• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5055670)   Today's Articles (1281)
For: Taraji M, Haddad PR, Amos RI, Talebi M, Szucs R, Dolan JW, Pohl CA. Use of dual-filtering to create training sets leading to improved accuracy in quantitative structure-retention relationships modelling for hydrophilic interaction liquid chromatographic systems. J Chromatogr A 2017;1507:53-62. [DOI: 10.1016/j.chroma.2017.05.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 01/31/2023]
Number Cited by Other Article(s)
1
Kelman MJ, Renaud JB, McCarron P, Hoogstra S, Chow W, Wang J, Varga E, Patriarca A, Vaya AM, Visintin L, Nguyen T, De Boevre M, De Saeger S, Karanghat V, Vuckovic D, McMullin DR, Dall'Asta C, Ayeni K, Warth B, Huang M, Tittlemier S, Mats L, Cao R, Sulyok M, Xu K, Berthiller F, Kuhn M, Cramer B, Ciasca B, Lattanzio V, De Baere S, Croubels S, DesRochers N, Sura S, Bates J, Wright EJ, Thapa I, Blackwell BA, Zhang K, Wong J, Burns L, Borts DJ, Sumarah MW. International interlaboratory study to normalize liquid chromatography-based mycotoxin retention times through implementation of a retention index system. J Chromatogr A 2025;1745:465732. [PMID: 39913989 DOI: 10.1016/j.chroma.2025.465732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
2
Xie J, Chen S, Zhao L, Dong X. Application of artificial intelligence to quantitative structure-retention relationship calculations in chromatography. J Pharm Anal 2025;15:101155. [PMID: 39896319 PMCID: PMC11782803 DOI: 10.1016/j.jpha.2024.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 02/04/2025]  Open
3
Beck AG, Fine J, Aggarwal P, Regalado EL, Levorse D, De Jesus Silva J, Sherer EC. Machine learning models and performance dependency on 2D chemical descriptor space for retention time prediction of pharmaceuticals. J Chromatogr A 2024;1730:465109. [PMID: 38968662 DOI: 10.1016/j.chroma.2024.465109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
4
Singh YR, Shah DB, Maheshwari DG, Shah JS, Shah S. Advances in AI-Driven Retention Prediction for Different Chromatographic Techniques: Unraveling the Complexity. Crit Rev Anal Chem 2023;54:3559-3569. [PMID: 37672314 DOI: 10.1080/10408347.2023.2254379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
5
Singh YR, Shah DB, Kulkarni M, Patel SR, Maheshwari DG, Shah JS, Shah S. Current trends in chromatographic prediction using artificial intelligence and machine learning. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023;15:2785-2797. [PMID: 37264667 DOI: 10.1039/d3ay00362k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
6
Prediction of surface excess adsorption and retention factors in reversed-phase liquid chromatography from molecular dynamics simulations. J Chromatogr A 2022;1685:463627. [DOI: 10.1016/j.chroma.2022.463627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
7
Machine Learning-Based Retention Time Prediction of Trimethylsilyl Derivatives of Metabolites. Biomedicines 2022;10:biomedicines10040879. [PMID: 35453629 PMCID: PMC9024754 DOI: 10.3390/biomedicines10040879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]  Open
8
Borkar MR, Coutinho E. Amalgamation of comparative protein modeling with quantitative structure-retention relationship for prediction of the chromatographic behavior of peptides. J Chromatogr A 2022;1669:462967. [DOI: 10.1016/j.chroma.2022.462967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
9
Tian Z, Liu F, Li D, Fernie AR, Chen W. Strategies for structure elucidation of small molecules based on LC–MS/MS data from complex biological samples. Comput Struct Biotechnol J 2022;20:5085-5097. [PMID: 36187931 PMCID: PMC9489805 DOI: 10.1016/j.csbj.2022.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]  Open
10
Yang Q, Ji H, Fan X, Zhang Z, Lu H. Retention time prediction in hydrophilic interaction liquid chromatography with graph neural network and transfer learning. J Chromatogr A 2021;1656:462536. [PMID: 34563892 DOI: 10.1016/j.chroma.2021.462536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023]
11
Sagandykova G, Buszewski B. Perspectives and recent advances in quantitative structure-retention relationships for high performance liquid chromatography. How far are we? Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
12
Bride E, Heinisch S, Bonnefille B, Guillemain C, Margoum C. Suspect screening of environmental contaminants by UHPLC-HRMS and transposable Quantitative Structure-Retention Relationship modelling. JOURNAL OF HAZARDOUS MATERIALS 2021;409:124652. [PMID: 33277075 DOI: 10.1016/j.jhazmat.2020.124652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/02/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
13
Gritti F. Perspective on the Future Approaches to Predict Retention in Liquid Chromatography. Anal Chem 2021;93:5653-5664. [PMID: 33797872 DOI: 10.1021/acs.analchem.0c05078] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
14
Taraji M, Haddad PR. Method Optimisation in Hydrophilic-Interaction Liquid Chromatography by Design of Experiments Combined with Quantitative Structure–Retention Relationships. Aust J Chem 2021. [DOI: 10.1071/ch21102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
15
Haddad PR, Taraji M, Szücs R. Prediction of Analyte Retention Time in Liquid Chromatography. Anal Chem 2020;93:228-256. [DOI: 10.1021/acs.analchem.0c04190] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
16
Bonini P, Kind T, Tsugawa H, Barupal DK, Fiehn O. Retip: Retention Time Prediction for Compound Annotation in Untargeted Metabolomics. Anal Chem 2020;92:7515-7522. [PMID: 32390414 PMCID: PMC8715951 DOI: 10.1021/acs.analchem.9b05765] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
17
Serum lipidomic biomarkers for non-small cell lung cancer in nonsmoking female patients. J Pharm Biomed Anal 2020;185:113220. [PMID: 32145537 DOI: 10.1016/j.jpba.2020.113220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
18
Park SH, De Pra M, Haddad PR, Grosse S, Pohl CA, Steiner F. Localised quantitative structure–retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography. J Chromatogr A 2020;1609:460508. [DOI: 10.1016/j.chroma.2019.460508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
19
Skoczylas M, Bocian S, Buszewski B. Quantitative structure – retention relationships of amino acids on the amino acid- and peptide-silica stationary phases for liquid chromatography. J Chromatogr A 2020;1609:460514. [DOI: 10.1016/j.chroma.2019.460514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
20
The METLIN small molecule dataset for machine learning-based retention time prediction. Nat Commun 2019;10:5811. [PMID: 31862874 PMCID: PMC6925099 DOI: 10.1038/s41467-019-13680-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/13/2019] [Indexed: 01/18/2023]  Open
21
Wen Y, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA, Haddad PR. Retention prediction using quantitative structure‐retention relationships combined with the hydrophobic subtraction model in reversed‐phase liquid chromatography. Electrophoresis 2019;40:2415-2419. [DOI: 10.1002/elps.201900022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 11/07/2022]
22
Amos RI, Haddad PR, Szucs R, Dolan JW, Pohl CA. Molecular modeling and prediction accuracy in Quantitative Structure-Retention Relationship calculations for chromatography. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
23
Wen Y, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA, Haddad PR. Retention Index Prediction Using Quantitative Structure-Retention Relationships for Improving Structure Identification in Nontargeted Metabolomics. Anal Chem 2018;90:9434-9440. [PMID: 29952550 DOI: 10.1021/acs.analchem.8b02084] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
24
Blaženović I, Kind T, Ji J, Fiehn O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites 2018;8:E31. [PMID: 29748461 PMCID: PMC6027441 DOI: 10.3390/metabo8020031] [Citation(s) in RCA: 449] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/26/2018] [Accepted: 05/06/2018] [Indexed: 01/17/2023]  Open
25
Taraji M, Haddad PR, Amos RI, Talebi M, Szucs R, Dolan JW, Pohl CA. Error measures in quantitative structure-retention relationships studies. J Chromatogr A 2017;1524:298-302. [DOI: 10.1016/j.chroma.2017.09.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/31/2023]
26
Amos RIJ, Tyteca E, Talebi M, Haddad PR, Szucs R, Dolan JW, Pohl CA. Benchmarking of Computational Methods for Creation of Retention Models in Quantitative Structure–Retention Relationships Studies. J Chem Inf Model 2017;57:2754-2762. [DOI: 10.1021/acs.jcim.7b00346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
27
Taraji M, Haddad PR, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA. Chemometric-assisted method development in hydrophilic interaction liquid chromatography: A review. Anal Chim Acta 2017;1000:20-40. [PMID: 29289311 DOI: 10.1016/j.aca.2017.09.041] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 02/09/2023]
28
Park SH, Haddad PR, Amos RI, Talebi M, Szucs R, Pohl CA, Dolan JW. Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. III Combination of Tanimoto similarity index, log P , and retention factor ratio to identify optimal analyte training sets for ion chromatography. J Chromatogr A 2017;1520:107-116. [DOI: 10.1016/j.chroma.2017.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/02/2017] [Accepted: 09/06/2017] [Indexed: 11/17/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA