1
|
Gouyon J, Clavié M, Raquel GC, Ngo G, Dumy P, Etienne P, Martineau P, Pugnière M, Ahmad M, Subra G, Perrin C, Ladner Y. A bioinspired approach for the modulation of electroosmotic flow and protein-surface interactions in capillary electrophoresis using silylated amino-amides blocks and covalent grafting. Electrophoresis 2024; 45:557-572. [PMID: 38161236 DOI: 10.1002/elps.202300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
We explore a bioinspired approach to design tailored functionalized capillary electrophoresis (CE) surfaces based on covalent grafting for biomolecules analysis. First, the approach aims to overcome well-known common obstacles in CE protein analysis affecting considerably the CE performance (asymmetry, resolution, and repeatability) such as the unspecific adsorption on fused silica surface and the lack of control of electroosmotic flow (EOF). Then, our approach, which relies on new amino-amide mimic hybrid precursors synthesized by silylation of amino-amides (Si-AA) derivatives with 3-isocyanatopropyltriethoxysilane, aims to recapitulate the diversity of protein-protein interactions (π-π stacking, ionic, Van der Waals…) found in physiological condition (bioinspired approach) to improve the performance of CE protein analysis (electrochromatography). As a proof of concept, these silylated Si-AA (tyrosinamide silylation, serinamide silylation, argininamide silylation, leucinamide silylation, and isoglutamine silylation acid) have been covalently grafted in physiological conditions in different amount on bare fused silica capillary giving rise to a biomimetic coating and allowing both the modulation of EOF and protein-surface interactions. The analytical performances of amino-amide functionalized capillaries were assessed using lysozyme, cytochrome C and ribonuclease A and compared to traditional capillary coatings poly(ethylene oxide), poly(diallyldimethylammonium chloride), and sodium poly(styrenesulfonate). EOF, protein adsorption rate, protein retention factor k, and selectivity were determined for each coating. All results obtained showed this approach allowed to modulate the EOF, reduce unspecific adsorption, and generate specific interactions with proteins by varying the nature and the amount of Si-AA in the functionalization mixture.
Collapse
Affiliation(s)
- Jérémie Gouyon
- IBMM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Margaux Clavié
- IBMM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | | | - Giang Ngo
- IRCM, INSERM U1194, University of Montpellier, Montpellier, France
| | - Pascal Dumy
- IBMM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Pascal Etienne
- l2C, CNRS UMR 5221, University of Montpellier, Montpellier, France
| | - Pierre Martineau
- IRCM, INSERM U1194, University of Montpellier, Montpellier, France
| | - Martine Pugnière
- IRCM, INSERM U1194, University of Montpellier, Montpellier, France
| | - Mehdi Ahmad
- ICGM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Gilles Subra
- IBMM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Catherine Perrin
- IBMM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Yoann Ladner
- IBMM, CNRS, ENSCM, University of Montpellier, Montpellier, France
| |
Collapse
|
2
|
Lin Y, Xu Y, Xing Y, Liu N, Chen X. Photoreversible DNA nanoswitch-based eluent-free strategy for the direct and effective isolation of highly-active thrombin from whole blood. Int J Biol Macromol 2023; 239:124359. [PMID: 37028619 DOI: 10.1016/j.ijbiomac.2023.124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
This study proposes an eluent-free isolation strategy for the direct isolation of thrombin from whole blood via tandem temperature/pH dual-responsive polyether sulfone monolith and photoreversible DNA nanoswitch-functionalized metal-organic framework (MOF) aerogel. Temperature/pH dual-responsive microgel immobilized on polyether sulfone monolith was adopted to remove the matrix complexity of blood sample via size/charge screening effect. Photoreversible DNA nanoswitches, comprising thrombin aptamer, aptamer complementary ssDNA (cDNA) and the azobenzene-modified ssDNA (control DNA), were functionalized on MOF aerogel to offer efficient capturing of thrombin under irradiation of ultraviolet light (365 nm), driven by electrostatic and hydrogen bond interactions. The release of captured thrombin was easily achieved by changing the complementary behaviors of DNA strands via blue light (450 nm) irradiation. Thrombin with purity higher than 95 % can be directly obtained from whole blood using this tandem isolation procedure. Fibrin production and substrate chromogenic tests showed that the released thrombin possessed high biological activity. The photoreversible thrombin capturing-release strategy is merited with eluent-free, avoiding the loss of activity of thrombin in chemical circumstances and undesired dilution, providing a robust guarantee for subsequent application.
Collapse
|
3
|
Chen D, McCool EN, Yang Z, Shen X, Lubeckyj RA, Xu T, Wang Q, Sun L. Recent advances (2019-2021) of capillary electrophoresis-mass spectrometry for multilevel proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:617-642. [PMID: 34128246 PMCID: PMC8671558 DOI: 10.1002/mas.21714] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 05/06/2023]
Abstract
Multilevel proteomics aims to delineate proteins at the peptide (bottom-up proteomics), proteoform (top-down proteomics), and protein complex (native proteomics) levels. Capillary electrophoresis-mass spectrometry (CE-MS) can achieve highly efficient separation and highly sensitive detection of complex mixtures of peptides, proteoforms, and even protein complexes because of its substantial technical progress. CE-MS has become a valuable alternative to the routinely used liquid chromatography-mass spectrometry for multilevel proteomics. This review summarizes the most recent (2019-2021) advances of CE-MS for multilevel proteomics regarding technological progress and biological applications. We also provide brief perspectives on CE-MS for multilevel proteomics at the end, highlighting some future directions and potential challenges.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Rachele A. Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Gao Z, Zhong W. Recent (2018-2020) development in capillary electrophoresis. Anal Bioanal Chem 2022; 414:115-130. [PMID: 33754195 PMCID: PMC7984737 DOI: 10.1007/s00216-021-03290-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Development of new capillary electrophoresis (CE) methodology and instrumentation, as well as application of CE to solve new problems, remains an active research area because of the attractive features of CE compared to other separation techniques. In this review, we focus on the representative works about sample preconcentration, separation media or capillary coating development, detector construction, and multidimensional separation in CE, which are judiciously selected from the papers published in 2018-2020.
Collapse
Affiliation(s)
- Ziting Gao
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Suntornsuk L, Anurukvorakun O. Sensitivity enhancement in capillary electrophoresis and their applications for analyses of pharmaceutical and related biochemical substances. Electrophoresis 2021; 43:939-954. [PMID: 34902168 DOI: 10.1002/elps.202100236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022]
Abstract
This review aims to illustrate sensitivity enhancement methods in capillary electrophoresis (CE) and their applications for pharmaceutical and related biochemical substance analyses. The first two parts of the article describe the introduction and principle of CE. The main part focuses on strategies for sensitivity improvement in CE including detector and capillary technologies and pre-concentration techniques. Applications of these techniques for pharmaceutical and biomedical substance analyses are surveyed during the years 2018-2021. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Leena Suntornsuk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Oraphan Anurukvorakun
- Department of Cosmetic Science, Phranakorn Rajabhat University, Bangkok, 10220, Thailand
| |
Collapse
|
7
|
da Silva M, Fernandes Sako AV, Micke GA, Vitali L. A rapid method for simultaneous determination of nitrate, nitrite and thiocyanate in milk by CZE-UV using quaternary ammonium chitosan as electroosmotic flow inverter. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Kristoff CJ, Bwanali L, Veltri LM, Gautam GP, Rutto PK, Newton EO, Holland LA. Challenging Bioanalyses with Capillary Electrophoresis. Anal Chem 2020; 92:49-66. [PMID: 31698907 PMCID: PMC6995690 DOI: 10.1021/acs.analchem.9b04718] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Courtney J. Kristoff
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Gayatri P. Gautam
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Patrick K. Rutto
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ebenezer O. Newton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|