1
|
Freitas M, Ribeiro D, Janela JS, Varela CL, Costa SC, da Silva ET, Fernandes E, Roleira FMF. Plant-derived and dietary phenolic cinnamic acid derivatives: Anti-inflammatory properties. Food Chem 2024; 459:140080. [PMID: 38986205 DOI: 10.1016/j.foodchem.2024.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Cinnamic acids are aromatic acids primarily found in plants and plant-derived food. Phenolic cinnamic acids, with one or more hydroxyl groups in the aromatic ring, often contribute to the biological activities attributed to these compounds. The presence of hydroxyl groups and a carboxyl group makes cinnamic acids very hydrophilic, preventing them from crossing biological membranes and exerting their biological activities. To alleviate this condition, a panel of synthetic modifications have been made leading to a diverse set of phenolic cinnamic structures. In this review, an overview of the natural phenolic cinnamic acid derivatives and their plant sources (more than 200) is described. The synthetic approaches to obtain the referred derivatives (more than 200) namely esters and amides are reviewed. Further, their anti-inflammatory activity (more than 70 compounds) is scrutinized. Finally, future directions will be indicated to translate the research on phenolic cinnamic derivatives into potentially effective anti-inflammatory drugs.
Collapse
Affiliation(s)
- Marisa Freitas
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Daniela Ribeiro
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal; Faculdade de Ciências Agrárias e do Ambiente da Universidade dos Açores, Portugal.
| | - João S Janela
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Carla L Varela
- Univ Coimbra, CERES, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
| | - Saul C Costa
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Elisiário Tavares da Silva
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Fernanda M F Roleira
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| |
Collapse
|
2
|
Güngör E, Bartels B, Bolchi G, Heeren RMA, Ellis SR, Schluepmann H. Biosynthesis and differential spatial distribution of the 3-deoxyanthocyanidins apigenidin and luteolinidin at the interface of a plant-cyanobacteria symbiosis exposed to cold. PLANT, CELL & ENVIRONMENT 2024; 47:4151-4170. [PMID: 38932650 DOI: 10.1111/pce.15010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Aquatic ferns of the genus Azolla (Azolla) form highly productive symbioses with filamentous cyanobacteria fixing N2 in their leaf cavities, Nostoc azollae. Stressed symbioses characteristically turn red due to 3-deoxyanthocyanidin (DA) accumulation, rare in angiosperms and of unknown function. To understand DA accumulation upon cold acclimation and recovery, we integrated laser-desorption-ionization mass-spectrometry-imaging (LDI-MSI), a new Azolla filiculoides genome-assembly and annotation, and dual RNA-sequencing into phenotypic analyses of the symbioses. Azolla sp. Anzali recovered even when cold-induced DA-accumulation was inhibited by abscisic acid. Cyanobacterial filaments generally disappeared upon cold acclimation and Nostoc azollae transcript profiles were unlike those of resting stages formed in cold-resistant sporocarps, yet filaments re-appeared in leaf cavities of newly formed green fronds upon cold-recovery. The high transcript accumulation upon cold acclimation of AfDFR1 encoding a flavanone 4-reductase active in vitro suggested that the enzyme of the first step in the DA-pathway may regulate accumulation of DAs in different tissues. However, LDI-MSI highlighted the necessity to describe metabolite accumulation beyond class assignments as individual DA and caffeoylquinic acid metabolites accumulated differentially. For example, luteolinidin accumulated in epithelial cells, including those lining the leaf cavity, supporting a role for the former in the symbiotic interaction during cold acclimation.
Collapse
Affiliation(s)
- Erbil Güngör
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Benjamin Bartels
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Giorgio Bolchi
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Ron M A Heeren
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Shane R Ellis
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | | |
Collapse
|
3
|
Polyiam P, Thukhammee W. A Comparison of Phenolic, Flavonoid, and Amino Acid Compositions and In Vitro Antioxidant and Neuroprotective Activities in Thai Plant Protein Extracts. Molecules 2024; 29:2990. [PMID: 38998943 PMCID: PMC11243576 DOI: 10.3390/molecules29132990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024] Open
Abstract
The leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean are considered rich sources of plant protein with high levels of branched-chain amino acids. Furthermore, they contain beneficial phytochemicals such as antioxidants and anti-inflammatory agents. Additionally, there are reports suggesting that an adequate consumption of amino acids can reduce nerve cell damage, delay the onset of memory impairment, and improve sleep quality. In this study, protein isolates were prepared from the leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean. The amino acid profile, dietary fiber content, phenolic content, and flavonoid content were evaluated. Pharmacological properties, such as antioxidant, anticholinesterase, monoamine oxidase, and γ-aminobutyric acid transaminase (GABA-T) activities, were also assessed. This study found that concentrated protein from mung beans has a higher quantity of essential amino acids (52,161 mg/100 g protein) compared to concentrated protein from sunflower sprouts (47,386 mg/100 g protein), Azolla spp. (42,097 mg/100 g protein), cashew nut (26,710 mg/100 g protein), and mulberry leaves (8931 mg/100 g protein). The dietary fiber content ranged from 0.90% to 3.24%, while the phenolic content and flavonoid content ranged from 0.25 to 2.29 mg/g and 0.01 to 2.01 mg/g of sample, respectively. Sunflower sprout protein isolates exhibited the highest levels of dietary fiber (3.24%), phenolic content (2.292 ± 0.082 mg of GAE/g), and flavonoids (2.014 mg quercetin/g of sample). The biological efficacy evaluation found that concentrated protein extract from sunflower sprouts has the highest antioxidant activity; the percentages of inhibition of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical were 20.503 ± 0.288% and 18.496 ± 0.105%, respectively. Five plant-based proteins exhibited a potent inhibition of acetylcholinesterase (AChE) enzyme activity, monoamine oxidase (MAO) inhibition, and GABA-T ranging from 3.42% to 24.62%, 6.14% to 20.16%, and 2.03% to 21.99%, respectively. These findings suggest that these plant protein extracts can be used as natural resources for developing food supplements with neuroprotective activity.
Collapse
Affiliation(s)
- Pontapan Polyiam
- Department of Physiology, Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance and Health Promotion (HHP&HP) Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukhammee
- Human High Performance and Health Promotion (HHP&HP) Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Xu S, Tan Y, Xia Y, Tang H, Li J, Tan N. Targeted characterization and guided isolation of chemical components in Scrophulariae Radix based on LC-MS. J Pharm Biomed Anal 2023; 235:115569. [PMID: 37557064 DOI: 10.1016/j.jpba.2023.115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023]
Abstract
How to achieve rapid characterization and efficient isolation of chemical components from traditional Chinese medicines (TCMs) is what the researchers have been exploring. Herein, a strategy integrated diagnostic ion filtering (DIF) and selected ion recording (SIR)-based screen was firstly proposed and successfully applied for targeted characterization and guided isolation of the chemical components from Scrophulariae Radix, one of TCMs. After acquiring the Q-TOF-MS/MS untargeted data, 128 compounds were characterized based on DIF, a self-built database and comparison of the related literatures, in which 38 compounds were reported for the first time. Subsequently, the SIR method of UPLC-QqQ-MS/MS was adopted to guide the isolation of potential new compounds. Finally, three new compounds together with one known compound with the same skeleton were isolated, and unambiguously elucidated by NMR and acid hydrolysis. These results indicated that this integrated analytical approach is effective and reliable in targeted characterizing chemical components and isolating new compounds from the extract of Scrophulariae Radix.
Collapse
Affiliation(s)
- Siyi Xu
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yajie Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yun Xia
- Jinling Pharmaceutical Co., Ltd., Nanjing 210009, PR China
| | - Haojun Tang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jian Li
- Jinling Pharmaceutical Co., Ltd., Nanjing 210009, PR China.
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
5
|
Bai J, Jing X, Yang Y, Wang X, Feng Y, Ge F, Li J, Yao M. Comprehensive profiling of chemical composition of Gleditsiae spina using ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9467. [PMID: 36594178 DOI: 10.1002/rcm.9467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE Gleditsiae spina (GS) is an important herb used in traditional and folk medicinal systems of East Asian countries for its various medicinal properties. In China, it has been traditionally used through the centuries for its anticancer, detoxication, detumescence, apocenosis, and antiparasitic effects. Although some of its ingredients have been isolated and identified, most active constituents remain unknown. Past research mostly exploited nuclear magnetic resonance for the identification of compounds, which is suitable for monomers only. Moreover, the extraction and isolation procedures for obtaining purified molecules are time consuming. Therefore, establishing an efficient approach will assist in rapid discovery of the potential active ingredients of GS. The present study aimed to identify the chemical constituents in GS by a data analysis strategy using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry. METHODS First, the theoretical formula of the candidate compound was calculated using the accurate mass of the precursor/adduct ions. Second, the compounds were classified by the diagnostic ions from the MS/MS data. Third, characteristic ion filtering was used to identify the structures. Finally, the diverse skeletons and substitutions were further identified through the neutral loss in the GS. RESULTS A total of 277 compounds were identified in GS, comprising 169 flavonoids, 70 lignans, and 38 other compounds. At least 43 potential new compounds were represented. CONCLUSIONS This experiment devised an efficient and systematic method for detecting complex compounds and provided a foundation for future research into bioactive ingredients and quality control of GS.
Collapse
Affiliation(s)
- Jiqing Bai
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiucun Jing
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuangui Yang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaoping Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yulin Feng
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fei Ge
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Junmao Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Yao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Institute for Drug Control, Nanchang, China
| |
Collapse
|
6
|
Xue J, Liu S, Kang Y, Wang Y, Weng W, Yang P, Huang J. An integrated strategy for characterization of chemical constituents in Stephania tetrandra using LC-QTOF-MS/MS and the target isolation of two new biflavonoids. J Pharm Biomed Anal 2023; 226:115247. [PMID: 36657347 DOI: 10.1016/j.jpba.2023.115247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
LC-MS has been a widely used analytical technique for identification of natural compounds. However, sophisticated and laborious data analysis is required to identify chemical components, especially new compounds, from a large LC-MS dataset. The aim of this study is to develop an integrated data-mining strategy that combines molecular networking (MN), in-house polygonal mass defect filtering (MDF), and diagnostic fragment ion filtering (DFIF) to identify phytochemicals in Stephania tetrandra based on LC-MS data. S. tetrandra samples were prepared by matrix solid-phase dispersion extraction methods and then raw MS spectra were acquired using LC-QTOF-MS/MS. MN and in-house polygonal MDF classified the compounds roughly. Modified DFIF were then used in succession to place each spectrum into a specific class. Finally, the exact structures were deduced by fragmentation pathways and related botanical biogenesis, with the help of the narrowed classification from MN and MDF. The total workflow was a combination of data filtering and identification methods for rapid characterization of known compounds (dereplication) and discovery of new compounds. Consequently, 144 compounds were identified or tentatively identified in the aerial parts and roots of S. tetrandra, including 11 potentially new compounds and 63 compounds first identified in this species. Among 144 compounds, 61 were from the aerial parts exclusively, 8 were from the roots exclusively, and 75 were found in both parts. Furthermore, two new biflavonoids were isolated with the guide of LC-MS analysis and structurally elucidated by spectroscopic methods. In conclusion, the proposed data-mining strategy based on LC-MS can be used to profile chemical constituents with high efficiency and guide the isolation of new compounds from medicinal plants. The comparison of the components of the aerial parts and roots of S. tetrandra would be helpful for the rational utilization of the medicinal plant.
Collapse
Affiliation(s)
- Jiayun Xue
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Shun Liu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yun Kang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Yaqin Wang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Weiyu Weng
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ping Yang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jianming Huang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
7
|
Seididamyeh M, Phan ADT, Sivakumar D, Netzel ME, Mereddy R, Sultanbawa Y. Valorisation of Three Underutilised Native Australian Plants: Phenolic and Organic Acid Profiles and In Vitro Antimicrobial Activity. Foods 2023; 12:foods12030623. [PMID: 36766151 PMCID: PMC9914099 DOI: 10.3390/foods12030623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Tasmannia lanceolata, Diploglottis bracteata and Syzygium aqueum are understudied native Australian plants. This study aimed to characterise the non-anthocyanin phenolic and organic acid profiles of the aqueous extracts obtained from the leaves of T. lanceolata and fruits of D. bracteata and S. aqueum by UHPLC-Q-Orbitrap-MS/MS and UHPLC-TQ-MS/MS. A total of 39, 22, and 27 non-anthocyanin polyphenols were tentatively identified in T. lanceolata, D. bracteata, and S. aqueum extracts, respectively. Furthermore, sugars and ascorbic acid contents as well as in vitro antioxidant and antimicrobial activities of the extracts were determined. Response surface methodology was applied to achieve an extract blend with a strong inhibitory effect against Pseudomonas viridiflava, the main cause of soft rot in vegetables, Bacillus subtilis, Rhodotorula diobovata and Alternaria alternata. The identified compounds including organic acids (e.g., quinic, citric and malic acids) and polyphenols (e.g., catechin, procyanidins, and ellagitannins) might contribute to the observed antimicrobial activity. Furthermore, this study provides the most comprehensive phenolic profiles of these three underutilised native Australian plants to date.
Collapse
Affiliation(s)
- Maral Seididamyeh
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Anh Dao Thi Phan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Dharini Sivakumar
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa
| | - Michael E. Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
- Correspondence:
| | - Ram Mereddy
- Department of Agriculture and Fisheries, Queensland Government, Coopers Plains, QLD 4108, Australia
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| |
Collapse
|
8
|
Huang W, Wen F, Ruan S, Gu P, Gu S, Song S, Zhou J, Li Y, Liu J, Shu P. Integrating HPLC-Q-TOF-MS/MS, network pharmacology and experimental validation to decipher the chemical substances and mechanism of modified Gui-shao-liu-jun-zi decoction against gastric cancer. J Tradit Complement Med 2023; 13:245-262. [PMID: 37128200 PMCID: PMC10148141 DOI: 10.1016/j.jtcme.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/17/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Background and aim Gastric cancer (GC) is a common malignant tumor worldwide. Modified Gui-shao-liu-jun-zi decoction (mGSLJZ) is a clinically effective traditional Chinese medicine (TCM) compound in GC treatment. This study aimed to analyze main chemical substances of mGSLJZ and investigate active ingredients and molecular mechanism of mGSLJZ against GC. Experimental procedure HPLC-Q-TOF-MS/MS was used to analyze chemical substances of mGSLJZ, and potential active ingredients were screened from TCMSP. The target set of mGSLJZ for GC was obtained based on SwissTargetPrediction. The PPI network was constructed to screen out core targets. GO and KEGG enrichment analyses were conducted to identify BPs, CCs, MFs and pathways. The "active ingredient-core target-pathway" regulatory network was constructed to obtain core substances. Subsequently, Oncomine, Proteinatlas and molecular docking were performed to validate these findings. The cell experiments were conducted to confirm the anti-GC effects of mGLSJZ. Results and conclusion Forty-one potential active ingredients were filtered out from 120 chemical substances in mGSLJZ, including various organic acids and flavonoids. The top 10 key targets, 20 related pathways and 6 core medicinal substances were obtained based on network pharmacology analysis. Molecular docking results indicated that the core substances and key targets had good binding activities. The cell experiments validated that mGSLJZ and the core substances inhibited the proliferation in multiple GC cells and that mGLSJZ restrained the migration of GC. Meanwhile, the top 5 targets and top 2 pathways were verified. The rescue experiments demonstrated that mGSLJZ suppressed the proliferation and migration of GC through the PI3K/AKT/HIF-1 pathway.
Collapse
Affiliation(s)
- Wenjie Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Wen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Ruan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Peixing Gu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Suping Gu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Song
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayu Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiatong Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. 155 Hanzhong Road, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
9
|
Xiang H, Xu P, Qiu H, Wen W, Zhang A, Tong S. Two-dimensional chromatography in screening of bioactive components from natural products. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1161-1176. [PMID: 35934878 DOI: 10.1002/pca.3168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Screening and analysis of bioactive components from natural products is a fundamental part of new drug development and innovation. Two-dimensional (2D) chromatography has been demonstrated to be an effective method for screening and preparation of specific bioactive components from complex natural products. OBJECTIVE To collect details of application of 2D chromatography in screening of natural product bioactive components and to outline the research progress of different separation mechanisms and strategies. METHODOLOGY Three screening strategies based on 2D chromatography are reviewed, including traditional separation-based screening, bioactivity-guided screening and affinity chromatography-based screening. Meanwhile, in order to cover these aspects, selections of different separation mechanisms and modes are also presented. RESULTS Compared with traditional one-dimensional (1D) chromatography, 2D chromatography has unique advantages in terms of peak capacity and resolution, and it is more effective for screening and identifying bioactive components of complex natural products. CONCLUSION Screening of natural bioactive components using 2D chromatography helps separation and analysis of complex samples with greater targeting and relevance, which is very important for development of innovative drug leads.
Collapse
Affiliation(s)
- Haiping Xiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Huiyun Qiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Weiyi Wen
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ailian Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
10
|
New mechanistic insights on Justicia vahlii Roth: UPLC-Q-TOF-MS and GC–MS based metabolomics, in-vivo, in-silico toxicological, antioxidant based anti-inflammatory and enzyme inhibition evaluation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
11
|
Liu J, Chen J, Xu B, Lin L, Liu S, Ma X, Liu J. 3,4,5-O-tricaffeoylquinic acid with anti-radiation activity suppresses LPS-induced NLRP3 inflammasome activation via autophagy in THP-1 macrophages. Mol Immunol 2022; 147:187-198. [PMID: 35633614 DOI: 10.1016/j.molimm.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/09/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Damage to normal tissues caused by excessive ionizing radiation (IR) exposure is the major side effect of radiotherapy. Several recent studies have shown that IR-induced damage to tissues leads to a systemic immune response and NLRP3 inflammasome activation in immune cells. 3,4,5-O-tricaffeoylquinic acid (tCQA), extracted from the natural plant Azolla imbricata, relieves inflammation and has radioprotective function. Here, we aimed to investigate the inhibitory effect and molecular mechanism of tCQA on IR-induced NLRP3 inflammasome activation. First, the results of ELISA and qPCR assays showed that tCQA has anti-inflammatory effects in THP-1 cell line and healthy human peripheral blood mononuclear cells. Western blotting and ELISA suggested tCQA could inhibit NF-κB/MAPK signaling pathway, NLRP3 expression and the secretion of IL-1β in lipopolysaccharide (LPS)-stimulated THP-1 macrophages. Then, flow cytometry, LDH assay and western blotting demonstrated that tCQA could inhibit LPS- and nigericin-induced Caspase-1 activation and gasdermin D cleavage, thereby suppressing inflammatory cell death. Furthermore, we found that the autophagy inhibitor chloroquine, not the proteasome inhibitor MG132, could counteract the promoting effect of tCQA on NLRP3 degradation and the inhibitory effect on cell death. Western blotting and autophagosome staining results suggested tCQA could significantly enhance LPS-induced autophagic flux in macrophages and ATG5/ATG7 knockdown reverses the inhibitory effect of tCQA on NLRP3 expression and Caspase-1 activation, indicating that tCQA induces NLRP3 degradation via autophagy. Finally, THP-1 macrophages and BALB/c mice were irradiated with 137Cs γ-rays and tCQA could inhibit IR-induced NLRP3 inflammasome activation both in vitro and in vivo. To conclude, tCQA controls inflammation and NLRP3 inflammasome activation in vitro via NF-κB/MAPK signaling pathway and autophagy, meanwhile inhibits IR-induced NLRP3 inflammasome activation in vivo. Overall, our study provides an experimental and theoretical basis for the application of tCQA as a radioprotectant in clinical radiotherapy.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jingyun Chen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Baixue Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Long Lin
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shaoqun Liu
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hosipital & AHS, Fudan University, Shanghai, 201199, PR China; Department of Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China.
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
12
|
Zhao MY, Chen YH, Wang WY, Sun WP, Xiao HH, Yang HY, Sun N, Zhang H, Yin HB, Zhang YX, Xie M, Song HP. A strategy to comprehensively analyze the bioactivity of complex herbal prescriptions via peak-by-peak cutting and knock-out chromatography: Qiliqiangxin capsule as an example. J Sep Sci 2022; 45:2446-2457. [PMID: 35503988 DOI: 10.1002/jssc.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/09/2022]
Abstract
An herbal prescription is usually composed of several herbal medicines. The complex and diverse components bring great challenges to its bioactivity study. To comprehensively analyze the bioactivity of an herbal prescription, a new strategy based on peak-by-peak cutting and knock-out chromatography was proposed. In this strategy, active compounds were screened out via peak-by-peak cutting from an herbal extract, and the influence of a compound on the overall activity of the herbal extract was evaluated by knock-out chromatography. Qiliqiangxin capsule is an herbal prescription composed of 11 herbal medicines for the treatment of chronic heart failure. A total of 71 peaks were collected through peak-by-peak cutting, and each peak was identified by high-resolution mass spectrum. The bioassay against 1,1-diphenyl-2-picrylhydrazyl showed that two types of compounds namely salvianolic acids and caffeoylquinic acids were potent scavengers. Knock-out chromatography suggested that the removement of one single compound had no obvious influence on the overall activity of Qiliqiangxin capsule. After all the main peaks in Qiliqiangxin capsule were knocked out, the remaining part still exhibited a potent activity, indicating a high activity stability of Qiliqiangxin capsule. The proposed strategy is helpful for the comprehensive analysis of the bioactivity of other herbal prescriptions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ming-Yue Zhao
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Yue-Hua Chen
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Wen-Yu Wang
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Wan-Ping Sun
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hong-He Xiao
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hai-Ying Yang
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Nan Sun
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hui Zhang
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hai-Bo Yin
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ye-Xin Zhang
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ming Xie
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hui-Peng Song
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.,Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| |
Collapse
|
13
|
Chen JQ, Chen YY, Du X, Tao HJ, Pu ZJ, Shi XQ, Yue SJ, Zhou GS, Shang EX, Tang YP, Duan JA. Fuzzy identification of bioactive components for different efficacies of rhubarb by the back propagation neural network association analysis of UPLC-Q-TOF/MS E and integrated effects. Chin Med 2022; 17:50. [PMID: 35473719 PMCID: PMC9040240 DOI: 10.1186/s13020-022-00612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Rhei Radix et Rhizoma (rhubarb), as one of the typical representatives of multi-effect traditional Chinese medicines (TCMs), has been utilized in the treatment of various diseases due to its multicomponent nature. However, there are few systematic investigations for the corresponding effect of individual components in rhubarb. Hence, we aimed to develop a novel strategy to fuzzily identify bioactive components for different efficacies of rhubarb by the back propagation (BP) neural network association analysis of ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry for every data (UPLC-Q-TOF/MSE) and integrated effects. Methods Through applying the fuzzy chemical identification, most components of rhubarb were classified into different chemical groups. Meanwhile the integration effect values of different efficacies can be determined by animal experiment evaluation and multi-attribute comprehensive indexes. Then the BP neural network was employed for association analysis of components and different efficacies by correlating the component contents determined from UPLC-Q-TOF/MSE profiling and the integration effect values. Finally, the effect contribution of one type of components may be totaled to demonstrate the universal and individual characters for different efficacies of rhubarb. Results It suggested that combined anthraquinones, flavanols and their polymers may be the universal character to the multi-functional properties of rhubarb. Other components contributed to the individuality of rhubarb efficacies, including stilbene glycosides, anthranones and their dimers, free anthraquinones, chromones, gallic acid and gallotannins, butyrylbenzenes and their glycosides. Conclusions Our findings demonstrated that the bioactive components for different efficacies of rhubarb were not exactly the same and can be systematically differentiated by the network-oriented strategy. These efforts will advance our knowledge and understanding of the bioactive components in rhubarb and provide scientific evidence to support the expansion of its use in clinical applications and the further development of some products based on this medicinal herb. Supplementary information The online version contains supplementary material available at 10.1186/s13020-022-00612-9.
Collapse
Affiliation(s)
- Jia-Qian Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi Province, China
| | - Xia Du
- Shaanxi Academy of Traditional Chinese Medicine, 710003, Xi'an, Shaanxi Province, China
| | - Hui-Juan Tao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Zong-Jin Pu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Xu-Qin Shi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi Province, China
| | - Gui-Sheng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi Province, China.
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| |
Collapse
|
14
|
Liu J, Hu W, Ma X, Liang X, Lin L, Huang J, Liu J. 3,4,5-O-tricaffeoylquinic acid alleviates ionizing radiation-induced injury in vitro and in vivo through regulating ROS/JNK/p38 signaling. ENVIRONMENTAL TOXICOLOGY 2022; 37:349-361. [PMID: 34741589 DOI: 10.1002/tox.23403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Ionizing radiation (IR) brings many health problems to humans, causing damage to the digestive system, hematopoietic system, and immune system. Natural compounds derived from plants have attracted widespread attention due to their low toxicity. Here, we found that 3,4,5-O-tricaffeoylquinic acid (tCQA) extracted from natural plant Azolla imbricata could significantly alleviate the systemic damage in mice caused by IR. In order to further explore the molecular mechanism of the radioprotective effect of tCQA, in vitro experiments confirmed that tCQA could attenuate the cytotoxic effect of IR on the colonic epithelial cell line NCM460 and alleviate the IR-induced mitochondrial dysfunction characterized by the decrease of mitochondrial transmembrane potential, ROS production, and caspase-dependent apoptosis. In addition, the generation of ROS induced by H2 O2 could also be reversed by tCQA. Then, Western blot demonstrated that tCQA could reverse the MAPK signaling pathway activated by IR. However, the inhibitory effect of tCQA on JNK and P38 levels activated by the JNK agonist anisomycin is not obvious; meanwhile, tCQA could inhibit the activation of JNK/P38 induced by H2 O2 , which suggests that tCQA might inhibit the JNK/P38 signaling pathway by reducing ROS. In short, tCQA inhibits the generation of ROS caused by IR, and then regulates the activity of caspase in the mitochondrial pathway by inhibiting the JNK/P38 signaling pathway, thereby alleviating the apoptosis of NCM460. This research provides an experimental basis for the development of new types of radioprotective agents for medical diagnosis and radiotherapy.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wen Hu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Long Lin
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jianming Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Magaña AA, Kamimura N, Soumyanath A, Stevens JF, Maier CS. Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1299-1319. [PMID: 34171156 PMCID: PMC9084498 DOI: 10.1111/tpj.15390] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 05/02/2023]
Abstract
Caffeoylquinic acids (CQAs) are specialized plant metabolites we encounter in our daily life. Humans consume CQAs in mg-to-gram quantities through dietary consumption of plant products. CQAs are considered beneficial for human health, mainly due to their anti-inflammatory and antioxidant properties. Recently, new biosynthetic pathways via a peroxidase-type p-coumaric acid 3-hydroxylase enzyme were discovered. More recently, a new GDSL lipase-like enzyme able to transform monoCQAs into diCQA was identified in Ipomoea batatas. CQAs were recently linked to memory improvement; they seem to be strong indirect antioxidants via Nrf2 activation. However, there is a prevalent confusion in the designation and nomenclature of different CQA isomers. Such inconsistencies are critical and complicate bioactivity assessment since different isomers differ in bioactivity and potency. A detailed explanation regarding the origin of such confusion is provided, and a recommendation to unify nomenclature is suggested. Furthermore, for studies on CQA bioactivity, plant-based laboratory animal diets contain CQAs, which makes it difficult to include proper control groups for comparison. Therefore, a synthetic diet free of CQAs is advised to avoid interferences since some CQAs may produce bioactivity even at nanomolar levels. Biotransformation of CQAs by gut microbiota, the discovery of new enzymatic biosynthetic and metabolic pathways, dietary assessment, and assessment of biological properties with potential for drug development are areas of active, ongoing research. This review is focused on the chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity recently reported for mono-, di-, tri-, and tetraCQAs.
Collapse
Affiliation(s)
- Armando Alcázar Magaña
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
16
|
Costarelli A, Cannavò S, Cerri M, Pellegrino RM, Reale L, Paolocci F, Pasqualini S. Light and Temperature Shape the Phenylpropanoid Profile of Azolla filiculoides Fronds. FRONTIERS IN PLANT SCIENCE 2021; 12:727667. [PMID: 34745161 PMCID: PMC8567065 DOI: 10.3389/fpls.2021.727667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/16/2021] [Indexed: 05/12/2023]
Abstract
Azolla is a genus of floating freshwater ferns. By their high growth and N2 fixation rates, Azolla species have been exploited for centuries by populations of South-east Asia as biofertilizers in rice paddies. The use of Azolla species as a sustainable plant material for diverse applications, such as feeding, biofuel production, and bioremediation, has encountered a growing interest over the last few years. However, high levels of feed deterrent flavonoids in their fronds have discouraged the use of these ferns as a sustainable protein source for animal consumption. Additionally, information on how and to what extent environmental determinants affect the accumulation of secondary metabolites in these organisms remains poorly understood. Moving from these considerations, here, we investigated by an untargeted metabolomics approach the profiles of phenylpropanoid compounds in the fronds of Azolla filiculoides sampled under control and pigment-inducing stress conditions. In parallel, we assayed the expression of essential structural genes of the phenylpropanoid pathway by quantitative RT-PCR. This study provides novel information concerning A. filiculoides phenylpropanoid compounds and their temporal profiling in response to environmental stimuli. In particular, we show that besides the already known 3-deoxyanthocyanidins, anthocyanidins, and proanthocyanidins, this fern can accumulate additional secondary metabolites of outstanding importance, such as chemoattractants, defense compounds, and reactive oxygen species (ROS) scavengers, and crucial as dietary components for humans, such as dihydrochalcones, stilbenes, isoflavones, and phlobaphenes. The findings of this study open an opportunity for future research studies to unveil the interplay between genetic and environmental determinants underlying the elicitation of the secondary metabolites in ferns and exploit these organisms as sustainable sources of beneficial metabolites for human health.
Collapse
Affiliation(s)
- Alma Costarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Sara Cannavò
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Martina Cerri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | | | - Lara Reale
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Francesco Paolocci
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Perugia, Italy
- *Correspondence: Francesco Paolocci
| | - Stefania Pasqualini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Güngör E, Brouwer P, Dijkhuizen LW, Shaffar DC, Nierop KG, de Vos RC, Sastre Toraño J, van der Meer IM, Schluepmann H. Azolla ferns testify: seed plants and ferns share a common ancestor for leucoanthocyanidin reductase enzymes. THE NEW PHYTOLOGIST 2021; 229:1118-1132. [PMID: 32858769 PMCID: PMC7820995 DOI: 10.1111/nph.16896] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/12/2020] [Indexed: 05/02/2023]
Abstract
Questions about in vivo substrates for proanthocyanidin (PA) biosynthesis and condensation have not been resolved and wide gaps in the understanding of transport and biogenesis in 'tannosomes' persist. Here we examined the evolution of PA biosynthesis in ferns not previously reported, asking what PAs are synthesised and how. Chemical and gene-expression analyses were combined to characterise PA biosynthesis, leveraging genome annotation from the floating fern Azolla filiculoides. In vitro assay and phylogenomics of PIP-dehydrogenases served to infer the evolution of leucoanthocyanidin reductase (LAR). Sporophyte-synthesised (epi)catechin polymers, averaging only seven subunits, accumulated to 5.3% in A. filiculoides, and 8% in A. pinnata biomass dry weight. Consistently, a LAR active in vitro was highly expressed in A. filiculoides. LAR, and paralogous fern WLAR-enzymes with differing substrate binding sites, represent an evolutionary innovation of the common ancestor of fern and seed plants. The specific ecological niche of Azolla ferns, a floating plant-microbe mat massively fixing CO2 and N2 , shaped their metabolism in which PA biosynthesis predominates and employs novel fern LAR enzymes. Characterisation of in vivo substrates of these LAR, will help to shed light on the recently assigned and surprising dual catalysis of LAR from seed plants.
Collapse
Affiliation(s)
- Erbil Güngör
- Molecular Plant PhysiologyUtrecht UniversityPadualaan 8Utrecht3584 CHthe Netherlands
| | - Paul Brouwer
- Molecular Plant PhysiologyUtrecht UniversityPadualaan 8Utrecht3584 CHthe Netherlands
- Earth SciencesUtrecht UniversityPrincetonlaan 8Utrecht3584 CBthe Netherlands
| | - Laura W. Dijkhuizen
- Molecular Plant PhysiologyUtrecht UniversityPadualaan 8Utrecht3584 CHthe Netherlands
| | - Dally Chaerul Shaffar
- Molecular Plant PhysiologyUtrecht UniversityPadualaan 8Utrecht3584 CHthe Netherlands
| | - Klaas G.J. Nierop
- Earth SciencesUtrecht UniversityPrincetonlaan 8Utrecht3584 CBthe Netherlands
| | - Ric C.H. de Vos
- BioscienceWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Javier Sastre Toraño
- Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrecht3508 TBthe Netherlands
| | - Ingrid M. van der Meer
- BioscienceWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Henriette Schluepmann
- Molecular Plant PhysiologyUtrecht UniversityPadualaan 8Utrecht3584 CHthe Netherlands
| |
Collapse
|
18
|
Feng J, Yu P, Zhou Q, Tian Z, Sun M, Li X, Wang X, Jiang H. An integrated data filtering and identification strategy for rapid profiling of chemical constituents, with Arnebiae Radix as an example. J Chromatogr A 2020; 1629:461496. [PMID: 32846341 DOI: 10.1016/j.chroma.2020.461496] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023]
Abstract
Profiling the chemical components of complicated herbal extracts using traditional analytical methods is time-consuming and laborious. In this study, an integrated data filtering and identification strategy was developed to efficiently identify the chemical constituents in Arnebiae Radix. The post-acquisition data processing steps with this strategy were as follows: (1) data acquisition by ultra-high performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-MS); (2) background subtraction on the basis of the total ion chromatogram (TIC) to obtain the background-subtracted ion chromatogram; (3) construction of a diagnostic ion database based on the measured MS/MS fragment ions of reference standards and auxiliary diagnostic information according to literatures; (4) mass defect filtering (MDF) to filter the background-subtracted ion chromatogram; and (5) rapid structural identification in the MDF-processed ion chromatogram on the basis of the diagnostic ion database and further structural confirmation by analysing the retention time, fragment behaviour, and online databases (Chemspider, PubChem, and SciFinder). In this study, the herbal medicine Arnebiae Radix was used to illustrate this strategy. A total of 96 compounds were efficiently exposed and characterized from Arnebiae Radix samples obtained from 20 sources, and 13 of these compounds were confirmed by comparison with the reference standards. Thirty components with a low abundance, that remained undetected in the TIC, were identified in the MDF-processed ion chromatogram. Nine of these compounds had not been identified from Arnebiae Radix previously, and were tentatively screened as unknowns. The chemical components in traditional Chinese medicine preparations are considered to be the material basis for the effectiveness of this medical system, and are closely related to the pharmacological activities of the drugs. The pharmacodynamics of these drugs are known to be influenced by the synergistic effects of various components. Therefore, comprehensive profiling of the chemical compositions of herbal extracts is essential for systematic elucidation of the pharmacodynamics of these medicines.
Collapse
Affiliation(s)
- Junjie Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Pengfei Yu
- Inner MenGolia Mengqi Pharmaceutical Co. LTD, Huhhot, 011700, China
| | - Qian Zhou
- Shandong Academy of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhenhua Tian
- Expermiental Centre, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengjia Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xueling Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoming Wang
- Expermiental Centre, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Haiqiang Jiang
- Expermiental Centre, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
19
|
Ao N, Qu Y, Deng Y, Cai Q, Suo T, Zheng Y. Chemical basis of hawthorn processed with honey protecting against myocardial ischaemia. Food Funct 2020; 11:3134-3143. [PMID: 32207479 DOI: 10.1039/c9fo02406a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hawthorn including many plants from the genus Crataegus (C.) is used for traditional medicines, herbal drugs, and dietary supplements all over the world. In China, C. pinnatifida Bge. var. major N, E. Br, and C. pinnatifida Bge. are two major species that are used as hawthorn. The purpose of this study is to assay the myocardial protection of hawthorn fruit processed with honey (MSZ) and screen the chemical basis of MSZ on this effect. Firstly, ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC/Q-TOF-MS) was used to analyze the chemical constituents of the sliced dry fruit of hawthorn (SZ) and MSZ. Principal component analysis (PCA) was used to differentiate them. Orthogonal partial least squares-discriminate analysis (OPLS-DA) was applied to screen different compounds between SZ and MSZ, and 32 different compounds were selected. Then a pharmacodynamic test to investigate their protective effect against myocardial ischaemia was carried out. The results demonstrated that the protective effect of MSZ was better than that of SZ on the same dose. Finally, the chemical basis for the protective effect provided by MSZ against myocardial ischaemia was speculated based on correlation analysis. Taken together, all these results suggest that phenylpropanoids, organic acids, tannins, and flavonoids might be the chemical basis of MSZ protecting against myocardial ischaemia.
Collapse
Affiliation(s)
- Nannan Ao
- Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China.
| | | | | | | | | | | |
Collapse
|