1
|
Galarce-Bustos O, Obregón C, Vallejos-Almirall A, Folch C, Acevedo F. Application of effect-directed analysis using TLC-bioautography for rapid isolation and identification of antidiabetic compounds from the leaves of Annona cherimola Mill. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:970-983. [PMID: 37488746 DOI: 10.1002/pca.3265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Type 2 diabetes mellitus is a globally prevalent chronic disease characterised by hyperglycaemia and oxidative stress. The search for new natural bioactive compounds that contribute to controlling this condition and the application of analytical methodologies that facilitate rapid detection and identification are important challenges for science. Annona cherimola Mill. is an important source of aporphine alkaloids with many bioactivities. OBJECTIVE The aim of this study is to isolate and identify antidiabetic compounds from alkaloid extracts with α-glucosidase and α-amylase inhibitory activity from A. cherimola Mill. leaves using an effect-directed analysis by thin-layer chromatography (TLC)-bioautography. METHODOLOGY Guided fractionation for α-glucosidase and α-amylase inhibitors in leaf extracts was done using TLC-bioassays. The micro-preparative TLC was used to isolate the active compounds, and the identification was performed by mass spectrometry associated with web-based molecular networks. Additionally, in vitro estimation of the inhibitory activity and antioxidant capacity was performed in the isolated compounds. RESULTS Five alkaloids (liriodenine, dicentrinone, N-methylnuciferine, anonaine, and moupinamide) and two non-alkaloid compounds (3-methoxybenzenepropanoic acid and methylferulate) with inhibitory activity were isolated and identified using a combination of simple methodologies. Anonaine, moupinamide, and methylferulate showed promising results with an outstanding inhibitory activity against both enzymes and antioxidant capacity that could contribute to controlling redox imbalance. CONCLUSIONS These high-throughput methodologies enabled a rapid isolation and identification of seven compounds with potential antidiabetic activity. To our knowledge, the estimated inhibitory activity of dicentrinone, N-methylnuciferine, and anonaine against α-glucosidase and α-amylase is reported here for the first time.
Collapse
Affiliation(s)
- Oscar Galarce-Bustos
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Camilo Obregón
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Christian Folch
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán, Chile
| | - Francisca Acevedo
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Center of Excellence translational Medicine, Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
2
|
Martić A, Čižmek L, Ul’yanovskii NV, Paradžik T, Perković L, Matijević G, Vujović T, Baković M, Babić S, Kosyakov DS, Trebše P, Čož-Rakovac R. Intra-Species Variations of Bioactive Compounds of Two Dictyota Species from the Adriatic Sea: Antioxidant, Antimicrobial, Dermatological, Dietary, and Neuroprotective Potential. Antioxidants (Basel) 2023; 12:antiox12040857. [PMID: 37107232 PMCID: PMC10134986 DOI: 10.3390/antiox12040857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The marine environment has a significant impact on life on Earth. Organisms residing in it are vital for the ecosystem but also serve as an inexhaustible source of biologically active compounds. Herein, the biodiversity of two brown seaweeds, Dictyota dichotoma and Dictyota fasciola from the Adriatic Sea, was evaluated. The aim of the study was the determination of differences in compound composition while comparing their activities, including antioxidant, antimicrobial, and enzyme inhibition, in connection to human digestion, dermatology, and neurological disorders. Chemical analysis revealed several terpenoids and steroids as dominant molecules, while fucoxanthin was the main identified pigment in both algae. D. dichotoma had higher protein, carbohydrate, and pigment content. Omega-6 and omega-3 fatty acids were identified, with the highest amount of dihomo-γ-linolenic acid and α-linolenic acid in D. dichotoma. Antimicrobial testing revealed a dose-dependent inhibitory activity of methanolic fraction against Escherichia coli and Staphylococcus aureus. Moderate antioxidant activity was observed for both algae fractions, while the dietary potential was high, especially for the D. fasciola dichloromethane fraction, with inhibition percentages of around 92% for α-amylase and 57% for pancreatic lipase at 0.25 mg/mL. These results suggest that Dictyota species might be a potent source of naturally derived agents for obesity and diabetes.
Collapse
Affiliation(s)
- Ana Martić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Lara Čižmek
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Nikolay V. Ul’yanovskii
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Northern (Arctic) Federal University, Nab. Severnoy Dviny 17, 163002 Arkhangelsk, Russia
| | - Tina Paradžik
- Laboratory for Chemical and Biological Crystallography, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Lucija Perković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Gabrijela Matijević
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Tamara Vujović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marija Baković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Sanja Babić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Dmitry S. Kosyakov
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Northern (Arctic) Federal University, Nab. Severnoy Dviny 17, 163002 Arkhangelsk, Russia
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Cikoš AM, Aladić K, Velić D, Tomas S, Lončarić P, Jerković I. Evaluation of ultrasound-assisted extraction of fucoxanthin and total pigments from three croatian macroalgal species. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Kowalska T, Sajewicz M. Thin-Layer Chromatography (TLC) in the Screening of Botanicals-Its Versatile Potential and Selected Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196607. [PMID: 36235143 PMCID: PMC9572063 DOI: 10.3390/molecules27196607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The aim of this paper is to present a comprehensive overview of the main aims and scopes in screening of botanicals, a task of which thin-layer chromatography (TLC) is, on an everyday basis, confronted with and engaged in. Stunning omnipresence of this modest analytical technique (both in its standard format (TLC) and the high-performance one (HPTLC), either hyphenated or not) for many analysts might at a first glance appear chaotic and random, with an auxiliary rather than leading role in research, and not capable of issuing meaningful final statements. Based on these reflections, our purpose is not to present a general review paper on TLC in screening of botanicals, but a blueprint rather (illustrated with a selection of practical examples), which highlights a sovereign and important role of TLC in accomplishing the following analytical tasks: (i) solving puzzles related to chemotaxonomy of plants, (ii) screening a wide spectrum of biological properties of plants, (iii) providing quality control of herbal medicines and alimentary and cosmetic products of biological origin, and (iv) tracing psychoactive plants under forensic surveillance.
Collapse
|
5
|
Cabezudo I, Salazar MO, Ramallo IA, Furlan RLE. Effect-directed analysis in food by thin-layer chromatography assays. Food Chem 2022; 390:132937. [PMID: 35569399 DOI: 10.1016/j.foodchem.2022.132937] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Thin-layer chromatography (TLC) is widely used for food analysis and quality control. As an open chromatographic system, TLC is compatible with microbial-, biochemical-, and chemical-based derivatization methods. This compatibility makes it possible to run in situ bioassays directly on the plate to obtain activity-profile chromatograms, i.e., the effect-directed analysis of the sample. Many of the properties that can be currently measured using this assay format are related to either desired or undesired features for food related products. The TLC assays can detect compounds related to the stability of foods (antioxidant, antimicrobial, antibrowning, etc.), contaminants (antibiotics, pesticides, estrogenic compounds, etc.), and compounds that affect the absorption, metabolism or excretion of nutrients and metabolites or could improve the consumers health (enzyme inhibitors). In this article, different food related TLC-assays are reviewed. The different detection systems used, the way in which they are applied as well as selected examples are discussed.
Collapse
Affiliation(s)
- Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Mario O Salazar
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - I Ayelen Ramallo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
6
|
Das P, Ashraf GJ, Baishya T, Dua TK, Paul P, Nandi G, Sahu R. High-performance thin-layer chromatography coupled attenuated total reflectance-Fourier-transform infrared and NMR spectroscopy-based identification of α-amylase inhibitor from the aerial part of Asparagus racemosus Willd. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1018-1027. [PMID: 35730071 DOI: 10.1002/pca.3155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION α-Amylase inhibitors from natural sources are of interest for new drug development for the treatment of diabetes mellitus (DM). High-performance thin-layer chromatography (HPTLC) coupled bioassay guided isolation of bioactive compounds has been improved within last few years. OBJECTIVE A microchemical derivatised HPTLC-coupled attenuated total reflectance-Fourier-transform infrared (ATR-FTIR) and nuclear magnetic resonance (NMR) spectroscopy was employed for profiling α-amylase inhibitor from the aerial part of Asparagus racemosus Willd. METHODOLOGY Asparagus racemosus Willd. aerial part extracted with different solvents (n-hexane, chloroform, ethyl acetate, and methanol) and assayed to detect free radical scavengers and α-amylase inhibitor by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and starch-iodine assay method, respectively. HPTLC-coupled ATR-FTIR and NMR spectroscopy was used to identify the α-amylase inhibitor. RESULTS Methanolic extract of A. racemosus showed highest antioxidant activity (21.99 μg GAE/μL) where n-hexane extract showed lowest antioxidant activity (5.87 μg GAE/μL). The α-amylase inhibition was recorded as highest and lowest in ethyl acetate extract (13.13 AE/μL) and n-hexane extract (3.92 AE/μL), respectively. The deep blue zone of α-amylase sprayed TLC plate of extracts with hRF = 72 analysed for ATR-FTIR and NMR spectroscopy which revealed the presence of stigmasterol is responsible for α-amylase inhibition. CONCLUSION The present work establishes the α-amylase inhibiting properties of A. racemosus maintaining its use for the treatment of DM as a traditional medicine. Bioassay guided isolation through HPTLC-coupled ATR-FTIR and NMR spectroscopy offers an effective method for the exploration of bioactive compounds such as α-amylase inhibitor from complex plant extracts.
Collapse
Affiliation(s)
- Priya Das
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Gouhar Jahan Ashraf
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Tania Baishya
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
- Department of Tea Science, University of North Bengal, Darjeeling, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| |
Collapse
|
7
|
Rubiño S, Peteiro C, Aymerich T, Hortós M. Major lipophilic pigments in Atlantic seaweeds as valuable food ingredients: Analysis and assessment of quantification methods. Food Res Int 2022; 159:111609. [PMID: 35940804 DOI: 10.1016/j.foodres.2022.111609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Current trends towards the use of ingredients from natural origin in food, cosmetic and pharmaceutical industry, place macroalgae as a good reservoir of novel compounds. Among them, lipophilic major pigments such as chlorophylls and fucoxanthin, are of great interest because of their multiple applications as bioactive compounds and dyes. In this work, a mid-polarity medium was used to extract pigments from twenty-four species from North coast of Spain, including brown (Phaeophyceae) and red macroalgae (Rhodophyta). The fucoxanthin and chlorophyll a content was assessed by means of two different methods, spectrophotometric and high-performance liquid chromatography coupled to diode array detection (HPLC-DAD). The effect of dried processing on the pigment content of selected species was also evaluated. A linear relationship between the extractability of fucoxanthin and chlorophyll a was observed, being the highest content recorded among members belonging to the order Fucales and Undaria pinnatifida. This work provides good insights about the content on pigments in Spanish North Atlantic macroalgae with future commercial value in different industrial fields, as well as a critical overview of the suitability of the quantification methods and challenges related to their effect in results evaluation.
Collapse
Affiliation(s)
- S Rubiño
- IRTA-Food Safety and Functionality Programme. Finca Camps i Armet s/n, 17121 Monells, Girona, Spain
| | - C Peteiro
- Spanish Institute of Oceanography of the Spanish National Research Council (IEO, CSIC), Oceanographic Centre of Santander, Marine Culture Units "El Bocal", Seaweeds Centre. Barrio Corbanera s/n., 39012 Monte, Santander, Spain
| | - T Aymerich
- IRTA-Food Safety and Functionality Programme. Finca Camps i Armet s/n, 17121 Monells, Girona, Spain
| | - M Hortós
- IRTA-Food Safety and Functionality Programme. Finca Camps i Armet s/n, 17121 Monells, Girona, Spain.
| |
Collapse
|
8
|
Carpena M, Garcia-Perez P, Garcia-Oliveira P, Chamorro F, Otero P, Lourenço-Lopes C, Cao H, Simal-Gandara J, Prieto MA. Biological properties and potential of compounds extracted from red seaweeds. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-32. [PMID: 35791430 PMCID: PMC9247959 DOI: 10.1007/s11101-022-09826-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/22/2022] [Indexed: 05/03/2023]
Abstract
Macroalgae have been recently used for different applications in the food, cosmetic and pharmaceutical industry since they do not compete for land and freshwater against other resources. Moreover, they have been highlighted as a potential source of bioactive compounds. Red algae (Rhodophyta) are the largest group of seaweeds, including around 6000 different species, thus it can be hypothesized that they are a potential source of bioactive compounds. Sulfated polysaccharides, mainly agar and carrageenans, are the most relevant and exploited compounds of red algae. Other potential molecules are essential fatty acids, phycobiliproteins, vitamins, minerals, and other secondary metabolites. All these compounds have been demonstrated to exert several biological activities, among which antioxidant, anti-inflammatory, antitumor, and antimicrobial properties can be highlighted. Nevertheless, these properties need to be further tested on in vivo experiments and go in-depth in the study of the mechanism of action of the specific molecules and the understanding of the structure-activity relation. At last, the extraction technologies are essential for the correct isolation of the molecules, in a cost-effective way, to facilitate the scale-up of the processes and their further application by the industry. This manuscript is aimed at describing the fundamental composition of red algae and their most studied biological properties to pave the way to the utilization of this underused resource.
Collapse
Affiliation(s)
- M. Carpena
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - P. Garcia-Perez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - F. Chamorro
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - C. Lourenço-Lopes
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| |
Collapse
|
9
|
Cikoš AM, Šubarić D, Roje M, Babić J, Jerković I, Jokić S. Recent advances on macroalgal pigments and their biological activities (2016–2021). ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Santosh S. Bhujbal, Chawale BG, Kale MA. Application based Studies of HPTLC-bioautography in Evaluation of Botanicals: a Review. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Abd Manan TSB, Khan T, Wan Mohtar WHM, Mohd Hanafiah Z, Latip ASA, Mustafa SFZ, Leong SY, Shamsuddin AS, Isa MH, Hassan AKR, Ahmad A, Wan Rasdi N, Mohamad H. Algae in medicine and human health. ALGAL BIOTECHNOLOGY 2022:323-334. [DOI: 10.1016/b978-0-323-90476-6.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Dawood HM, Shawky E, Hammoda HM, Metwally AM, Ibrahim RS. Development of a validated HPTLC-bioautographic method for evaluation of aromatase inhibitory activity of plant extracts and their constituents. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:115-126. [PMID: 34171936 DOI: 10.1002/pca.3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/08/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Aromatase is a CYP450 enzyme that catalyses the conversion of androgens into oestrogens, where the decrease in the production of oestrogens aided by aromatase inhibitors is considered a target in post-menopausal breast cancer therapy. TLC-bioautography is a technique employed for combining chromatographic separations on TLC plates with bioassays. This is the first report to evaluate aromatase inhibitory activity using this technique. OBJECTIVES The aim of this study is to develop and validate a new TLC-bioautographic method for determination of aromatase inhibitory activity in 14 plant extracts. Two quantitation methods, the peak area method and reciprocal iso-inhibition volume (RIV) method, were compared and investigated to attain reliable results. Factors affecting the enzymatic reaction (temperature, pH, enzyme and substrate concentrations … etc.) were also investigated to attain the optimum parameters. METHODOLOGY TLC assisted by digital image processing was implemented for quantitative estimation of the aromatase inhibition of 14 plant extracts using chrysin as positive control. The fluorometric substrate dibenzyl fluorescein (DBF) was utilised for the assay, where inhibitory compounds were visualised as dark spots against a blue fluorescent background. Two software programs, Sorbfil® videodensitometer (in the peak area method) and ImageJ® (in the RIV method), were thoroughly validated using the International Council on Harmonisation (ICH) guideline and used for quantitation. RESULTS The RIV method showed superiority over the peak area method in the quantitation results of the tracks with non-homogenous background with %RSD values of 0.98 and 1.49 compared with 2.86 and 3.58, respectively. Further, the methods allow the comparison of the activity of different unknown inhibitory compounds without the need for a reference or a positive control. CONCLUSION Using the TLC-bioautographic method by image processing combined with the RIV quantitation method, simultaneous separation and quantitation of aromatase inhibitory components could be applied to estimate the relative activity of various plant extracts.
Collapse
Affiliation(s)
- Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Aly M Metwally
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
13
|
Schreiner T, Sauter D, Friz M, Heil J, Morlock GE. Is Our Natural Food Our Homeostasis? Array of a Thousand Effect-Directed Profiles of 68 Herbs and Spices. Front Pharmacol 2021; 12:755941. [PMID: 34955829 PMCID: PMC8696259 DOI: 10.3389/fphar.2021.755941] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
The beneficial effects of plant-rich diets and traditional medicines are increasingly recognized in the treatment of civilization diseases due to the abundance and diversity of bioactive substances therein. However, the important active portion of natural food or plant-based medicine is presently not under control. Hence, a paradigm shift from quality control based on marker compounds to effect-directed profiling is postulated. We investigated 68 powdered plant extracts (botanicals) which are added to food products in food industry. Among them are many plants that are used as traditional medicines, herbs and spices. A generic strategy was developed to evaluate the bioactivity profile of each botanical as completely as possible and to straightforwardly assign the most potent bioactive compounds. It is an 8-dimensional hyphenation of normal-phase high-performance thin-layer chromatography with multi-imaging by ultraviolet, visible and fluorescence light detection as well as effect-directed assay and heart-cut of the bioactive zone to orthogonal reversed-phase high-performance liquid chromato-graphy-photodiode array detection-heated electrospray ionization mass spectrometry. In the non-target, effect-directed screening via 16 different on-surface assays, we tentatively assigned more than 60 important bioactive compounds in the studied botanicals. These were antibacterials, estrogens, antiestrogens, androgens, and antiandrogens, as well as acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, β-glucosidase, β-glucuronidase, and tyrosinase inhibitors, which were on-surface heart-cut eluted from the bioautogram or enzyme inhibition autogram to the next dimension for further targeted characterization. This biological-physicochemical hyphenation is able to detect and control active mechanisms of traditional medicines or botanicals as well as the essentials of plant-based food. The array of 1,292 profiles (68 samples × 19 detections) showed the versatile bioactivity potential of natural food. It reveals how efficiently and powerful our natural food contributes to our homeostasis.
Collapse
Affiliation(s)
- Tamara Schreiner
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Dorena Sauter
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Maren Friz
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Julia Heil
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Gertrud Elisabeth Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
14
|
UVB Radiation Protective Effect of Brown Alga Padina australis: A Potential Cosmeceutical Application of Malaysian Seaweed. COSMETICS 2021. [DOI: 10.3390/cosmetics8030058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Marine natural products are a good source of antioxidants due to the presence of a wide range of bioactive compounds. Accumulating evidence proves the potential use of seaweed-derived ingredients in skincare products. This study aims to evaluate the ultraviolet (UV) protective activity of the ethanol and water extracts of Padina australis. As the preliminary attempt for this discovery, the total phenolic content (TPC) and total flavonoid content (TFC) were measured, followed by the in vitro antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and reducing the power to shed light on its bioactivity. The UVB protective activity was examined on HaCaT human keratinocyte cells. The findings of this study reveal that the P. australis ethanol extract serves as a promising source of antioxidants, as it exhibits stronger antioxidant activities compared with the water extract in DPPH and the reducing power assays. The P. australis ethanol extract also demonstrated a higher level of total phenolic (76 mg GAE/g) and flavonoid contents (50 mg QE/g). Meanwhile, both the ethanol (400 µg/mL) and water extracts (400 µg/mL) protected the HaCaT cells from UVB-induced cell damage via promoting cell viability. Following that, LCMS analysis reveals that the P. australis ethanol extract consists of sugar alcohol, polysaccharide, carotenoid, terpenoid and fatty acid, whereas the water extract contains compounds from phenol, terpenoid, fatty acid, fatty alcohol and fatty acid amide. In summary, biometabolites derived from P. australis have diverse functional properties, and they could be applied to the developments of cosmeceutical and pharmaceutical products.
Collapse
|
15
|
Agatonovic-Kustrin S, Ramenskaya G, Kustrin E, Morton DW. Characterisation of α-amylase inhibitors in marigold plants via bioassay-guided high-performance thin-layer chromatography and attenuated total reflectance-Fourier transform infrared spectroscopy. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122676. [PMID: 33848802 DOI: 10.1016/j.jchromb.2021.122676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
A high-performance thin-layer chromatography with microchemical derivatization and bioassay guided detection was used for bioanalytical profiling of selected marigold plant extracts. Anisaldehyde/sulfuric acid reagent and thymol/sulfuric acid reagent were used to visualize separated components on the chromatograms. Antioxidant activity and α-amylase inhibition were assessed with 2 bioassays, DPPH assay to detect free radical scavengers and starch-iodineassay method to detect compounds that inhibit α-amylase. The highest antioxidant activity of 10.12 μg of gallic acid equivalents (GAE) per 20 µL of extract was measured in extract from Tagetes flowers and the lowest in the extract from Calendula leaves with 5.10 μg of GAE. Multiple zones of α-amylase inhibition were detected. A detailed analysis of the ATR-FTIR spectra from the bands at RF = 0.24 suggest that faradiol esters and saturated fatty acids esters, palmitic acid, myristic acid, and lauric acid are responsible for α-amylase inhibition, unsaturated fatty acids for the band at RF = 0.51 and phytoecdysteroids for the band at RF = 0.53.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- A.P. Arzamastsev Department of Pharmaceutical and Toxicological Chemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russian Federation; School of Pharmacy and Biomedical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Galina Ramenskaya
- A.P. Arzamastsev Department of Pharmaceutical and Toxicological Chemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russian Federation; Scientific Center for Expert Evaluation of Medicinal Products, Ministry of Health of the Russian Federation, 8/2 Petrovskii Blvd., Moscow 127051, Russian Federation
| | - Ella Kustrin
- Department of Creative Arts and English, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - David W Morton
- A.P. Arzamastsev Department of Pharmaceutical and Toxicological Chemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russian Federation; School of Pharmacy and Biomedical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| |
Collapse
|
16
|
Ristivojević P, Jovanović V, Opsenica DM, Park J, Rollinger JM, Velicković TĆ. Rapid analytical approach for bioprofiling compounds with radical scavenging and antimicrobial activities from seaweeds. Food Chem 2021; 334:127562. [PMID: 32707368 DOI: 10.1016/j.foodchem.2020.127562] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Brown seaweeds are traditionally used as food in Asian countries, and they are a valuable source of bioactive compounds. Herein, a novel high-throughput methodological approach was developed for the tracing of compounds with radical scavenging and antimicrobial activities in Saccharina japonica and Undaria pinnatifida methanol extracts. The seaweed metabolites were separated by a novel high-performance thin-layer chromatography method, the bioactive bands were identified by bioautography assays. The bioactive compounds were characterized with ultra-high-performance liquid chromatography coupled with linear trap quadrupole tandem mass spectrometry. Stearidonic, eicosapentaenoic, and arachidonic acids were identified as major components having radical scavenging and antimicrobial activities. The suggested method provides a fast identification and quantification of bioactive compounds in multicomponent biological samples.
Collapse
Affiliation(s)
- Petar Ristivojević
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, South Korea
| | - Vesna Jovanović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia; Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, South Korea
| | | | - Jihae Park
- Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, South Korea
| | - Judith M Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Tanja Ćirković Velicković
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia; Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, South Korea; Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Serbian Academy of Sciences and Arts, Belgrade, Serbia.
| |
Collapse
|
17
|
Khaledi M, Sharif Makhmal Zadeh B, Rezaie A, Nazemi M, Safdarian M, Nabavi MB. Chemical profiling and anti-psoriatic activity of marine sponge (Dysidea avara) in induced imiquimod-psoriasis-skin model. PLoS One 2020; 15:e0241582. [PMID: 33253155 PMCID: PMC7703918 DOI: 10.1371/journal.pone.0241582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/17/2020] [Indexed: 01/13/2023] Open
Abstract
Since Marine sponge Dysidea avara is regarded as a source of anti-inflammatory compounds, we decided to evaluate its potential anti-psoriatic activity in a psoriasis Imiquimod-induced in the mouse model. Psoriatic mice were treated with three different methanolic extracts of Dysidea avara compared with betamethasone-treated mice in in- vivo studies. Clinical skin severity was assessed with the psoriasis area index (PASI), whilst ELISA detected the expression of TNF-α, IL-17A, and IL-22. Dysidea avara activity was studied by employing GC-MS (to distinguish compounds), HPTLC (for skin permeation and accumulation), and SEA DOCK to predict single compound potential anti-inflammatory activity. After 7 days of treatment, mice treated with Dysidea avara displayed a dose-dependent, statistically significant improvement compared to controls (p< 0.001). In line with the clinical results, ELISA revealed a statistically significant decrease in IL-22, IL-17A, and TNF-α after treatment; the same SEA DOCK analysis suggests a possible anti-psoriatic activity of the extracts.
Collapse
Affiliation(s)
- Mostafa Khaledi
- Marine Pharmaceutical Science Research Center, Department of Pharmacognosy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Annahita Rezaie
- Department of Pathobiology Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Melika Nazemi
- Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Mehdi Safdarian
- Nanotechnology Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
18
|
Lim SM, Agatonovic-Kustrin S, Lim FT, Ramasamy K. High-performance thin layer chromatography-based phytochemical and bioactivity characterisation of anticancer endophytic fungal extracts derived from marine plants. J Pharm Biomed Anal 2020; 193:113702. [PMID: 33160220 DOI: 10.1016/j.jpba.2020.113702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022]
Abstract
Bioactive compounds from endophytic fungi exhibit diverse biological activities which include anticancer effect. Capitalising on the abundance of unexplored endophytes that reside within marine plants, this study assessed the anticancer potential of ethyl acetate endophytic fungal extracts (i.e. MBFT Tip 2.1, MBL 1.2, MBS 3.2, MKS 3 and MKS 3.1) derived from leaves, stem and fruits of marine plants that grow along Morib Beach, Malaysia. For identification of endophytic fungi, EF 4/ EF 3 and ITS 1/ ITS 4 PCR primer pairs were used to amplify the fungal 18S rDNA sequence and ITS region sequence, respectively. The resultant sequences were subjected to similarity search via the NCBI GenBank database. High-performance thin layer chromatography (HPTLC) hyphenated with bioassays was used to characterise the extracts in terms of their phytochemical profiles and bioactivity. Microchemical derivatisation was used to assess polyphenolic and phytosterol/ terpenoid content whereas biochemical derivatisation was used to establish antioxidant activities and α-amylase enzyme inhibition. The sulforhodamine B (SRB) assay was used to assess the anticancer effect of the extracts against HCT116 (a human colorectal cancer cell line). The present results indicated MBS 3.2 (Penicillium decumbens) as the most potent extract against HCT116 (IC50 = 0.16 μg/mL), approximately 3-times more potent than 5-flurouracil (IC50 = 0.46 μg/mL). Stepwise multiple regression method suggests that the anticancer effect of MBS 3.2 could be associated with high polyphenolic content and antioxidant potential. Nonlinear regression analysis confirmed that low to moderate α-amylase inhibition exhibits maximum anticancer activity. Current findings warrant further in-depth mechanistic studies.
Collapse
Affiliation(s)
- Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, University Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya 2, p 4, 119991, Moscow, Russia; School of Pharmacy and Applied Science, La Trobe Institute of Molecular Sciences, La Trobe University, Edwards Rd, Bendigo, VIC, 3550, Australia
| | - Fei Tieng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, University Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, University Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
19
|
Lourenço-Lopes C, Garcia-Oliveira P, Carpena M, Fraga-Corral M, Jimenez-Lopez C, Pereira AG, Prieto MA, Simal-Gandara J. Scientific Approaches on Extraction, Purification and Stability for the Commercialization of Fucoxanthin Recovered from Brown Algae. Foods 2020; 9:E1113. [PMID: 32823574 PMCID: PMC7465967 DOI: 10.3390/foods9081113] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 01/10/2023] Open
Abstract
The scientific community has corroborated the numerous beneficial activities of fucoxanthin, such as its antioxidant, anti-inflammatory, anticancer or neuroprotective effects, among others. These properties have attracted the attention of nutraceutical, cosmetic and pharmacological industries, giving rise to various possible applications. Fucoxanthin may be chemically produced, but the extraction from natural sources is considered more cost-effective, efficient and eco-friendly. Thus, identifying suitable sources of this compound and giving a general overview of efficient extraction, quantification, purification and stabilization studies is of great importance for the future production and commercialization of fucoxanthin. The scientific research showed that most of the studies are performed using conventional techniques, but non-conventional techniques begin to gain popularity in the recovery of this compound. High Performance Liquid Chromatography (HPLC), Nuclear Magnetic Resonance (NMR) and spectroscopy techniques have been employed in the quantification and identification of fucoxanthin. The further purification of extracts has been mainly accomplished using purification columns. Finally, the stability of fucoxanthin has been assessed as a free molecule, in an emulsion, or encapsulated to identify the variables that might affect its further industrial application.
Collapse
Affiliation(s)
- Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Cecilia Jimenez-Lopez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Antia G. Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
| |
Collapse
|
20
|
Legerská B, Chmelová D, Ondrejovič M, Miertuš S. The TLC-Bioautography as a Tool for Rapid Enzyme Inhibitors detection - A Review. Crit Rev Anal Chem 2020; 52:275-293. [PMID: 32744081 DOI: 10.1080/10408347.2020.1797467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microorganisms and plants can be important sources of many compounds with potential pharmaceutical applications. Extraction of these matrices is one of the ways of identifying the presence of inhibitory active substances against enzymes whose high activity leads to serious human diseases including cancer, Parkinson's or Crohn's diseases. The isolation and purification of inhibitors are time-consuming and expensive steps in the analysis of the crude extract and therefore, it is necessary to find a fast, efficient, and inexpensive method for screening extracts of interest. TLC-Bioautography combines the separation of the extract on a thin layer with its subsequent biological analysis. TLC-Bioautography methods have been developed for several classes of enzymes including oxidoreductases, hydrolases and isomerases, and there is a potential for developing functional methods for other classes of enzymes. This review summarizes known TLC-Bioautography methods and their applications for determining the presence of enzyme inhibitors in extracts and compares the effectiveness of different methodological approaches. It also indicates the current state and perspective of the development of TLC-Bioautography and its possible future applications.
Collapse
Affiliation(s)
- Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia.,ICARST n.o., Bratislava, Slovakia
| |
Collapse
|
21
|
Hosu A, Cimpoiu C. Evaluation of various biological activities of natural compounds by TLC/HPTLC. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1725548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Anamaria Hosu
- Department of Chemistry, Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Claudia Cimpoiu
- Department of Chemistry, Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
22
|
Agatonovic-Kustrin S, Doyle E, Gegechkori V, Morton DW. High-performance thin-layer chromatography linked with (bio)assays and FTIR-ATR spectroscopy as a method for discovery and quantification of bioactive components in native Australian plants. J Pharm Biomed Anal 2020; 184:113208. [PMID: 32114161 DOI: 10.1016/j.jpba.2020.113208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022]
Abstract
Many native Australian plants have a long history of use as medicinal and culinary herbs and some are considered to be equivalents to the Mediterranean herbs. However, while therapeutic properties of Mediterranean herbs are well documented, there is limited information on the medicinal use of the Australian native herbs. Extracts of five native Australian plants were characterised with FTIR-ATR spectroscopy in the fingerprint region and screened for enzyme inhibitory and antioxidant activities via effect-directed analysis (EDA) based on bioautography. High-performance thin-layer chromatography (HPTLC) coupled with microchemical and biochemical derivatization assays was used for EDA screening. Detected compounds with biological activities were identified via FTIR-ATR spectroscopy. All herbs showed antioxidant activity with lemon myrtle being the most active. The α-amylase inhibition, observed in native thyme, sea parsley and native bush was associated with the presence of phenolic acids, chlorogenic acid and caffeic acid. The investigation of botanicals by a fast, hyphenated HPTLC method, has allowed an effect-directed high-throughput screening, fast characterization of complex mixtures and detection of biologically active phytochemicals (bioprofiling).
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry Named After Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Ethan Doyle
- Department of Pharmaceutical and Toxicological Chemistry Named After Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry Named After Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - David W Morton
- Department of Pharmaceutical and Toxicological Chemistry Named After Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| |
Collapse
|
23
|
Agatonovic-Kustrin S, Kustrin E, Gegechkori V, Morton DW. Bioassay-guided identification of α-amylase inhibitors in herbal extracts. J Chromatogr A 2020; 1620:460970. [PMID: 32089291 DOI: 10.1016/j.chroma.2020.460970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 01/11/2023]
Abstract
This study focuses on the health benefits of several fresh herbs that are commonly used in the Mediterranean diet. Antioxidant activity, phytosterol content and α-amylase inhibitory activity of fresh basil, lavender, oregano, rosemary, sage, and thyme are analyzed and compared. High-performance thin-layer chromatography (HPTLC) combined with effect directed analysis was used to detect and quantify biological active compounds on chromatograms. The highest antioxidant activity was measured in the extract from oregano leaf, while the highest terpenoid content was in basil leaf extract. All extracts except lavender leaf and lavender flower extracts showed α-amylase inhibition. The same compound at hRF = 68 in basil, oregano, rosemary, sage, and thyme extracts was responsible for α-amylase inhibition. Combined with effect-directed assays and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, hyphenated HPTLC allowed a fast characterization of the active compound. ATR spectral analysis of this band tentatively identified oleanolic acid (or its derivative) to be responsible for the α-amylase inhibition.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Ella Kustrin
- Department of Creative Arts and English, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - David W Morton
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| |
Collapse
|
24
|
Hyphenated TLC as a Tool in the Effect-Directed Discovery of Bioactive Natural Products. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10031123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Complex samples such as botanical extracts contain hundreds of compounds. Since we can only identify compounds that are stable, extractable, separable and detectable from complex botanical extracts, minimal sample treatment and different detection methods are essential. A combination of high-performance thin-layer chromatography (HPTLC) with non-targeted screening via bioassays (enzymes), microchemical and biological (microorganisms) detection allows for the fast and quantitative bioprofiling of complex samples. Further hyphenation of HPTLC with spectroscopic methods of identification enables targeted identification of bioactive natural products via Effect Directed Analysis (EDA).
Collapse
|
25
|
Romero Rocamora C, Ramasamy K, Meng Lim S, Majeed ABA, Agatonovic-Kustrin S. HPTLC based approach for bioassay-guided evaluation of antidiabetic and neuroprotective effects of eight essential oils of the Lamiaceae family plants. J Pharm Biomed Anal 2019; 178:112909. [PMID: 31618702 DOI: 10.1016/j.jpba.2019.112909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
A high-performance thin-layer chromatography (HPTLC) method combined with effect-directed-analysis (EDA) was developed to screen the antioxidant, neuroprotective and antidiabetic effects in essential oils derived from lavender flower, lemon myrtle, oregano, peppermint, sage, and rosemary leaves (Lamiaceae family). HPTLC hyphenated with microchemical (DPPH•, p-anisaldehyde, and ferric chloride) derivatizations, was used to evaluate antioxidant activity, presence of phytosterols and terpenoids, and polyphenolic content, while the combination with biochemical (α-amylase and acetylcholine esterase (AChE) enzymatic) derivatizations was used to asses α-amylase and AChE inhibitory activities. The superior antioxidant activity of oregano leaf extract is attributed to the presence of high levels of aromatic compounds, like polyphenolic acids. The strongest α-amylase inhibition was observed in lemon myrtle and rosemary plus extracts due to the presence of monoterpenes. Rosemary and sage extracts exhibit the highest AChE inhibition activity, with 1 μL essential oils being more potent than the recommended daily dose of donepezil. This superior neuroprotection was attributed to the presences of di- and triterpenes that displayed strong AChE inhibition and antioxidant potential in DPPH• free radical assay. Antioxidant activity was related to phenolic content (R = 0.49), while α-amylase inhibitory activity was positively related to antioxidant activity (R = 0.20) and terpenoid/sterol content (R = 0.31). AChE inhibitory activity was correlated (R = 0.80) to the combined effect of phenolics and terpenoids. Thus, the superior AChE inhibitory and neuroprotection potential of rosemary and sage essential oils could be attributed to joint effects of main phenolic and terpene constituents. The hyphenated HPTLC method provided rapid bioanalytical profiling of highly complex essential oil samples.
Collapse
Affiliation(s)
- Cristina Romero Rocamora
- Faculty of Pharmacy, University Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA (UiTM) Shah Alam, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia; Experimental Science Faculty, Universitas Miguel Hernández, Avda. de la Universidad, s/n, 03202, Elche, Alicante, Spain
| | - Kalavathy Ramasamy
- Faculty of Pharmacy, University Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA (UiTM) Shah Alam, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Siong Meng Lim
- Faculty of Pharmacy, University Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA (UiTM) Shah Alam, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Faculty of Pharmacy, University Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Snezana Agatonovic-Kustrin
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo, 3550, Australia; Department of Pharmaceutical and Toxicological Chemistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya 2, p 4, 119991, Moscow, Russia.
| |
Collapse
|
26
|
Agatonovic-Kustrin S, Kustrin E, Gegechkori V, Morton DW. High-Performance Thin-Layer Chromatography Hyphenated with Microchemical and Biochemical Derivatizations in Bioactivity Profiling of Marine Species. Mar Drugs 2019; 17:md17030148. [PMID: 30832418 PMCID: PMC6471151 DOI: 10.3390/md17030148] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
Marine organisms produce an array of biologically active natural products, many of which have unique structures that have not been found in terrestrial organisms. Hence, marine algae provide a unique source of bioactive compounds. The present study investigated 19 marine algae and one seagrass collected from Torquay beach, Victoria, Australia. High-performance thin-layer chromatography (HPTLC) hyphenated with microchemical (DPPH•, p-anisaldehyde, and Fast Blue B) and biochemical (α-amylase and acetylcholine esterase (AChE) enzymatic) derivatizations was used to evaluate antioxidant activity, presence of phytosterols and phenolic lipids, α-amylase and AChE inhibitory activities of extract components. Significant α-amylase and AChE inhibitory activities were observed in samples 2, 6, 8 and 10. Antioxidant activities in the samples were found to be correlated to phytosterol content (R2 = 0.78), but was not found to be related to either α-amylase or AChE inhibitory activities. α-Amylase inhibitory activities were correlated to AChE inhibition (R2 = 0.77) and attributed to the phytosterol content, based on the similar peak position in the chromatograms with the β-sitosterol chromatogram. Samples 1, 8, and especially sample 20, were found to contain phenolic lipids (alkyl resorcinol derivatives) with significant antioxidant activities. The results suggest that these marine species have a significant number of bioactive compounds that warrant further investigation.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
| | - Ella Kustrin
- Department of Creative Arts and English, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
| | - David W Morton
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
| |
Collapse
|
27
|
Syakila RN, Lim SM, Agatonovic-Kustrin S, Lim FT, Ramasamy K. In vitro assessment of pediococci- and lactobacilli-induced cholesterol-lowering effect using digitally enhanced high-performance thin-layer chromatography and confocal microscopy. Anal Bioanal Chem 2019; 411:1181-1192. [DOI: 10.1007/s00216-018-1544-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/24/2018] [Accepted: 12/12/2018] [Indexed: 01/19/2023]
|
28
|
Safdarian M, Ramezani Z. Rapid microwave-assisted distillation–precipitation polymerization for the synthesis of magnetic molecular imprinted polymers coupled to HPTLC determination of perphenazine in human urine. NEW J CHEM 2019. [DOI: 10.1039/c8nj05062g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microwave-assisted distillation–precipitation polymerization (MWDPP) for the synthesis of magnetic molecularly imprinted polymers (MMIPs) under atmospheric pressure is reported.
Collapse
Affiliation(s)
- Mehdi Safdarian
- Nanotechnology Research Center, Medicinal Chemistry Department, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
| | - Zahra Ramezani
- Nanotechnology Research Center, Medicinal Chemistry Department, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
| |
Collapse
|
29
|
Agatonovic-Kustrin S, Kustrin E, Morton DW. Essential oils and functional herbs for healthy aging. Neural Regen Res 2019; 14:441-445. [PMID: 30539810 PMCID: PMC6334595 DOI: 10.4103/1673-5374.245467] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As total life expectancy increases, the prevalence of age-related diseases such as diabetes and Alzheimer’s disease is also increasing. Many hypotheses about Alzheimer’s disease have been developed, including cholinergic neuron damage, oxidative stress, and inflammation. Acetylcholine is a major neurotransmitter in the brain and cholinergic deficits leads to cognitive dysfunction and decline. Recent studies have linked diabetes as a risk factor in developing Alzheimer’s disease and other types of dementia. The incidence of patients with type II diabetes and increased levels and activity of α-amylase is higher in patients with dementia. It has been shown that aromatherapy with essential oils from the mint family can improve cognitive performance in Alzheimer’s disease patients. Selected monoterpenoids from these essential oils are reported to inhibit acetylcholinesterase, both in vitro and in vivo. Terpenoids are small, fat-soluble organic molecules that can transfer across nasal mucosa if inhaled, or penetrate through the skin after topical application, enter into the blood and cross the blood-brain barrier. Recent evidence supports the idea that the common constituents of essential oils also inhibit α-amylase, a starch digestive enzyme that plays an important role in the control of diabetes. The mint family is a fragrant plant family that contains most of the culinary herbs found in the Mediterranean diet. The Mediterranean diet is considered to be one of the healthiest diets in the world, and is found to be beneficial not only for the heart but also for the brain. Herbs used in this diet are rich in antioxidants that can prevent oxidative damage caused by free radicals. However, our study shows that they also contain biologically active compounds with potent α-amylase and acetylcholinesterase inhibitory activities. Consumption of fresh herbs can help boost memory and reduce sugar levels in the body. The use of herbs as a functional food could lead to significant improvements in health. Cognitive stimulation with medical food and medical herbs could delay development of cognitive decline, and improve the quality of life of Alzheimer’s disease patients. This effect can be enhanced if combined with aromatherapy, topically or by inhalation, and/or by ingestion. Terpenes and terpenoids, the primary constituents of these essential oils are small, lipid soluble organic molecules that can be absorbed through the skin or across nasal mucosa into the systemic blood circulation. Many terpenes can also cross the blood-brain barrier. Therefore, topical application or inhalation of essential oils will also produce a systemic effect.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - David W Morton
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Bendigo, Australia
| |
Collapse
|
30
|
Agatonovic-Kustrin S, Kustrin E, Angove MJ, Morton DW. A screening method for cardiovascular active compounds in marine algae. J Chromatogr A 2018; 1550:57-62. [PMID: 29615323 DOI: 10.1016/j.chroma.2018.03.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 01/14/2023]
Abstract
The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity.
Collapse
Affiliation(s)
- S Agatonovic-Kustrin
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Darul Ehsan, Malaysia; School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo, 3550, Australia.
| | - E Kustrin
- Sunway College, No. 2, Jalan Universiti, Bandar Sunway, 47500, Selangor, Darul Ehsan, Malaysia
| | - M J Angove
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo, 3550, Australia
| | - D W Morton
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo, 3550, Australia
| |
Collapse
|