategic resin selection based on molecular interaction mechanisms.
Collapse
Affiliation(s)
- Xiaoying Liang
- Nanjing Chia Tai-Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Qian Li
- Nanjing Chia Tai-Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Hongyang Zhao
- Nanjing Chia Tai-Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Qingquan He
- Nanjing Chia Tai-Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Zichen Wang
- Nanjing Chia Tai-Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Guozhu Li
- Nanjing Chia Tai-Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Guohong Qin
- Nanjing Chia Tai-Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
| | - Dan Xu
- Nanjing Chia Tai-Tianqing Pharmaceutical Co.Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China.
| |
Collapse
|
2
|
Lali N, Tsiatsiani L, Elffrink W, Kokke B, Satzer P, Dirksen E, Eppink M, Jungbauer A. An inert tracer: The binding site of a fluorescent dye on the antibody and its effects on Protein A chromatography. J Chromatogr A 2024; 1728:464995. [PMID: 38805895 DOI: 10.1016/j.chroma.2024.464995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
Fluorescently labeled antibodies are widely used to visualize the adsorption process in protein chromatography using confocal laser scanning microscopy (CLSM), but also as a tracer for determination of residence time distribution (RTD) in continuous chromatography. It is assumed that the labeled protein is inert and representative of the unlabeled antibody, ignoring the fact that labeling with a fluorescent dye can change the characteristics of the original molecule. It became evident that the fluorescently labeled antibody has a higher affinity toward protein A resins such as MabSelect Sure. This can be due to slight differences in hydrophobicity and net charge, which are caused by the addition of the fluorescent dye. However, this difference is eliminated when using high salt concentrations in the adsorption studies. In this work, the site occupancy of two labeled antibodies, MAb1 (IgG1 subclass) and MAb2 (IgG2 subclass) conjugated with the fluorescent dye Alexa Fluor™ 488 was elucidated by intact mass spectrometry (MS) and peptide mapping LC-MS/MS, employing a sequential cleavage with Endoproteinase Lys-C and trypsin and in parallel with chymotrypsin alone. It was shown that the main binding site for the dye was a specific lysine in the heavy chains of the MAb1 and MAb2 molecules, in positions 188 and 189 respectively. Other lysine residues distributed throughout the protein sequence were labeled to a lot lesser extent. The labeled antibody had a slightly different affinity to MabSelect Sure although its primary binding site (to Protein A) was not affected by labeling, despite the secondary region responsible for binding to the protein A was partly labeled. Overall, the fluorescent-labeled antibodies are a good compromise as an inert tracer in residence time distribution and chromatography studies because they are much cheaper than isotope-labeled antibodies; However, the differences between the labeled and unlabeled antibodies should be considered.
Collapse
Affiliation(s)
- Narges Lali
- ACIB- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010 Graz, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | - Bas Kokke
- Byondis, Microweg 22, 6545 CM Nijmegen, the Netherlands
| | - Peter Satzer
- ACIB- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010 Graz, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eef Dirksen
- Byondis, Microweg 22, 6545 CM Nijmegen, the Netherlands
| | - Michel Eppink
- Byondis, Microweg 22, 6545 CM Nijmegen, the Netherlands
| | - Alois Jungbauer
- ACIB- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010 Graz, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
3
|
LeBarre JP, Chu W, Altern SH, Kocot AJ, Bhandari D, Barbieri E, Sly J, Crapanzano M, Cramer SM, Phillips M, Roush D, Carbonell R, Boi C, Menegatti S. Mixed-mode size-exclusion silica resin for polishing human antibodies in flow-through mode. J Chromatogr A 2024; 1720:464772. [PMID: 38452560 DOI: 10.1016/j.chroma.2024.464772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
The polishing step in the downstream processing of therapeutic antibodies removes residual impurities from Protein A eluates. Among the various classes of impurities, antibody fragments are especially challenging to remove due to the broad biomolecular diversity generated by a multitude of fragmentation patterns. The current approach to fragment removal relies on ion exchange or mixed-mode adsorbents operated in bind-and-gradient-elution mode. However, fragments that bear strong similarity to the intact product or whose biophysical features deviate from the ensemble average can elude these adsorbents, and the lack of a chromatographic technology enabling robust antibody polishing is recognized as a major gap in downstream bioprocessing. Responding to this challenge, this study introduces size-exclusion mixed-mode (SEMM) silica resins as a novel chromatographic adsorbent for the capture of antibody fragments irrespective of their biomolecular features. The pore diameter of the silica beads features a narrow distribution and is selected to exclude monomeric antibodies, while allowing their fragments to access the pores where they are captured by the mixed-mode ligands. The static and dynamic binding capacity of the adsorbent ranged respectively between 30-45 and 25-33 gs of antibody fragments per liter of resin. Selected SEMM-silica resins also demonstrated the ability to capture antibody aggregates, which adsorb on the outer layer of the beads. Optimization of the SEMM-silica design and operation conditions - namely, pore size (10 nm) and ligand composition (quaternary amine and alkyl chain) as well as the linear velocity (100 cm/h), ionic strength (5.7 mS/cm), and pH (7) of the mobile phase - afforded a significant reduction of both fragments and aggregates, resulting into a final antibody yield up to 80% and monomeric purity above 97%.
Collapse
Affiliation(s)
- Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Scott H Altern
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Andrew J Kocot
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Dipendra Bhandari
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Eduardo Barbieri
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Jae Sly
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Michael Crapanzano
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Steven M Cramer
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | | | - David Roush
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, Roush Biopharma Panacea, 20 Squire Terrace, Colts Neck, NJ, 07033, USA
| | - Ruben Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Cristiana Boi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; Department of Civil, Chemical Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA.
| |
Collapse
|
4
|
Hu L, Wang R, Wu Q, Wan Y, Li Y. Different VH3-binding Protein A Resins Show Comparable VH3-binding Mediated Byproduct Separation Capabilities Despite Having Varied Dynamic Binding Capacities Towards A VH3 Fab. Protein Pept Lett 2024; 31:611-618. [PMID: 39161140 DOI: 10.2174/0109298665320125240805112024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Protein A resins have been widely used for product capture during mAb, bispecific antibody (bsAb), and Fc-fusion protein purification. While Protein A ligands mainly bind the Fc region, many of them can also bind the VH3 domain. During mAb/bsAb purification, certain truncated byproducts may contain the same Fc region as the product but fewer numbers of the VH3 domain. In such a scenario, VH3-binding Protein A resins provide a potential means for byproduct separation based on the difference in VH3-binding valency. As the ligands of different VH3-binding Protein A resins are derived from distinct domains of the native Protein A, it would be interesting to know whether they possess comparable capabilities for separating species with the same Fc region but different numbers of VH3 domain. OBJECTIVE This study aims to explore the potential of different VH3-binding Protein A resins for separating antibody species with the same Fc region but different numbers of VH3 domain. METHODS The VH3 Fab was released from a VH3-containing mAb by papain digestion. Post digestion, the released VH3 Fab was purified sequentially using CaptureSelect CH1-XL and MabSelect SuRe affinity chromatography. The purified VH3 Fab was used as the load material to assess the dynamic binding capacity (DBC) of five VH3-binding Protein A resins (i.e., Amshpere A3, Jetted A50, MabCaptureC, MabSelect and MabSelect PrismA). The potential of VH3-binding Protein A resins for separating species having the same Fc region but different numbers of VH3 domain was evaluated using an artificial mixture composed of the product and a truncated byproduct, which contained one and zero VH3 domain, respectively (both species contained the same Fc region). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to monitor Fab purification and separation of species containing the same Fc region but different numbers of VH3 domain. RESULTS When loaded with an isolated VH3 Fab, different VH3-binding Protein A resins showed varied DBCs. Nevertheless, when these Protein A resins were used to separate a truncated byproduct, which contained the Fc region only without any VH3 domain, from the product, which included one VH3 domain in addition to the Fc region, they showed comparable capabilities for separating these two species. CONCLUSION Although different VH3-binding Protein A resins showed varied DBCs towards a VH3 Fab, they exhibited comparable capabilities for separating species with the same Fc region but different numbers of VH3 domain.
Collapse
Affiliation(s)
- Lixia Hu
- Department of Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Rongrong Wang
- Department of Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qinxue Wu
- Department of Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yan Wan
- Department of Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yifeng Li
- Department of Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
5
|
Lali N, Satzer P, Jungbauer A. Residence Time Distribution in Counter-Current Protein A Affinity Chromatography Using an Inert Tracer. J Chromatogr A 2022; 1683:463530. [DOI: 10.1016/j.chroma.2022.463530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
|
6
|
Emerging affinity ligands and support materials for the enrichment of monoclonal antibodies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Rincon Pabon JP, Kochert BA, Liu YH, Richardson DD, Weis DD. Protein A does not induce allosteric structural changes in an IgG1 antibody during binding. J Pharm Sci 2021; 110:2355-2361. [PMID: 33640336 DOI: 10.1016/j.xphs.2021.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Affinity chromatography is widely used for antibody purification in biopharmaceutical production. Although there is evidence suggesting that affinity chromatography might induce structural changes in antibodies, allosteric changes in structure have not been well-explored. Here, we used hydrogen exchange-mass spectrometry (HX-MS) to reveal conformational changes in the NIST mAb upon binding with a protein A (ProA) matrix. HX-MS measurements of NIST mAb bound to in-solution and resin forms of ProA revealed regions of the CH2 and CH3 domains with increased protection from HX upon ProA binding, consistent with the known ProA binding region. In-solution ProA experiments revealed regions in the Fab with increased HX uptake when the ProA:mAb molar ratio was increased to 2:1, suggesting an allosterically induced increase in backbone flexibility. Such effects were not observed with lower ProA concentration (1:1 molar ratio) or when ProA resin was used, suggesting some kind of change in binding mode. Since all pharmaceutical processes use ProA bound to resin, our results rule out reversible allosteric effects on the NIST mAb during interaction with resin ProA. However, irreversible effects cannot be ruled out since the NIST mAb was previously exposed to ProA during its original purification.
Collapse
Affiliation(s)
- Juan P Rincon Pabon
- Department of Chemistry and the Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Brent A Kochert
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Yan-Hui Liu
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Douglas D Richardson
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - David D Weis
- Department of Chemistry and the Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
8
|
A bispecific IgG format containing four independent antigen binding sites. Sci Rep 2020; 10:1546. [PMID: 32005942 PMCID: PMC6994471 DOI: 10.1038/s41598-020-58150-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bispecific antibodies come in many different formats, including the particularly interesting two-in-one antibodies, where one conventional IgG binds two different antigens. The IgG format allows these antibodies to mediate Fc-related functionality, and their wild-type structure ensures low immunogenicity and enables standard methods to be used for development. It is however difficult, time-consuming and costly to generate two-in-one antibodies. Herein we demonstrate a new approach to create a similar type of antibody by combining two different variable heavy (VH) domains in each Fab arm of an IgG, a tetra-VH IgG format. The VHs are used as building blocks, where one VH is placed at its usual position, and the second VH replaces the variable light (VL) domain in a conventional IgG. VH domains, binding several different types of antigens, were discovered and could be rearranged in any combination, offering a convenient "plug and play" format. The tetra-VH IgGs were found to be functionally tetravalent, binding two antigens on each arm of the IgG molecule simultaneously. This offers a new strategy to also create monospecific, tetravalent IgGs that, depending on antigen architecture and mode-of-action, may have enhanced efficacy compared to traditional bivalent antibodies.
Collapse
|
9
|
Anees P, Gauthier MA. Homogenous Scavenging Resolves Low-Purification Yield/Selectivity Caused by Secondary Binding of Protein-A to Antigen-Binding Antibody Fragments. Biomacromolecules 2020; 21:825-829. [PMID: 31841628 DOI: 10.1021/acs.biomac.9b01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antigen-binding fragments of antibodies are biotechnologically useful agents for decorating drug delivery systems, for blocking cell-surface receptors in cell culture, for recognizing analytes in biosensors, and potentially as therapeutics. They are typically produced by enzymatic digestion of full antibodies and isolated from the undesirable fragment crystallizable (Fc) by affinity chromatography using Protein-A columns. However, while Protein-A has a strong "classical" interaction with Fc fragments, it can also more weakly bind to an "alternative" site on the heavy chain variable region of antigen-binding fragments. As such, purifying small amounts of antibody fragments by Protein-A chromatography can result in low yield. Moreover, loading larger amounts of antibody fragments onto a Protein-A column can result in poor separation, because of competition of Fc and antigen-binding fragments for immobilized Protein-A. This study demonstrates that Protein-A-based homogeneous scavenging resolves this issue by precisely controlling the stoichiometry of Protein-A to Fc fragments, something that is not possible for conventional flow-type systems, such as affinity chromatography.
Collapse
Affiliation(s)
- Palapuravan Anees
- Institut National de la Recherche Scientifique (INRS), EMT Research Center , 1650 boul. Lionel-Boulet , Varennes , J3X 1S2 , Canada
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center , 1650 boul. Lionel-Boulet , Varennes , J3X 1S2 , Canada
| |
Collapse
|
10
|
Ollier R, Wassmann P, Monney T, Ries Fecourt C, Gn S, C A V, Ayoub D, Stutz C, Gudi GS, Blein S. Single-step Protein A and Protein G avidity purification methods to support bispecific antibody discovery and development. MAbs 2019; 11:1464-1478. [PMID: 31462177 PMCID: PMC6816383 DOI: 10.1080/19420862.2019.1660564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Heavy chain (Hc) heterodimers represent a majority of bispecific antibodies (bsAbs) under clinical development. Although recent technologies achieve high levels of Hc heterodimerization (HD), traces of homodimer contaminants are often present, and as a consequence robust purification techniques for generating highly pure heterodimers in a single step are needed. Here, we describe two different purification methods that exploit differences in Protein A (PA) or Protein G (PG) avidity between homo- and heterodimers. Differential elution between species was enabled by removing PA or PG binding in one of the Hcs of the bsAb. The PA method allowed the avidity purification of heterodimers based on the VH3 subclass, which naturally binds PA and interferes with separation, by using a combination of IgG3 Fc and a single amino acid change in VH3, N82aS. The PG method relied on a combination of three mutations that completely disrupts PG binding, M428G/N434A in IgG1 Fc and K213V in IgG1 CH1. Both methods achieved a high level of heterodimer purity as single-step techniques without Hc HD (93–98%). Since PA and PG have overlapping binding sites with the neonatal Fc receptor (FcRn), we investigated the effects of our engineering both in vitro and in vivo. Mild to moderate differences in FcRn binding and Fc thermal stability were observed, but these did not significantly change the serum half-lives of engineered control antibodies and heterodimers. The methods are conceptually compatible with various Hc HD platforms such as BEAT® (Bispecific Engagement by Antibodies based on the T cell receptor), in which the PA method has already been successfully implemented.
Collapse
Affiliation(s)
- Romain Ollier
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Paul Wassmann
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Thierry Monney
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Christelle Ries Fecourt
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Sunitha Gn
- Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Centre , Navi Mumbai , India
| | - Vinu C A
- Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Centre , Navi Mumbai , India
| | - Daniel Ayoub
- Department of Formulation and Analytical Development, Glenmark Pharmaceuticals SA , La Chaux-de-Fonds , Switzerland
| | - Cian Stutz
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Girish S Gudi
- Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Inc ., Paramus , NJ , USA
| | - Stanislas Blein
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| |
Collapse
|
11
|
Weinberg J, Zhang S, Crews G, Healy E, Carta G, Przybycien T. Polyclonal and monoclonal IgG binding on protein A resins—Evidence of competitive binding effects. Biotechnol Bioeng 2017; 114:1803-1812. [DOI: 10.1002/bit.26286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Justin Weinberg
- Department of Chemical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPennsylvania 15213
| | - Shaojie Zhang
- Department of Chemical EngineeringUniversity of Virginia102 Engineers’ WayCharlottesvilleVirginia 22904
| | - Gillian Crews
- Department of Chemical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPennsylvania 15213
| | - Edward Healy
- Department of Chemical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPennsylvania 15213
| | - Giorgio Carta
- Department of Chemical EngineeringUniversity of Virginia102 Engineers’ WayCharlottesvilleVirginia 22904
| | - Todd Przybycien
- Department of Chemical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPennsylvania 15213
| |
Collapse
|
12
|
O’Connor E, Aspelund M, Bartnik F, Berge M, Coughlin K, Kambarami M, Spencer D, Yan H, Wang W. Monoclonal antibody fragment removal mediated by mixed mode resins. J Chromatogr A 2017; 1499:65-77. [DOI: 10.1016/j.chroma.2017.03.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|