1
|
Popova A, Mihaylova D, Lante A. Insights and Perspectives on Plant-Based Beverages. PLANTS (BASEL, SWITZERLAND) 2023; 12:3345. [PMID: 37836085 PMCID: PMC10574716 DOI: 10.3390/plants12193345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
The emerging demand for everyday food substitutes is increasing on a daily basis. More and more individuals struggle with allergies and intolerances, which makes it mandatory to provide alternatives for simple products like dairy milk. Plant-based beverages (PBBs) are currently trending due to the multiple diets that promote their consumption with or without a justification. PBBs can derive from various types of plants, not exclusively nuts. Some of the most well-known sources are almonds, soy, rice, and hazelnuts, among others. In view of the need for sustainable approaches to resource utilization and food production, novel sources for PBBs are being sought, and those include fruit kernels. The plant kingdom offers a palette of resources with proven bioactivity, i.e., containing flavonoids, phenolic acids, vitamins, carotenoids, and phenolics, among others. Many of these beneficial substances are water soluble, which means they could be transferred to the plant beverage compositions. The current review aims at comparing the vast number of potential formulations based on their specific nutritional profiles and potential deficiencies, as well as their expected health-promoting properties, based on the raw material(s) used for production. Special attention will be given to the antinutrients, usually abundant in plant-based sources.
Collapse
Affiliation(s)
- Aneta Popova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Dasha Mihaylova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment—DAFNAE, Agripolis, University of Padova, 35020 Legnaro, Italy;
| |
Collapse
|
2
|
Zhu F, Zhao B, Hu B, Zhang Y, Xue B, Wang H, Chen Q. Review of available "extraction + purification" methods of natural ceramides and their feasibility for sewage sludge analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68022-68053. [PMID: 37147548 DOI: 10.1007/s11356-023-26900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Natural ceramide, a biologically active compound present in plants, has been used widely in food, cosmetics, and pharmaceutical industries. Abundant ceramide has been detected in sewage sludge, which has inspired the idea to recycle ceramide from it. Therefore, the methods of extracting, purifying, and detecting ceramides from plants were reviewed, with the aim to establish methods to get condensed ceramide from sludge. Ceramide extraction methods include traditional methods (maceration, reflux, and Soxhlet extraction) and green technologies (ultrasound-assisted, microwave-assisted, and supercritical fluid extraction). In the past two decades, more than 70% of the articles have used traditional methods. However, green extraction methods are gradually improved and showed high extraction efficiency with lower solvent consumed. The preferred technique for ceramide purification is chromatography. Common solvent systems include chloroform-methanol, n-hexane-ethyl acetate, petroleum ether-ethyl acetate, and petroleum ether-acetone. For structural determination of ceramide, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry are used in combination. Among quantitative analysis methods for ceramide, liquid chromatography-mass spectrometry was the most accurate. This review concludes that with our prilemenary experiment results it is feasible to apply the plant "extraction + purification" process of ceramide to sludge, but more optimization need to be performed to get better results.
Collapse
Affiliation(s)
- Fenfen Zhu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Bing Zhao
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Bo Hu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Yuhui Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Boyuan Xue
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Qian Chen
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
3
|
Sugawara T. Sphingolipids as Functional Food Components: Benefits in Skin Improvement and Disease Prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9597-9609. [PMID: 35905137 DOI: 10.1021/acs.jafc.2c01731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sphingolipids are ubiquitous components in eukaryotic organisms and have attracted attention as physiologically functional lipids. Sphingolipids with diverse structures are present in foodstuffs as these structures depend on the biological species they are derived from, such as mammals, plants, and fungi. The physiological functions of dietary sphingolipids, especially those that improve skin barrier function, have recently been noted. In addition, the roles of dietary sphingolipids in the prevention of diseases, including cancer and metabolic syndrome, have been studied. However, the mechanisms underlying the health-improving effects of dietary sphingolipids, especially their metabolic fates, have not been elucidated. Here, we review dietary sphingolipids, including their chemical structures and contents in foodstuff; digestion, intestinal absorption, and metabolism; and nutraceutical functions, based on the available evidence and hypotheses. Further research is warranted to clearly define how dietary sphingolipids can influence human health.
Collapse
Affiliation(s)
- Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake Cho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Lynch DV. The contribution of polar sphingolipids to total sphingolipid content in food sources determined using a facile method for quantitation of long-chain bases. Food Chem 2022; 397:133803. [PMID: 35908459 DOI: 10.1016/j.foodchem.2022.133803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
Evidence indicates that dietary sphingolipids may influence health and disease, and increasingly are considered a functional food component. A facile method for quantifying total sphingolipid content in a wide variety of food samples would be valuable in nutrition research involving these lipid components. Such a method using basic HPLC instrumentation to quantify fluorescent derivatives of long-chain bases liberated from sphingolipids following direct hydrolysis of food samples is described. The results demonstrate that the sphingolipid content of plant-based foods obtained using direct hydrolysis is greater than that obtained using conventional extraction methods. Direct hydrolysis yields sphingolipid content for animal-based samples similar to more complicated conventional methods. With these advantages, direct hydrolysis is a valuable and broadly applicable method for quantifying the total sphingolipid content of both plant- and animal-based food samples.
Collapse
Affiliation(s)
- Daniel V Lynch
- Department of Biology, Williams College, 59 Lab Campus Drive, Williamstown, MA 01267, USA.
| |
Collapse
|
5
|
Morano C, Zulueta A, Caretti A, Roda G, Paroni R, Dei Cas M. An Update on Sphingolipidomics: Is Something Still Missing? Some Considerations on the Analysis of Complex Sphingolipids and Free-Sphingoid Bases in Plasma and Red Blood Cells. Metabolites 2022; 12:metabo12050450. [PMID: 35629954 PMCID: PMC9147510 DOI: 10.3390/metabo12050450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
The main concerns in targeted “sphingolipidomics” are the extraction and proper handling of biological samples to avoid interferences and achieve a quantitative yield well representing all the sphingolipids in the matrix. Our work aimed to compare different pre-analytical procedures and to evaluate a derivatization step for sphingoid bases quantification, to avoid interferences and improve sensitivity. We tested four protocols for the extraction of sphingolipids from human plasma, at different temperatures and durations, and two derivatization procedures for the conversion of sphingoid bases into phenylthiourea derivatives. Different columns and LC-MS/MS chromatographic conditions were also tested. The protocol that worked better for sphingolipids analysis involved a single-phase extraction in methanol/chloroform mixture (2:1, v/v) for 1 h at 38 °C, followed by a 2 h alkaline methanolysis at 38 °C, for the suppression of phospholipids signals. The derivatization of sphingoid bases promotes the sensibility of non-phosphorylated species but we proved that it is not superior to a careful choice of the appropriate column and a full-length elution gradient. Our procedure was eventually validated by analyzing plasma and erythrocyte samples of 20 volunteers. While both extraction and methanolysis are pivotal steps, our final consideration is to analyze sphingolipids and sphingoid bases under different chromatographic conditions, minding the interferences.
Collapse
Affiliation(s)
- Camillo Morano
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (G.R.)
| | - Aida Zulueta
- Neurorehabilitation Department, IRCCS Istituti Clinici Scientifici Maugeri di Milano, 20138 Milan, Italy;
| | - Anna Caretti
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.C.); (R.P.)
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (G.R.)
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.C.); (R.P.)
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.C.); (R.P.)
- Correspondence:
| |
Collapse
|
6
|
Song Y, Cai C, Song Y, Sun X, Liu B, Xue P, Zhu M, Chai W, Wang Y, Wang C, Li M. A Comprehensive Review of Lipidomics and Its Application to Assess Food Obtained from Farm Animals. Food Sci Anim Resour 2022; 42:1-17. [PMID: 35028570 PMCID: PMC8728500 DOI: 10.5851/kosfa.2021.e59] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022] Open
Abstract
Lipids are one of the major macronutrients essential for adequate growth and
maintenance of human health. Their structure is not only complex but also
diverse, which makes systematic and holistic analyses challenging; consequently,
little is known regarding the relationship between phenotype and mechanism of
action. In recent years, rapid advancements have been made in the fields of
lipidomics and bioinformatics. In comparison with traditional approaches, mass
spectrometry-based lipidomics can rapidly identify as well as quantify
>1,000 lipid species at the same time, facilitating comprehensive, robust
analyses of lipids in tissues, cells, and body fluids. Accordingly, lipidomics
is now being widely applied in various fields, particularly food and nutrition
science. In this review, we discuss lipid classification, extraction techniques,
and detection and analysis using lipidomics. We also cover how lipidomics is
being used to assess food obtained from livestock and poultry. The information
included herein should serve as a reference to determine how to characterize
lipids in animal food samples, enhancing our understanding of the application of
lipidomics in the field in animal husbandry.
Collapse
Affiliation(s)
- Yinghua Song
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Changyun Cai
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Yingzi Song
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Xue Sun
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Baoxiu Liu
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Peng Xue
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Mingxia Zhu
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Wenqiong Chai
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Yonghui Wang
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Changfa Wang
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| | - Mengmeng Li
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
7
|
Sphingolipids in foodstuff: Compositions, distribution, digestion, metabolism and health effects - A comprehensive review. Food Res Int 2021; 147:110566. [PMID: 34399542 DOI: 10.1016/j.foodres.2021.110566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/26/2022]
Abstract
Sphingolipids (SLs) are common in all eukaryotes, prokaryotes, and viruses, and played a vital role in human health. They are involved in physiological processes, including intracellular transport, cell division, and signal transduction. However, there are limited reviews on dietary effects on endogenous SLs metabolism and further on human health. Various dietary conditions, including the SLs-enriched diet, high-fat diet, and vitamins, can change the level of endogenous SLs metabolites and even affect human health. This review systematically summarizes the main known SLs in foods concerning their variety and contents, as well as their isolation and identification approaches. Moreover, the present review discusses the role of dietary (particularly SLs-enriched diet, high-fat diet, and vitamins) in endogenous SLs metabolism, highlighting how exogenous SLs are digested and absorbed. The role of SLs family in the pathogenesis of diseases, including cancers, neurological disorders, infectious and inflammatory diseases, and cardiovascular diseases, and in recently coronavirus disease-19 outbreak was also discussed. In the post-epidemic era, we believe that the concern for health and the need for plant-based products will increase. Therefore, a need for research on the absorption and metabolism pathway of SLs (especially plant-derived SLs) and their bioavailability is necessary. Moreover, the effects of storage treatment and processing on the content and composition of SLs in food are worth exploring. Further studies should also be conducted on the dose-response of SLs on human health to support the development of SLs supplements. More importantly, new approaches, such as, making SLs based hydrogels can effectively achieve sustained release and targeted therapies.
Collapse
|
8
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
9
|
Tenorio-Salgado S, Castelán-Sánchez HG, Dávila-Ramos S, Huerta-Saquero A, Rodríguez-Morales S, Merino-Pérez E, Roa de la Fuente LF, Solis-Pereira SE, Pérez-Rueda E, Lizama-Uc G. Metagenomic analysis and antimicrobial activity of two fermented milk kefir samples. Microbiologyopen 2021; 10:e1183. [PMID: 33970536 PMCID: PMC8103080 DOI: 10.1002/mbo3.1183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
In recent years, the fermented milk product kefir has been intensively studied because of its health benefits. Here, we evaluated the microbial consortia of two kefir samples, from Escarcega, Campeche, and Campeche (México). We considered a functional comparison between both samples, including fungal and bacterial inhibition; second, we applied shotgun metagenomics to assess the structure and functional diversity of the communities of microorganisms. These two samples exhibited antagonisms against bacterial and fungal pathogens. Bioactive polyketides and nonribosomal peptides were identified by LC‐HRMS analysis. We also observed a high bacterial diversity and an abundance of Actinobacteria in both kefir samples, and a greater abundance of Saccharomyces species in kefir of Escarcega than in the Campeche kefir. When the prophage compositions were evaluated, the Campeche sample showed a higher diversity of prophage sequences. In Escarcega, we observed a prevalence of prophage families that infect Enterobacteria and Lactobacillus. The sequences associated with secondary metabolites, such as plipastatin, fengycin, and bacillaene, and also bacteriocins like helveticin and zoocin, were also found in different proportions, with greater diversity in the Escarcega sample. The analyses described in this work open the opportunity to understand the microbial diversity in kefir samples from two distant localities.
Collapse
Affiliation(s)
| | - Hugo G Castelán-Sánchez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | | | | | - Enrique Merino-Pérez
- Departamento de Microbiologia, Instituto de Biotecnologıa, Universidad Nacional Autonoma de Mexico, Cuernavaca, México
| | - Luis Fernando Roa de la Fuente
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Tabasco, México
| | | | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Unidad Académica Yucatán, Mérida, México
| | | |
Collapse
|
10
|
Hsu FF. Electrospray ionization with higher-energy collision dissociation tandem mass spectrometry toward characterization of ceramides as [M + Li] + ions: Mechanisms of fragmentation and structural identification. Anal Chim Acta 2021; 1142:221-234. [PMID: 33280700 DOI: 10.1016/j.aca.2020.09.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022]
Abstract
Ceramide is a huge lipid family consisting of diversified structures in which various modifications are seen in the fatty acyl chain and the long chain base (LCB). In this contribution, a higher collision energy (HCD) linear ion-trap mass spectrometric method (LIT MSn) was applied to study the mechanisms underlying the fragmentation processes of ceramide molecules in 12 subclasses, which were desorbed by ESI as the [M + Li]+ ions. Multiple sets of fragment ions reflecting the fatty acyl chain and LCB were observed in the HCD MS2 spectra for all the ceramide classes, resulting in unambiguous definition of the ceramide structures, including the chain length and the modification (α-hydroxy-, β-hydroxy-, ω-hydroxy-FA) of the fatty acyl moiety, and the types of LCB (sphingosine, phytosphigosine, 6-hydroxy-sphingosine). Thereby, this approach permits differentiation of isomeric structures and ceramide species in the biological specimen can be unveiled in detail. By application of sequential MS3, the double bond position along the fatty acyl chain of the molecule can be located, and a complete structural characterization of ceramides can be achieved.
Collapse
Affiliation(s)
- Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63130, USA.
| |
Collapse
|
11
|
Qualitative distribution of endogenous phosphatidylcholine and sphingomyelin in serum using LC-MS/MS based profiling. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1155:122289. [PMID: 32771970 DOI: 10.1016/j.jchromb.2020.122289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/18/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022]
Abstract
PCs and SMs are the major types of glycerophospholipids and sphingophospholipids, the two main categories of phospholipids (PLs). To study the qualitative distribution of serum phosphatidylcholine (PC) and sphingomyelin (SM) in human and three rodent species, liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap-MS/MS) was used to identify them comprehensively through the accurate mass measurement of both precursor ions and their corresponding product ions. Based on the fragmentation rules of standards, the product ions at m/z 184.0733 were filtered to maximally screen possible PC and SM molecules. For PC, the fatty acid at sn-1 and sn-2 of the glycerol backbone was identified based on the product ions in negative mode. A total of 91 PCs and 31 SMs molecular species, consisting of 166 PCs and 39 SMs regioisomers, were detected in human serum, which is the most comprehensive identification of PC and SM species in serum. The qualitative distributions of PC in rat and SM in golden hamster, respectively, were more similar with that of human from an overall perspective. Those results provided guidance regarding to the animal model selection for mimicking lipid related-syndromes or diseases in human.
Collapse
|
12
|
Bianco M, Calvano CD, Losito I, Palmisano F, Cataldi TR. Targeted analysis of ceramides and cerebrosides in yellow lupin seeds by reversed-phase liquid chromatography coupled to electrospray ionization and multistage mass spectrometry. Food Chem 2020; 324:126878. [DOI: 10.1016/j.foodchem.2020.126878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
|
13
|
Sun T, Wang X, Cong P, Xu J, Xue C. Mass spectrometry-based lipidomics in food science and nutritional health: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2530-2558. [PMID: 33336980 DOI: 10.1111/1541-4337.12603] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
With the advance in science and technology as well as the improvement of living standards, the function of food is no longer just to meet the needs of survival. Food science and its associated nutritional health issues have been increasingly debated. Lipids, as complex metabolites, play a key role both in food and human health. Taking advantages of mass spectrometry (MS) by combining its high sensitivity and accuracy with extensive selective determination of all lipid classes, MS-based lipidomics has been employed to resolve the conundrum of addressing both qualitative and quantitative aspects of high-abundance and low-abundance lipids in complex food matrices. In this review, we systematically summarize current applications of MS-based lipidomics in food field. First, common MS-based lipidomics procedures are described. Second, the applications of MS-based lipidomics in food science, including lipid composition characterization, adulteration, traceability, and other issues, are discussed. Third, the application of MS-based lipidomics for nutritional health covering the influence of food on health and disease is introduced. Finally, future research trends and challenges are proposed. MS-based lipidomics plays an important role in the field of food science, promoting continuous development of food science and integration of food knowledge with other disciplines. New methods of MS-based lipidomics have been developed to improve accuracy and sensitivity of lipid analysis in food samples. These developments offer the possibility to fully characterize lipids in food samples, identify novel functional lipids, and better understand the role of food in promoting healt.
Collapse
Affiliation(s)
- Tong Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, China
| |
Collapse
|
14
|
Rubino FM, Dei Cas M, Bignotto M, Ghidoni R, Iriti M, Paroni R. Discovery of Unexpected Sphingolipids in Almonds and Pistachios with an Innovative Use of Triple Quadrupole Tandem Mass Spectrometry. Foods 2020; 9:foods9020110. [PMID: 31972966 PMCID: PMC7074565 DOI: 10.3390/foods9020110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 01/29/2023] Open
Abstract
The densely packed storage of valuable nutrients (carbohydrates, lipids, proteins, micronutrients) in the endosperm of nuts and seeds makes the study of their complex composition a topic of great importance. Ceramides in the total lipid extract of some ground almonds and pistachios were searched with a systematic innovative discovery precursor ion scan in a triple quadrupole tandem mass spectrometry, where iso-energetic collision activated dissociation was performed. Five descriptors were used to search components with different C18 long chain bases containing different structural motifs (d18:0, d18:1, d18:2, t18:0, t18:1). The presence of hexoside unit was screened with a specific neutral loss experiment under iso-energetic collision activated dissociation conditions. The discovery scans highlighted the presence of two specific hexosyl-ceramides with a modified sphingosine component (d18:2) and C16:0 or C16:0 hydroxy-fatty acids. The hexosyl-ceramide with the non-hydroxylated fatty acid seemed specific of pistachios and was undetected in almonds. The fast and comprehensive mass spectrometric method used here can be useful to screen lipid extracts of several more seeds of nutraceutical interest, searching for unusual and/or specific sphingosides with chemically decorated long chain bases.
Collapse
Affiliation(s)
- Federico Maria Rubino
- Dipartimento di Scienze della Salute, Universita’ degli Studi di Milano, I-20142 Milano, Italy; (F.M.R.); (M.D.C.); (M.B.); (R.G.)
| | - Michele Dei Cas
- Dipartimento di Scienze della Salute, Universita’ degli Studi di Milano, I-20142 Milano, Italy; (F.M.R.); (M.D.C.); (M.B.); (R.G.)
| | - Monica Bignotto
- Dipartimento di Scienze della Salute, Universita’ degli Studi di Milano, I-20142 Milano, Italy; (F.M.R.); (M.D.C.); (M.B.); (R.G.)
| | - Riccardo Ghidoni
- Dipartimento di Scienze della Salute, Universita’ degli Studi di Milano, I-20142 Milano, Italy; (F.M.R.); (M.D.C.); (M.B.); (R.G.)
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Dipartimento di Scienze della Salute, Universita’ degli Studi di Milano, I-20142 Milano, Italy
| | - Marcello Iriti
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Universita’ degli Studi di Milano, I-20133 Milano, Italy;
| | - Rita Paroni
- Dipartimento di Scienze della Salute, Universita’ degli Studi di Milano, I-20142 Milano, Italy; (F.M.R.); (M.D.C.); (M.B.); (R.G.)
- Correspondence:
| |
Collapse
|
15
|
Paroni R, Dei Cas M, Rizzo J, Ghidoni R, Montagna MT, Rubino FM, Iriti M. Bioactive phytochemicals of tree nuts. Determination of the melatonin and sphingolipid content in almonds and pistachios. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Calvano CD, Ventura G, Sardanelli AM, Losito I, Palmisano F, Cataldi TRI. Identification of neutral and acidic glycosphingolipids in the human dermal fibroblasts. Anal Biochem 2019; 581:113348. [PMID: 31251925 DOI: 10.1016/j.ab.2019.113348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022]
Abstract
Skin fibroblasts are recognized as a valuable model of primary human cells able of mirroring the chronological and biological aging. Here, a lipidomic study of glycosphingolipids (GSL) occurring in the easily accessible human dermal fibroblasts (HDF) is presented. Reversed-phase liquid chromatography with negative electrospray ionization (RPLC-ESI) coupled to either orbitrap or linear ion-trap multiple-stage mass spectrometry was applied to characterize GSL in commercially adult and neonatal primary human fibroblast cells and in skin samples taken from an adult volunteer. Collision-induced dissociation in negative ion mode allowed us to get information on the monosaccharide number and ceramide composition, whereas tandem mass spectra on the ceramide anion was useful to identify the sphingoid base. Nearly sixty endogenous GSL species were successfully recognized, namely 33 hexosyl-ceramides (i.e., HexCer, Hex2Cer and Hex3Cer) and 24 gangliosides as monosialic acid GM1, GM2 and GM3, along with 5 globosides Gb4. An average content of GSLs was attained and the most representative GSL in skin fibroblasts were Hex3Cer, also known as Gb3Cer, followed by Gb4, HexCer and Hex2Cer , while gangliosides were barely quantifiable. The most abundant GSLs in the examined cell lines share the same ceramide base (i.e. d18:1) and the relative content was d18:1/24:1 > d18:1/24:0 > d18:1/16:0 > d18:1/22:0.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Anna Maria Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Italy; Department of Medicine, Campus Bio-Medico University of Rome, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| |
Collapse
|
17
|
Snider JM, Luberto C, Hannun YA. Approaches for probing and evaluating mammalian sphingolipid metabolism. Anal Biochem 2019; 575:70-86. [PMID: 30917945 DOI: 10.1016/j.ab.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
Abstract
Sphingolipid metabolism plays a critical role in regulating processes that control cellular fate. This dynamic pathway can generate and degrade the central players: ceramide, sphingosine and sphingosine-1-phosphate in almost any membrane in the cell, adding an unexpected level of complexity in deciphering signaling events. While in vitro assays have been developed for most enzymes in SL metabolism, these assays are setup for optimal activity conditions and can fail to take into account regulatory components such as compartmentalization, substrate limitations, and binding partners that can affect cellular enzymatic activity. Therefore, many in-cell assays have been developed to derive results that are authentic to the cellular situation which may give context to alteration in SL mass. This review will discuss approaches for utilizing probes for mammalian in-cell assays to interrogate most enzymatic steps central to SL metabolism. The use of inhibitors in conjunction with these probes can verify the specificity of cellular assays as well as provide valuable insight into flux in the SL network. The use of inhibitors specific to each of the central sphingolipid enzymes are also discussed to assist researchers in further interrogation of these pathways.
Collapse
Affiliation(s)
- Justin M Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Departments of Biochemistry, Pathology and Pharmacology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
18
|
Ludovici M, Kozul N, Materazzi S, Risoluti R, Picardo M, Camera E. Influence of the sebaceous gland density on the stratum corneum lipidome. Sci Rep 2018; 8:11500. [PMID: 30065281 PMCID: PMC6068117 DOI: 10.1038/s41598-018-29742-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022] Open
Abstract
The skin surface lipids (SSL) result from the blending of sebaceous and epidermal lipids, which derive from the sebaceous gland (SG) secretion and the permeability barrier of the stratum corneum (SC), respectively. In humans, the composition of the SSL is distinctive of the anatomical distribution of the SG. Thus, the abundance of sebum biomarkers is consistent with the density of the SG. Limited evidence on the influence that the SG exerts on the SC lipidome is available. We explored the differential amounts of sebaceous and epidermal lipids in areas at different SG density with lipidomics approaches. SC was sampled with adhesive patches from forearm, chest, and forehead of 10 healthy adults (8F, 2M) after mechanical removal of sebum with absorbing paper. Lipid extracts of SC were analysed by HPLC/(-)ESI-TOF-MS. In the untargeted approach, the naïve molecular features extraction algorithm was used to extract meaningful entities. Aligned and normalized data were evaluated by univariate and multivariate statistics. Quantitative analysis of free fatty acids (FFA) and cholesterol sulfate (CHS) was performed by targeted HPLC/(-)ESI-TOF-MS, whereas cholesterol and squalene were quantified by GC-MS. Untargeted approaches demonstrated that the relative abundance of numerous lipid species was distinctive of SC depending upon the different SG density. The discriminating species included FFA, CHS, and ceramides. Targeted analyses confirmed that sebaceous FFA and epidermal FFA were increased and decreased, respectively, in areas at high SG density. CHS and squalene, which are biomarkers of epidermal and sebaceous lipid matrices, respectively, were both significantly higher in areas at elevated SG density. Overall, results indicated that the SG secretion intervenes in shaping the lipid composition of the epidermal permeability barrier.
Collapse
Affiliation(s)
- Matteo Ludovici
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Nina Kozul
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute IRCCS, Rome, Italy.,Department of Chemistry, University of Rome "Sapienza", Rome, Italy
| | | | - Roberta Risoluti
- Department of Chemistry, University of Rome "Sapienza", Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute IRCCS, Rome, Italy.
| |
Collapse
|
19
|
Mass Spectrometry-Based Metabolomics of Agave Sap (Agave salmiana) after Its Inoculation with Microorganisms Isolated from Agave Sap Concentrate Selected to Enhance Anticancer Activity. SUSTAINABILITY 2017. [DOI: 10.3390/su9112095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017; 9:nu9111180. [PMID: 29143791 PMCID: PMC5707652 DOI: 10.3390/nu9111180] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a common underlying factor in many major metabolic diseases afflicting Western societies. Sphingolipid metabolism is pivotal in the regulation of inflammatory signaling pathways. The regulation of sphingolipid metabolism is in turn influenced by inflammatory pathways. In this review, we provide an overview of sphingolipid metabolism in mammalian cells, including a description of sphingolipid structure, biosynthesis, turnover, and role in inflammatory signaling. Sphingolipid metabolites play distinct and complex roles in inflammatory signaling and will be discussed. We also review studies examining dietary sphingolipids and inflammation, derived from in vitro and rodent models, as well as human clinical trials. Dietary sphingolipids appear to influence inflammation-related chronic diseases through inhibiting intestinal lipid absorption, altering gut microbiota, activation of anti-inflammatory nuclear receptors, and neutralizing responses to inflammatory stimuli. The anti-inflammatory effects observed with consuming dietary sphingolipids are in contrast to the observation that most cellular sphingolipids play roles in augmenting inflammatory signaling. The relationship between dietary sphingolipids and low-grade chronic inflammation in metabolic disorders is complex and appears to depend on sphingolipid structure, digestion, and metabolic state of the organism. Further research is necessary to confirm the reported anti-inflammatory effects of dietary sphingolipids and delineate their impacts on endogenous sphingolipid metabolism.
Collapse
|