1
|
Neri I, Russo G, Grumetto L. Bisphenol A and its analogues: from their occurrence in foodstuffs marketed in Europe to improved monitoring strategies-a review of published literature from 2018 to 2023. Arch Toxicol 2024; 98:2441-2461. [PMID: 38864942 PMCID: PMC11272703 DOI: 10.1007/s00204-024-03793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
In this review article, the research works covering the analytical determination of bisphenol A (BPA) and its structural analogues published from 2018 to present (February 2024) were examined. The review offers an overview of the concentration levels of these xenoestrogens in food and beverages, and discusses concerns that these may possibly pose to the human health and scrutinises, from an analytical perspective, the main biomonitoring approaches that are applied. This comes as a natural evolution of a previous review that covered the same topic but in earlier years (up to 2017). As compared to the past, while the volume of published literature on this topic has not necessarily decreased, the research studies are now much more homogeneous in terms of their geographical origin, i.e., Southern Europe (mainly Italy and Spain). For this reason, an estimated daily intake of the European population could not be calculated at this time. In terms of the analytical approaches that were applied, 67% of the research groups exploited liquid chromatography (LC), with a detection that was prevalently (71%) afforded by mass spectrometry, with over one-fourth of the research teams using fluorescence (26%) and a minority (3%) detecting the analytes with diode array detection. One-third of the groups used gas chromatography (GC)-mass spectrometry achieving comparatively superior efficiency as compared to LC. Derivatisation was performed in 59% of the GC studies to afford more symmetrical signals and enhanced sensitivity. Although the contamination levels are well below the threshold set by governments, routinely biomonitoring is encouraged because of the possible accumulation of these contaminants in the human body and of their interplay with other xenoestrogens.
Collapse
Affiliation(s)
- Ilaria Neri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| | - Giacomo Russo
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK.
| | - Lucia Grumetto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| |
Collapse
|
2
|
Mejías C, Arenas M, Martín J, Santos JL, Aparicio I, Alonso E. Multiclass Analysis for the Determination of Pharmaceuticals and Their Main Metabolites in Leafy and Root Vegetables. Molecules 2024; 29:3471. [PMID: 39124876 PMCID: PMC11313980 DOI: 10.3390/molecules29153471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The irrigation of soils with reclaimed contaminated wastewater or its amendment with sewage sludge contributes to the uptake of pharmaceuticals by vegetables growing in the soil. A multiresidue method has been devised to determine five pharmaceuticals and nine of their main metabolites in leafy and root vegetables. The method employs ultrasound-assisted extraction, clean-up via dispersive solid-phase extraction, and analysis through liquid chromatography-tandem mass spectrometry. Box-Behnken design was used to refine variables such as extraction solvent volume, time of extraction, number of extraction cycles, and the type and amount of d-SPE sorbent. The method achieved linearity (R2) greater than 0.994, precision (relative standard deviation) under 16% for most compounds, and detection limits ranging from 0.007 to 2.25 ng g-1 dry weight. This method was applied to a leafy vegetable (lettuce) and to a root vegetable (carrot) sourced from a local market. Parent compounds were detected at higher concentrations than their metabolites, with the exception of carbamazepine-10,11-epoxide.
Collapse
Affiliation(s)
| | | | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África 7, E-41011 Seville, Spain; (C.M.); (M.A.); (J.L.S.); (I.A.); (E.A.)
| | | | | | | |
Collapse
|
3
|
Gonkowski S, Martín J, Rychlik A, Aparicio I, Santos JL, Alonso E, Makowska K. An evaluation of dogs' exposure to benzophenones through hair sample analysis. J Vet Res 2024; 68:303-312. [PMID: 38947164 PMCID: PMC11210366 DOI: 10.2478/jvetres-2024-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/03/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Benzophenones (BPs) are used in various branches of industry as ultraviolet radiation filters, but they pollute the natural environment, penetrate living organisms, and disrupt endocrine balance. Knowledge of the exposure of domestic animals to these substances is extremely scant. The aim of the study was to investigate long-term exposure of companion dogs to BPs and relate this to environmental factors. Material and Methods Hair samples taken from 50 dogs and 50 bitches from under 2 to over 10 years old were analysed for BP content with liquid chromatography-tandem mass spectrometry. Results The results revealed that dogs are most often exposed to 2-hydroxy-4-methoxybenzophenone (BP-3) and 4-dihydroxybenzophenone (BP-1). Concentration levels of BP-3 above the method quantification limit (MQL) were noted in 100% of the samples and fluctuated from 4.75 ng/g to 1,765 ng/g. In turn, concentration levels of BP-1 above the MQL were noted in 37% of the samples and ranged from <0.50 ng/g to 666 ng/g. Various factors (such as the use of hygiene and care products and the dog's diet) were found to affect BP concentration levels. Higher levels of BP-3 were observed in castrated/spayed animals and in animals that required veterinary intervention more often. Conclusion The results obtained show that the analysis of hair samples may be a useful matrix for biomonitoring BPs in dogs, and that these substances may be toxic to them.
Collapse
Affiliation(s)
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011Sevilla, Spain
| | - Andrzej Rychlik
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-957Olsztyn, Poland
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011Sevilla, Spain
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-957Olsztyn, Poland
| |
Collapse
|
4
|
Gonkowski S, Martín J, Aparicio I, Santos JL, Alonso E, Pomianowski A, Könyves L, Rytel L. Biomonitoring of benzophenones in guano samples of wild bats in Poland. PLoS One 2024; 19:e0301727. [PMID: 38593171 PMCID: PMC11003676 DOI: 10.1371/journal.pone.0301727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Benzophenones (BPs) are substances used in the production of sunscreens, cosmetics, and personal care products. However, there is a lack of knowledge of BPs in wild animals. Therefore, the study aimed to assess the concentration of selected BPs commonly used in the cosmetic industry in guano samples collected from 4 colonies of greater mouse-eared bats (Myotis myotis). Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to determine guano concentrations of benzophenone 1 (BP-1), benzophenone 2 (BP-2), benzophenone 3 (BP-3) and benzophenone 8 (BP-8). BP-1 levels above the method quantification limit (MQL) were noted in 97.5% of samples and fluctuated from <0.1 ng/g to 259 ng/g (mean 41.50 ng/g, median 34.8). The second most common was BP-3, which fluctuated from <0.1 ng/g to 19 ng/g (mean 6.67 ng/g, median 5.05), and its levels higher than MQL were observed in 40% of samples. BP-2 and BP-8 concentrations did not exceed the method detection limit (0.04 ng/g) in any analyzed sample. There were visible differences in the BP-1 and BP-3 levels among the studied bat colonies. Mean BP-1 concentration fluctuated from 11.23±13.13 ng/g to 76.71±65.51 ng/g and differed significantly between the colonies. Mean BP-3 concentration fluctuated from 5.03±6.03 ng/g to 9.18±7.65 mg/g, but it did not differ significantly between the colonies. The results show that guano is a suitable matrix for the assessment of wildlife exposure to BPs. This could be particularly advantageous in protected species, where not disturbing and stressing the animals are crucial.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Julia Martín
- Departamento de Química Analítica, Universidad de Sevilla, Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Universidad de Sevilla, Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Universidad de Sevilla, Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Universidad de Sevilla, Sevilla, Spain
| | - Andrzej Pomianowski
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - László Könyves
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
5
|
Drabińska N, Marcinkowska MA, Wieczorek MN, Jeleń HH. Application of Sorbent-Based Extraction Techniques in Food Analysis. Molecules 2023; 28:7985. [PMID: 38138475 PMCID: PMC10745519 DOI: 10.3390/molecules28247985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
This review presents an outline of the application of the most popular sorbent-based methods in food analysis. Solid-phase extraction (SPE) is discussed based on the analyses of lipids, mycotoxins, pesticide residues, processing contaminants and flavor compounds, whereas solid-phase microextraction (SPME) is discussed having volatile and flavor compounds but also processing contaminants in mind. Apart from these two most popular methods, other techniques, such as stir bar sorptive extraction (SBSE), molecularly imprinted polymers (MIPs), high-capacity sorbent extraction (HCSE), and needle-trap devices (NTD), are outlined. Additionally, novel forms of sorbent-based extraction methods such as thin-film solid-phase microextraction (TF-SPME) are presented. The utility and challenges related to these techniques are discussed in this review. Finally, the directions and need for future studies are addressed.
Collapse
Affiliation(s)
| | | | | | - Henryk H. Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (N.D.); (M.A.M.); (M.N.W.)
| |
Collapse
|
6
|
Zhang J, Liu L, Ning X, Lin M, Lai X. Isomer-specific analysis of nonylphenol and their transformation products in environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165982. [PMID: 37536583 DOI: 10.1016/j.scitotenv.2023.165982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Nonylphenols (NPs) are crucial fine chemicals widely employed in producing industrial and consumer surfactants that ultimately enter the environment through various pathways, leading to environmental pollution. NPs are suspected endocrine-disrupting chemicals that may accumulate in the body over time, resulting in unusual reproductive function. Due to limitations in analytical methods, NPs have typically been quantified as a whole in some studies. However, NPs are a mixture of multibranched structures, and different NP isomers exhibit distinct environmental behaviors and toxic effects. Therefore, it is critical to analyze environmental and human biological samples at the isomer-specific level to elucidate the contamination characteristics, human exposure load, and toxic effects of NPs. Accurately analyzing NP samples with various isomers, metabolites, and transformation products presents a significant challenge. This review summarizes recent advances in analytical research on NPs in technical products, environmental, and human biological samples, particularly emphasizing the synthesis and separation of standards and the transformation of NP homolog isomers in samples. Finally, the review highlights the research gaps and future research directions in this domain.
Collapse
Affiliation(s)
- Jianyi Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Lang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Xunan Ning
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China.
| | - Meiqing Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Xiaojun Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| |
Collapse
|
7
|
Liu YJ, Zhang Y, Bian Y, Sang Q, Ma J, Li PY, Zhang JH, Feng XS. The environmental sources of benzophenones: Distribution, pretreatment, analysis and removal techniques. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115650. [PMID: 37939555 DOI: 10.1016/j.ecoenv.2023.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Benzophenones (BPs) have wide practical applications in real human life due to its presence in personal care products, UV-filters, drugs, food packaging bags, etc. It enters the wastewater by daily routine activities such as showering, impacting the whole aquatic system, then posing a threat to human health. Due to this fact, the monitoring and removal of BPs in the environment is quite important. In the past decade, various novel analytical and removal techniques have been developed for the determination of BPs in environmental samples including wastewater, municipal landfill leachate, sewage sludge, and aquatic plants. This review provides a critical summary and comparison of the available cutting-edge pretreatment, determination and removal techniques of BPs in environment. It also focuses on novel materials and techniques in keeping with the concept of "green chemistry", and describes on challenges associated with the analysis of BPs, removal technologies, suggesting future development strategies.
Collapse
Affiliation(s)
- Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qi Sang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jing Ma
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Peng-Yun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing 100850, China
| | - Ji-Hong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Li S, Zhou Y, Downs CA, Yuan S, Hou M, Li Q, Zhong X, Zhong F. Proteomics and Lysine Acetylation Modification Reveal the Responses of Pakchoi ( Brassica rapa L. ssp. chinensis) to Oxybenzone Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37216206 DOI: 10.1021/acs.jafc.2c07852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The broad-spectrum UV filter oxybenzone is toxic to plants at environmentally relevant concentrations. Lysine acetylation (LysAc) is one of the essential post-translational modifications (PTMs) in plant signaling responses. The goal of this study was to uncover the LysAc regulatory mechanism in response to toxic exposures to oxybenzone as a first step in elucidating xenobiotic acclimatory reactions by using the model Brassica rapa L. ssp. chinensis. A total of 6124 sites on 2497 proteins were acetylated, 63 proteins were differentially abundant, and 162 proteins were differentially acetylated under oxybenzone treatment. Bioinformatics analysis showed that a large number of antioxidant proteins were significantly acetylated under oxybenzone treatment, implying that LysAc alleviated the adverse effects of reactive oxygen species (ROS) by inducing antioxidant systems and stress-related proteins; the significant changes in acetylation modification of enzymes involved in different branches of carbon metabolism in plants under oxybenzone treatment mean that plants can change the direction of carbon flow allocation by regulating the activities of carbon metabolism-related enzymes. Our results profile the protein LysAc under oxybenzone treatment and propose an adaptive mechanism at the post-translational level of vascular plants in response to pollutants, providing a dataset reference for future related research.
Collapse
Affiliation(s)
- Shuhao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Yuqi Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Craig A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, Virginia 24533, United States
| | - Song Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Maomao Hou
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Qingming Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Cheng'du 610299, China
| | - Xin Zhong
- Institute of Marine Science and Technology, Shandong University, Qing'dao 266237, China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| |
Collapse
|
9
|
Speltini A, Merlo F, Maraschi F, Bianchini P, Mandri A, Profumo A. Multiclass ultrasound-assisted extraction, clean-up and high performance liquid chromatography-tandem mass spectrometry quantification of steroid hormone residues in compost. J Chromatogr A 2023; 1694:463900. [PMID: 36870254 DOI: 10.1016/j.chroma.2023.463900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
An analytical method for multiclass determination of steroid hormones in compost has been developed to fill the lack of methods for steroid residuals monitoring in this waste-derived product, increasingly produced and recycled in the circular-economy approach. The procedure simply entails an ultrasound-assisted extraction (UAE) on 300 mg compost by 3 × 2.5 mL methanol × 5 min sonication steps followed by a quick clean-up by solid-phase extraction (SPE) on the silica-based Supelclean™ LC-NH2 that avoids use of organic solvents. The clean extract is analysed by HPLC-MS/MS achieving firm identification and quantitation of the 16 steroids, i.e., glucocorticoids, progestins, androgens, oestrogens. The analytical figures of merits were assessed, viz. selectivity, sensitivity, linearity, matrix effect, trueness, precision, carry-over and robustness, in line with updated guidelines. Recovery was investigated in the concentration range 15-800 ng g-1, and at the quality control levels (15, 50, 200 and 400 ng g-1) was in the range 60-120%, with inter-day precision RSDs < 20% (n = 3). The experimental quantification limit was 15 ng g-1 for all the hormones. The method was applied to analysis of different compost samples proving to be functional to environmental monitoring.
Collapse
Affiliation(s)
- Andrea Speltini
- Department of Chemistry, University of Pavia, via Taramelli 12, Pavia 27100, Italy.
| | - Francesca Merlo
- Department of Chemistry, University of Pavia, via Taramelli 12, Pavia 27100, Italy
| | - Federica Maraschi
- Department of Chemistry, University of Pavia, via Taramelli 12, Pavia 27100, Italy
| | - Petra Bianchini
- Department of Chemistry, University of Pavia, via Taramelli 12, Pavia 27100, Italy
| | - Alessia Mandri
- Department of Chemistry, University of Pavia, via Taramelli 12, Pavia 27100, Italy
| | - Antonella Profumo
- Department of Chemistry, University of Pavia, via Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
10
|
Zeng Y, Zhang Y, Zhang H, Wang J, Lian K, Ai L. Uptake and Transport of Different Concentrations of PPCPs by Vegetables. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15840. [PMID: 36497913 PMCID: PMC9737301 DOI: 10.3390/ijerph192315840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In many parts of the world, water resources are scarce or even extremely scarce, and the reuse of water resources has become mainstream in today's world. Many regions use treated wastewater for agricultural irrigation, aquaculture, and other activities. However, in recent years, wastewater has been found to contain large amounts of pharmaceuticals and personal care products (PPCPs). Therefore, there is a potential risk of PPCPs being transported in the environment and affecting human health. In this study, we compared the uptake, transport, and accumulation of 27 PPCPs in three types of sprouts (radish, buckwheat, and okra).The bioaccumulation of amantadine, diphenhydramine, chlorpheniramine maleate, sibutramine, hemosibutramine, chlorosibutramine, N-monomethyl sibutramine, N, N-desmethyl sibutramine, and carbamazepine was found to be significantly higher in plants grown for 12 days in media containing 0.5, 5.0, and 50.0 ng/mL PPCPs. With increasing concentration of PPCPs in the culture solution, the amount of PPCPs absorbed by plants and the degree of accumulation also showed an increasing trend. At the same time, it was demonstrated that there was an obvious uptake transfer phenomenon of PPCPs by plants, and the trend of uptake transfer became more and more obvious as the concentration of external environmental pollutants increased. In addition, amantadine, chlorpheniramine maleate, carbamazepine, N, N-desmethyl sibutramine, hemosibutramine, and chlorosibutramine showed more active translocation in some plants (TF > 1.0).
Collapse
Affiliation(s)
- Yongfu Zeng
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yiming Zhang
- Wellington Livestock Pty. Ltd., Cobains, VIC 3851, Australia
| | - Haichao Zhang
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Jing Wang
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Kaoqi Lian
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Lianfeng Ai
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| |
Collapse
|
11
|
A simple and fast multiclass method for determination of steroid hormones in berry fruits, root and leafy vegetables. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2021.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Occurrence, analysis and removal of pesticides, hormones, pharmaceuticals, and other contaminants in soil and water streams for the past two decades: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Villarreal-Reyes C, Díaz de León-Martínez L, Flores-Ramírez R, González-Lara F, Villarreal-Lucio S, Vargas-Berrones KX. Ecotoxicological impacts caused by high demand surfactants in Latin America and a technological and innovative perspective for their substitution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151661. [PMID: 34780823 DOI: 10.1016/j.scitotenv.2021.151661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, water pollution represents a great concern due to population growth, industrialization, and urbanization. Every day hazardous chemical products for humans and aquatic organisms are disposed of arbitrarily from homes and industries. Even though detergents are considered an essential market, there is evidence of environmental impacts caused by surfactants like nonylphenol ethoxylate (NPE) and linear alkylbenzene sulfonates (LAS). Regulations about maximum allowable concentrations in sewage, surface water, and drinking water are scarce or null, mostly in developing countries like Latin American countries. Therefore, this review explores these two common toxic surfactants (NPE and LAS) and proposes a technological, innovative, and ecological perspective on detergents. Also, it establishes a starting point for industries to minimize adverse effects on humans and environmental health caused by these compounds.
Collapse
Affiliation(s)
- Cecilia Villarreal-Reyes
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí. Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, Mexico
| | - Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, Mexico
| | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, Mexico
| | - Fabiola González-Lara
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí. Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, Mexico
| | - Samantha Villarreal-Lucio
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, Mexico
| | - Karla Ximena Vargas-Berrones
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí. Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, Mexico.
| |
Collapse
|
14
|
Shan D, Wang J, Di Q, Jiang Q, Xu Q. Steatosis induced by nonylphenol in HepG2 cells and the intervention effect of curcumin. Food Funct 2021; 13:327-343. [PMID: 34904613 DOI: 10.1039/d1fo02481g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has increasingly become a serious public health problem. There is growing evidence that nonylphenol (NP) exposure may cause steatosis, but the underlying mechanism is not fully understood. Curcumin (CUR) improves NAFLD-related lipid metabolism disorders and oxidative stress, but its preventive and therapeutic effects on NP-induced steatosis have not been reported. The objective of this investigation was to determine the capability and potential mechanism of NP to induce steatosis in vitro and the intervention of curcumin. HepG2 cells were treated with 0 μM, 20 μM, 30 μM, 40 μM NP for 24 h. Lipid droplets accumulated significantly in HepG2 cells after NP treatment, and the concentration of triglyceride (TG) and total cholesterol (T-CHO) increased significantly. Simultaneously, lipogenesis gene expression was up-regulated significantly, fatty acid oxidation (FAO) gene expression was significantly down-regulated, and reactive oxygen species (ROS) were overproduced. Meanwhile, the expression of p-AMPK/AMPK in the AMPK/mTOR signaling pathway was significantly down-regulated and the expression of p-mTOR/mTOR was markedly up-regulated. However, blocking ROS production with N-acetyl-L-cysteine (NAC) can reverse these phenomena. In addition, our study found that curcumin effectively ameliorated the effects of NP-induced steatosis. Our study indicates that NP can induce steatosis in HepG2 cells, and may be implicated in inhibiting the ROS-dependent AMPK/mTOR pathway, and that curcumin ameliorates the NAFLD-like changes induced by NP in HepG2 cells.
Collapse
Affiliation(s)
- Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Jinming Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qiannan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qianqian Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
15
|
Monteagudo C, Robles-Aguilera V, Salcedo-Bellido I, Gálvez-Ontiveros Y, Samaniego-Sánchez C, Aguilera M, Zafra-Gómez A, Burgos MAM, Rivas A. Dietary exposure to parabens and body mass index in an adolescent Spanish population. ENVIRONMENTAL RESEARCH 2021; 201:111548. [PMID: 34166657 DOI: 10.1016/j.envres.2021.111548] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/22/2021] [Accepted: 06/15/2021] [Indexed: 05/22/2023]
Abstract
Parabens are alkyl esters of p-hydroxybenzoic acid which are extensively used in cosmetics, pharmaceuticals and foodstuffs due to their antimicrobial properties. The most commonly used parabens are methyl-(MeP), ethyl-(EtP), propyl-(PrP) and butyl-(BuP) paraben. Most human exposure to parabens is achieved through the consumption of food or pharmaceutical products and the use of personal care products. However, studies on dietary parabens exposure and the associated factors are very scarce. The main aim of the present study was to explore factors associated with dietary exposure to parabens in Spanish adolescents according to gender. Dietary data and anthropometric measures were collected from 585 adolescents (53.4% boys) aged 12-16 years. Parabens exposure through diet was assessed using a food frequency questionnaire with food products providing more than 95% of energy and macronutrient intake being included in analysis. Stepwise regression was used to identify the foods that most contributed to parabens intake. Logistic regression was used to evaluate factors predicting higher dietary exposure to parabens. The main contributors to dietary MeP, EtP, PrP and BuP exposure in adolescent boys were eggs (41.9%), canned tuna (46.4%), bakery and baked goods products (57.3%) and pineapple (61.1%). In adolescent girls, the main contributors were apples and pears (35.3%), canned tuna (42.1%), bakery and baked goods products (55.1%) and olives (62.1%). Overweight/obese girls were more likely to belong to the highest tertile of overall parabens intake (odds ratio [OR]: 3.32; 95% confidence interval [95% CI]: 1.21-9.15) and MeP (OR: 3.05; 95% CI: 1.14-8.12) than those with a body mass index lower than 25 kg/m2. These findings suggest a positive association between dietary exposure to parabens and overweight/obesity in adolescent girls.
Collapse
Affiliation(s)
- Celia Monteagudo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071, Granada, Spain; Instituto de Investigación Biosanitaria. Ibs-Granada, 18012, Granada, Spain
| | - Virginia Robles-Aguilera
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Instituto de Investigación Biosanitaria. Ibs-Granada, 18012, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Campus of Cartuja, 18071, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 2809, Madrid, Spain.
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071, Granada, Spain; Instituto de Investigación Biosanitaria. Ibs-Granada, 18012, Granada, Spain
| | - Cristina Samaniego-Sánchez
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071, Granada, Spain
| | - Margarita Aguilera
- Instituto de Investigación Biosanitaria. Ibs-Granada, 18012, Granada, Spain; Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071, Granada, Spain
| | - Alberto Zafra-Gómez
- Instituto de Investigación Biosanitaria. Ibs-Granada, 18012, Granada, Spain; Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, 18071, Granada, Spain
| | - Maria Alba Martínez Burgos
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology 'José Matáix' (INYTA), Center for Biomedical Research (CIBM), Health Sciences Technological Park, Avda. del Conocimiento s/n, 18071, Armilla, Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071, Granada, Spain; Instituto de Investigación Biosanitaria. Ibs-Granada, 18012, Granada, Spain
| |
Collapse
|
16
|
Multi-frequency multi-mode ultrasound treatment for removing pesticides from lettuce (Lactuca sativa L.) and effects on product quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Ijaz MU, Anwar H, Iqbal S, Ismail H, Ashraf A, Mustafa S, Samad A. Protective effect of myricetin on nonylphenol-induced testicular toxicity: biochemical, steroidogenic, hormonal, spermatogenic, and histological-based evidences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22742-22757. [PMID: 33423203 DOI: 10.1007/s11356-020-12296-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is an environmental contaminant, which induces testicular toxicity through oxidative stress. Myricetin (MYR) is a naturally occurring flavonol having powerful antioxidant activity. The current research was planned to examine the ameliorative role of MYR against NP-induced testicular damage. A total of 24 adult male Sprague-Dawley rats were randomly divided into 4 equivalent groups: control (0.1% DMSO), NP group (50 mg kg-1), NP + MYR group (50 mg kg-1; 100 mg kg-1), and MYR-treated group (100 mg kg-1). NP administration significantly (p < 0.05) decreased the activity of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR), and protein content while significantly (p < 0.05) elevating the thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS) levels. Additionally, NP significantly (p < 0.05) reduced the sperm motility, gene expression of testicular steroidogenic enzymes (3β-HSD, 3β-hydroxysteroid dehydrogenase; 17β-HSD, 17β-hydroxysteroid dehydrogenase; StAR, steroidogenic-acute regulatory protein), level of luteinizing hormone (LH), follicle-stimulating hormone (FSH), plasma testosterone, and daily sperm production (DSP). On the other hand, it raised the testicular cholesterol, dead sperms, and head, midpiece, and tail abnormalities along with abnormal histomorphometry. However, MYR remarkably abrogated NP-induced damages. In conclusion, the outcomes of the study suggest that MYR can effectively alleviate the NP-induced oxidative stress and testicular damages.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Shabnoor Iqbal
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Samad
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
18
|
Abril C, Santos JL, Martín J, Aparicio I, Alonso E. Uptake and translocation of multiresidue industrial and household contaminants in radish grown under controlled conditions. CHEMOSPHERE 2021; 268:128823. [PMID: 33160654 DOI: 10.1016/j.chemosphere.2020.128823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The uptake, bioconcentration and translocation of 22 endocrine disrupting compounds (six perflurocarboxylic acids (PFAAs), perfluorooctanoic sulfonic acid, four anionic surfactants (alkylsulfates (ASC) from C12 to C16), bisphenol A (BPA), four preservatives (parabens), two biocides (triclosan (TCS) and triclocarban (TCB)) and five UV-filters (benzophenones)) in radish (Raphanus sativus) has been investigated. Radishes were grown in sewage sludge-amended soil under controlled conditions in a grown chamber. Degradation in soil adhered to root was higher than in soil and varied significantly from a family to another. The most recalcitrant compounds were PFCs, anionic surfactants and TCB. Perfluorinated compounds and AS-C12 were detected in all plant tissues and were the compounds with the highest bioconcentration factors (BCF). A decrease of BCF was observed for ASCs with the increase of the alkyl chain. Non-ionic compounds, except TCB, were mainly accumulated in bulb. Phenolic compounds were detected at lower concentration levels than non-phenolic compounds probably due to metabolisation in radish cells. The highest BCF in edible bulb were obtained for PFOS (BCF: 1.668), perfluorooctanoic acid (BCF: 0.534) and AS-C12 (BCF: 0.523). This study reports for the first-time multiresidue plant uptake and translocation of pollutants from different chemical classes (perfluorinated compounds, surfactants, plasticiser, preservatives, biocides and UV-filters) and with a wide variety of physical-chemical properties.
Collapse
Affiliation(s)
- Concepción Abril
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Sevilla, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Sevilla, Spain.
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011, Sevilla, Spain
| |
Collapse
|
19
|
Ijaz MU, Tahir A, Samad A, Anwar H. Nobiletin ameliorates nonylphenol-induced testicular damage by improving biochemical, steroidogenic, hormonal, spermatogenic, apoptotic and histological profile. Hum Exp Toxicol 2021; 40:403-416. [PMID: 32815738 DOI: 10.1177/0960327120950007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nonylphenol (NP) is an environmental contaminant, which adversely affects the male fertility due to endocrine disruption and generation of oxidative stress. The current research was planned to assess the effects of nobiletin (NOB), a polymethoxyflavone, on NP-induced testicular damages. Twenty-four male rats were divided into 4 groups: control (0.1% DMSO), NP group (50 mg/kg), NP+NOB group (50 mg/kg + 25 mg/kg), and NOB group (25 mg/kg). Our results revealed that NP brought down the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GSR), while elevated the level of thiobarbituric acid reactive substances (TBARS). Additionally, NP decreased the level of follicle-stimulating hormone (FSH), luteinizing hormone (LH), plasma testosterone, daily sperm production (DSP), epididymal sperm count, viability, motility, gene expression of testicular steroidogenic enzymes (StAR, 3β-HSD and 17β-HSD) and anti-apoptotic protein (Bcl-2), as well as number of spermatogenic cells belonging to various stages. Whereas, sperm (head, mid-piece/neck and tail) abnormalities, expression of apoptotic proteins (Bax and caspase-3), and histopathological damages were increased. However, NOB remarkably reversed all the damages caused by NP. Therefore, it is deduced that NOB could be used as a potential therapeutic to counter the NP-prompted oxidative stress and apoptotic damages in testes.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, 66724University of Agriculture, Faisalabad, Pakistan
| | - Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, 66724University of Agriculture, Faisalabad, Pakistan
| | - Abdul Samad
- Department of Zoology, Wildlife and Fisheries, 66724University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, 72594Government College University, Faisalabad, Pakistan
| |
Collapse
|
20
|
Arpna Kumari, Rajinder Kaur. Chromatographic Methods for the Determination of Phthalic Acid Esters in Different Samples. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Hejji L, Azzouz A, Colón LP, Souhail B, Ballesteros E. A multi-residue method for determining twenty-four endocrine disrupting chemicals in vegetables and fruits using ultrasound-assisted solid-liquid extraction and continuous solid-phase extraction. CHEMOSPHERE 2021; 263:128158. [PMID: 33297136 DOI: 10.1016/j.chemosphere.2020.128158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
In this work, we developed an analytical approach using an ultrasound-assisted extraction (UAE) followed by continuous solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) detection in order to determine simultaneously 24 endocrine disrupting chemicals such as alkylphenols, organophosphorus pesticides, parabens, phenylphenols, triclosan and bisphenol A in vegetable and fruit samples. Different variables influencing UAE and SPE performance were optimized in order to maximize removal of the sample matrix and preconcentration of the analytes. The optimized extraction and GC-MS quantitation conditions provided acceptable sensitivity, selectivity, accuracy and precision. Limits of detection spanned the range 0.6-25 ng kg-1, recoveries were near-quantitative and relative standard deviations ranged from 4.5 to 7.6%. The proposed method was used to analyse 11 vegetable samples and 7 fruit samples purchased at various Spanish and Moroccan supermarkets. Most samples contained more than three of the analytes, at levels between 5.8 and 580 ng kg-1.
Collapse
Affiliation(s)
- Lamia Hejji
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain; Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Abdelmonaim Azzouz
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain; Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Laura Palacios Colón
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain
| | - Badredine Souhail
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Evaristo Ballesteros
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain.
| |
Collapse
|
22
|
Galindo MV, Oliveira WDS, Godoy HT. Multivariate optimization of low-temperature cleanup followed by dispersive solid-phase extraction for detection of Bisphenol A and benzophenones in infant formula. J Chromatogr A 2020; 1635:461757. [PMID: 33302139 DOI: 10.1016/j.chroma.2020.461757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
A simple and effective analytical method to determine six contaminants, including five benzophenones (BP, BP-1, BP-3, BP-8, and BP-12) and bisphenol A (BPA) in infant formulas was developed in this study. For this, a sequential experimental design was used to optimize the extraction and cleanup method using low temperature partition (LTP) combined with dispersive solid phase extraction (dSPE). The effect of primary secondary amine (PSA), sodium chloride (NaCl), graphitized carbon black (GCB), octadecyl (C18), strong anion exchanger (SAX), water, acetonitrile (ACN) and, ultrasound (US) time were evaluated using a sequential design of experiments including a Plackett-Burman, a central composite rotatable design, and the Derringer and Suich's tool. The method was validated, and it showed a limit of quantification varying from 0.06 to 2 mg.kg-1, good precision (< 20% RSD), and recovery (52-106%). The method proposed was applied to twenty-five samples of commercial infant formulas.
Collapse
Affiliation(s)
- Marcella Vitoria Galindo
- Departament of Food Science, School of Food Engineering, University of Campinas,13083-862, Campinas, SP, Brazil.
| | | | - Helena Teixeira Godoy
- Departament of Food Science, School of Food Engineering, University of Campinas,13083-862, Campinas, SP, Brazil
| |
Collapse
|
23
|
Abstract
A method for the analysis of weak anionic surfactants based on N-acyl amino acids was developed. The surfactants were derivatized using 2,4′-dibromoacetophenone yielding 4′-bromophenacyl esters suitable for spectrophotometric detection. Surfactants containing glycine, threonine and glutamic acid were analyzed after derivatization using reversed-phase liquid chromatography with UV/Vis and MS detection. The gradient profile was optimized using isocratic retention data of N-acyl-linked fatty acid homologues. The relative content of the homologues of N-acyl-linked fatty acids was expressed using the determined method. The intraday repeatability and stability of the prepared derivatives was tested. The relative content of fatty acids in the surfactants was correlated with the most common sources of fatty acids, showing high Pearson’s correlation coefficients with the typical fatty acids profile of a coconut oil.
Collapse
|
24
|
Hu M, Tan H, Li Y, Qiu J, Liu L, Zeng D. Simultaneous determination of tiafenacil and its six metabolites in fruits using ultra-high-performance liquid chromatography/tandem mass spectrometry. Food Chem 2020; 327:127015. [PMID: 32434124 DOI: 10.1016/j.foodchem.2020.127015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
|
25
|
Tian L, Zheng J, Goodyer CG, Bayen S. Non-targeted screening of plastic-related chemicals in food collected in Montreal, Canada. Food Chem 2020; 326:126942. [DOI: 10.1016/j.foodchem.2020.126942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
|
26
|
Yang CJ, Chung WH, Ding WH. Optimization of double-vortex-assisted matrix solid-phase dispersion for the rapid determination of paraben preservative residues in leafy vegetables. RSC Adv 2020; 10:35557-35564. [PMID: 35515645 PMCID: PMC9056883 DOI: 10.1039/d0ra05658h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/19/2020] [Indexed: 11/28/2022] Open
Abstract
The extensive use of preservatives during the growth, transport and storage of vegetables has been a concern because of their known or suspected toxicity that jeopardizes human health. This paper reports the development of a technique that rapidly determines the presence of five paraben preservative residues in leafy vegetables using double-vortex-assisted matrix solid-phase dispersion (DVA-MSPD) and UHPLC-electrospray ionization(-)-quadrupole time-of-flight mass spectrometry detection. We simplified the original MSPD technique by eliminating the use of mortar/pestle and SPE-column procedures. The DVA-MSPD factors were screened by a multilevel categorical design, and then optimized by Box-Behnken Design plus response surface methodology. The limits of quantification were 1.2-1.8 ng g-1 (dry weight). The satisfactory average recoveries were 85-104% with RSDs less than 10%. The developed method was successfully employed for the rapid determination of selected paraben residues at trace-level in leafy vegetable samples.
Collapse
Affiliation(s)
- Chun-Ju Yang
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905
| | - Wu-Hsun Chung
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905
- Department of Chemical Engineering, Army Academy ROC Chung-Li 320 Taiwan
| | - Wang-Hsien Ding
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905
| |
Collapse
|
27
|
Wang JM, Xu R, Di QN, Fu HW, Xu Q. Determination of urinary carnitine levels as a potential indicator of uterine fibroids caused by nonylphenol exposure. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122248. [PMID: 32590215 DOI: 10.1016/j.jchromb.2020.122248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 11/26/2022]
Abstract
Our previous studies have shown that uterine fibroids are associated with nonylphenol (NP) exposure, and the changes of carnitines in critical reproductive tissues and body fluids could be used to indicate the female reproductive toxicity caused by NP exposure. In this work, on the basis of further clarifying the correlation between NP exposure level and uterine fibroids, the possibility of the urinary carnitine levels as a potential indicator of uterine fibroids caused by NP exposure was discussed. The urine samples were collected from 84 female volunteers: the control group of 34 healthy women without gynecological disease and 50 uterine fibroids patients, respectively. Methods were respectively established for the determination of NP and eight carnitines in human urine samples by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results showed that the NP level of uterine fibroids group was significantly higher than that of control group (P = 0.002), indicating that NP exposure was an important environmental factor in the occurrence of uterine fibroids. It was further found that in urine samples of the uterine fibroids group, the levels of L-Carnitine (C0), L-Acetyl-carnitine (C2), L-Octanoyl-carnitine (C8), Tetradecanoyl-carnitine (C14), Oleoyl-carnitine (C18:1) and Linoleoyl-carnitine (C18:2) had obviously increased compared with those in the control group (P < 0.001; < 0.001; < 0.001; = 0.003; < 0.001; = 0.010). The concentrations of L-Hexanoyl-carnitine (C6) and L-Palmitoyl-carnitine (C16) in the uterine fibroids group were also higher than those in the control group, although the difference was not statistically significant (P > 0.05). The results suggested that the changes in urinary carnitine levels might be a potential indicator to help to warn of the risk of uterine fibroids caused by NP exposure at the early stage.
Collapse
Affiliation(s)
- Jin-Ming Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Run Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qian-Nan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hao-Wei Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
28
|
Scordo CVA, Checchini L, Renai L, Orlandini S, Bruzzoniti MC, Fibbi D, Mandi L, Ouazzani N, Del Bubba M. Optimization and validation of a method based on QuEChERS extraction and liquid chromatographic–tandem mass spectrometric analysis for the determination of perfluoroalkyl acids in strawberry and olive fruits, as model crops with different matrix characteristics. J Chromatogr A 2020; 1621:461038. [DOI: 10.1016/j.chroma.2020.461038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 11/25/2022]
|
29
|
Abril C, Santos JL, Martín J, Aparicio I, Alonso E. Occurrence, fate and environmental risk of anionic surfactants, bisphenol A, perfluorinated compounds and personal care products in sludge stabilization treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135048. [PMID: 31812383 DOI: 10.1016/j.scitotenv.2019.135048] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
In this work, twenty-three endocrine disrupting compounds have been monitored in sludge from different stages of four sludge stabilization treatments (anaerobic digestion, aerobic digestion, composting and anaerobic stabilization ponds). Their occurrence and fate in sludge stabilization plants and their potential environmental risk in treated sludge and in treated sludge-amended soils have been evaluated. Monitored compounds were six perfluoroalkyl compounds (PFC), four anionic surfactants (sodium alkylsulfates), a plasticiser (bisphenol A (BPA)), four preservatives (parabens), six UV-filters (benzophenones) and two biocides (triclosan and triclocarban). Only two of the UV-filters were not detected in any of the 141 analysed samples. Anionic surfactants (mean concentrations up to 1673 ng/g dry matter (dm) for the sum of surfactants) were the compounds at the highest concentration levels followed by biocides (up to 512 ng/g dm) and UV-filters (up to 662 ng/g dm). The concentrations of anionic surfactants, preservatives and UV-filters decreased 78, 25 and 80%, respectively, after anaerobic digestion. The concentration of perfluorinated carboxylic acids only decreased after composting (80% reduction) whereas biocides and BPA were not affected by any of the studied treatments. Environmental risks (risk quotients > 1) were obtained for all compounds, except for triclocarban and sodium octadecylsulfate, in treated sludge. In treated sludge-amended soils, risk quotients were lower than 1 for all compounds except for triclosan.
Collapse
Affiliation(s)
- Concepción Abril
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain.
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| |
Collapse
|
30
|
Azam SMR, Ma H, Xu B, Devi S, Siddique MAB, Stanley SL, Bhandari B, Zhu J. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Yao K, Wang J, Ren Z, Zhang Y, Wen K, Shao B, Jiang H. Development of a Novel Monoclonal Antibody–Based Indirect Competitive ELISA with Immunoaffinity Cleanup for the Detection of Triclosan in Chickens. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01644-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
|
33
|
He X, He Y, Huang S, Fang Z, Liu J, Ma M, Chen B. Fluoro-functionalized paper-based solid-phase extraction for analysis of perfluorinated compounds by high-performance liquid chromatography coupled with electrospray ionization–tandem mass spectrometry. J Chromatogr A 2019; 1601:79-85. [DOI: 10.1016/j.chroma.2019.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 01/09/2023]
|
34
|
Moreda-Piñeiro J, Moreda-Piñeiro A. Combined assisted extraction techniques as green sample pre-treatments in food analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Zhang C, Deng Y, Zheng J, Zhang Y, Yang L, Liao C, Su L, Zhou Y, Gong D, Chen L, Luo A. The application of the QuEChERS methodology in the determination of antibiotics in food: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Wastewater conservation and reuse in quality vegetable cultivation: Overview, challenges and future prospects. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Singh J, Kumar P, Saharan V, Kapoor RK. Simultaneous laccase production and transformation of bisphenol-A and triclosan using Trametes versicolor. 3 Biotech 2019; 9:129. [PMID: 30863708 DOI: 10.1007/s13205-019-1648-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
New age micro-pollutants, bisphenol-A (BPA) and triclosan (TCA), known for their carcinogenic effects in living organisms can effectively be removed from water using laccase from Trametes versicolor. Laccase was produced from T. versicolor JSRK13 in both submerged and solid-state fermentation (SmF and SSF) conditions. In SmF, T. versicolor JSRK13 gave the maximum production of laccase on the 10th day with an activity of 22 U mL- 1, whereas, in SSF 185 U g- 1 of the enzyme was produced on the 17th day. Maximum production of laccase was observed with Parthenium as substrate. Parthenium, with a particle size of 3-5 mm having 60% moisture was found to be a suitable substrate for laccase production and simultaneous transformation (LPST) of BPA in a synergistic manner. A one-step concentration using 85% ammonium sulphate followed by dialysis was sufficient to give 6.7-fold purification of laccase from the crude culture filtrate. Transformation of BPA was achieved in both SmF and SSF conditions along with the production of laccase, whereas TCA was degraded with free enzyme only. Above 90% of BPA (55-5 mg L- 1) was degraded using the LPST strategy with HBT acting as a mediator in the reaction. LPST strategy did not work for TCA as it completely inhibits the growth of T. versicolor JSRK13. TCA was degraded up to 75% (1.5-0.375 mg L- 1) by the free enzyme. Our study of simultaneous laccase production and transformation proved to be efficacious in case of BPA. The results indicate that industrial and sewage wastewater containing BPA can potentially be treated with T. versicolor JSRK13 laccase. The described strategy can further be used to develop a bioprocess which can work both on solid and liquid wastes containing BPA.
Collapse
Affiliation(s)
- Jagdeep Singh
- 1Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Punit Kumar
- 2Department of Biotechnology, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, India
| | - Vicky Saharan
- 1Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Rajeev Kumar Kapoor
- 1Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
38
|
Duan P, Liu B, Morais CLM, Zhao J, Li X, Tu J, Yang W, Chen C, Long M, Feng X, Martin FL, Xiong C. 4-Nonylphenol effects on rat testis and sertoli cells determined by spectrochemical techniques coupled with chemometric analysis. CHEMOSPHERE 2019; 218:64-75. [PMID: 30469005 DOI: 10.1016/j.chemosphere.2018.11.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Herein, vibrational spectroscopy has been applied for qualitative identification of biomolecular alterations that occur in cells and tissues following chemical treatment. Towards this end, we combined attenuated total reflection Fourier-transform infrared (ATR-FTIR) and Raman spectroscopy to assess testicular toxicology after 4-nonylphenol (NP) exposure, an estrogenic endocrine disruptor affecting testicular function in rats and other species. Rats aged 21, 35 or 50 days received NP at intra-peritoneal doses of 0, 25, 50 or 100 mg/kg for 20 consecutive days. Primary Sertoli cells (SCs) were treated with NP at various concentrations (0, 2.5, 5, 10 or 20 μM) for 12 h. Post-exposure, testicular cells, interstitial tissue and SCs were interrogated respectively using spectrochemical techniques coupled with multivariate analysis. Distinct biomolecular segregation between the NP-exposed samples vs. control were observed based on infrared (IR) spectral regions of 3200-2800 cm-1 and 1800-900 cm-1, and the Raman spectral region of 1800-900 cm-1. For in vivo experiments, the main wavenumbers responsible for segregation varied significantly among the three age classes. The main IR and Raman band differences between NP-exposed and control groups were observed for Amide (proteins), lipids and DNA/RNA. An interesting finding was that the peptide aggregation level, Amide Ӏ-to-Amide II ratio, and phosphate-to-carbohydrate ratio were considerably reduced in ex vivo NP-exposed testicular cells or SCs in vitro. This study demonstrates that ATR-FTIR and Raman spectroscopy techniques can be applied towards analysing NP-induced testicular biomolecular alterations.
Collapse
Affiliation(s)
- Peng Duan
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Center for Reproductive Medicine, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Bisen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Jing Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430030, China
| | - Xiandong Li
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Jian Tu
- Reproductive Medicine Center, Maternal and Child Health Care Hospital of Yueyang City, Yueyang, 414000, China
| | - Weiyingxue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunling Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Manman Long
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaobing Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan, 430013, China.
| |
Collapse
|
39
|
Abril C, Santos JL, Malvar JL, Martín J, Aparicio I, Alonso E. Determination of perfluorinated compounds, bisphenol A, anionic surfactants and personal care products in digested sludge, compost and soil by liquid-chromatography-tandem mass spectrometry. J Chromatogr A 2018; 1576:34-41. [DOI: 10.1016/j.chroma.2018.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/17/2018] [Accepted: 09/15/2018] [Indexed: 12/21/2022]
|
40
|
Abril C, Martín J, Malvar JL, Santos JL, Aparicio I, Alonso E. Dispersive liquid-liquid microextraction as a new clean-up procedure for the determination of parabens, perfluorinated compounds, UV filters, biocides, surfactants, and plasticizers in root vegetables. Anal Bioanal Chem 2018; 410:5155-5163. [PMID: 29947903 DOI: 10.1007/s00216-018-1165-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 05/26/2018] [Indexed: 12/25/2022]
Abstract
An analytical method based on ultrasound-assisted extraction and dispersive liquid-liquid microextraction (DLLME) clean-up has been developed and validated for the determination of 31 emerging pollutants in root vegetables. The target compounds were four preservatives, six perfluoroalkyl compounds, six UV filters, two biocides, eight anionic surfactants, three nonionic surfactants, and two plasticizers. The type and volume of the extraction solvent, those of the disperser solvent, the pH and NaCl content of the DLLME aqueous phase, the amount of sample, and the sonication time were optimized. Box-Behnken experimental design was applied to select the best extraction conditions. Matrix-matched calibration curves were used for quantification. Four internal standards were used to compensate for residual matrix effects. Good linearity (R2 > 0.990), accuracies (expressed as the relative recovery) of >82%, and precisions (expressed as the relative standard deviation) of <18% were achieved. Method quantification limits (MQLs), calculated from spiked samples as the concentrations corresponding to signal-to-noise ratios of 10, were in the range 0.1-25 ng g-1 dry weight (d.w.). MQL values for 26 of the 31 target compounds were lower than 5 ng g-1 d.w. The method was successfully applied to determine the target pollutants in carrots, potatoes, and turnips from a local market. To the best of our knowledge, the proposed method constitutes the first application of DLLME as a clean-up procedure for the multiresidue determination of emerging pollutants in vegetables. The method affords similar recoveries and method detection limits to previously reported methods but requires smaller solvent volumes and sample amounts and is less expensive.
Collapse
Affiliation(s)
- Concepción Abril
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, 41011, Seville, Spain
| | - Julia Martín
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, 41011, Seville, Spain
| | - José Luis Malvar
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, 41011, Seville, Spain
| | - Juan Luis Santos
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, 41011, Seville, Spain
| | - Irene Aparicio
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, 41011, Seville, Spain.
| | - Esteban Alonso
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, 41011, Seville, Spain
| |
Collapse
|