1
|
Masár M, Hradski J, Szucs R. Development of universal isotachophoresis - capillary zone electrophoresis method for trace determination of bromide in complex ionogenic samples. Talanta 2025; 293:128113. [PMID: 40233533 DOI: 10.1016/j.talanta.2025.128113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Trace determination of bromide in water samples and high-purity chemicals was accomplished by capillary zone electrophoresis (CZE) with online isotachophoresis (ITP) sample pretreatment and photometric detection at 200 nm. The adverse effect of bromide on human health necessitates its monitoring in drinking water. Bromide is also a precursor of bromate, a carcinogenic by-product of water disinfection that can be formed in drinking water during ozonation (oxidation of bromide to bromate). ITP-CZE separations were performed at acidic pH (2.7) as this facilitates high selectivity of the separation system. Addition of the zwitterionic surfactant N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate to the leading electrolyte enhanced the separation of bromide from anionic macrocomponents in drinking water. The first separation step, ITP, served as a very efficient sample clean-up. Linear response was observed in the presence and absence of matrix in the concentration range 1-50 μg/L. ITP-CZE separations were characterized by very good repeatability of migration times (up to 0.4 % RSD) as well as peak areas (up to 3.7 % RSD) of bromide. The achieved limit of detection for bromide was 0.3 μg/L in the presence of matrix. To assess the practical applicability of the developed test procedure, samples of mineral and drinking water, as well as highly pure chloride salts, were analyzed. Recoveries of bromide in the analyzed samples were in the range of 98-103 %. The developed ITP-CZE method can be used for highly selective determination of trace concentrations of bromide present in ionogenic samples.
Collapse
Affiliation(s)
- Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-84215, Bratislava, Slovakia.
| | - Jasna Hradski
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-84215, Bratislava, Slovakia
| | - Roman Szucs
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-84215, Bratislava, Slovakia
| |
Collapse
|
2
|
Pont L, Vergara-Barberán M, Carrasco-Correa EJ. A Comprehensive Review on Capillary Electrophoresis-Mass Spectrometry in Advancing Biomolecular Research. Electrophoresis 2024. [PMID: 39508247 DOI: 10.1002/elps.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
This review provides an in-depth exploration of capillary electrophoresis-mass spectrometry (CE-MS) in biomolecular research from 2020 to 2024. CE-MS emerges as a versatile and powerful tool due to its numerous advantages, facilitating the analysis of various biomolecules, including proteins, peptides, oligonucleotides, and other metabolites, such as lipids, carbohydrates, or amines, among others. The review extends to various CE modes and interfaces for the CE-MS coupling, offering comprehensive insights into their applications within biomolecular research. Furthermore, it effectively summarizes the conditions employed in CE-MS while also addressing critical aspects such as sample preparation requirements. Despite its advantages, the review highlights a gap between discovery and practical implementation, underscoring the need for large-scale validation and method standardization to fully realize the potential of CE-MS in biomolecular research.
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
- Serra Húnter Program, Generalitat de Catalunya, Barcelona, Spain
| | - María Vergara-Barberán
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, Valencia, Spain
| | | |
Collapse
|
3
|
Li Y, Miao S, Tan J, Zhang Q, Chen DDY. Capillary Electrophoresis: A Three-Year Literature Review. Anal Chem 2024; 96:7799-7816. [PMID: 38598751 DOI: 10.1021/acs.analchem.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Yueyang Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Siyu Miao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jiahua Tan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
4
|
Corva DM, Doeven EH, Parke B, Adams SD, Tye SJ, Hashemi P, Berk M, Kouzani AZ. SmartFSCV: An Artificial Intelligence Enabled Miniaturised FSCV Device Targeting Serotonin. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:75-85. [PMID: 38487099 PMCID: PMC10939322 DOI: 10.1109/ojemb.2024.3356177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 03/17/2024] Open
Abstract
Goal: Dynamically monitoring serotonin in real-time within target brain regions would significantly improve the diagnostic and therapeutic approaches to a variety of neurological and psychiatric disorders. Current systems for measuring serotonin lack immediacy and portability and are bulky and expensive. Methods: We present a new miniaturised device, named SmartFSCV, designed to monitor dynamic changes of serotonin using fast-scan cyclic voltammetry (FSCV). This device outputs a precision voltage potential between -3 to +3 V, and measures current between -1.5 to +1.5 μA with nano-ampere accuracy. The device can output modifiable arbitrary waveforms for various measurements and uses an N-shaped waveform at a scan-rate of 1000 V/s for sensing serotonin. Results: Four experiments were conducted to validate SmartFSCV: static bench test, dynamic serotonin test and two artificial intelligence (AI) algorithm tests. Conclusions: These tests confirmed the ability of SmartFSCV to accurately sense and make informed decisions about the presence of serotonin using AI.
Collapse
Affiliation(s)
- Dean M. Corva
- School of EngineeringDeakin UniversityGeelongVIC3216Australia
| | - Egan H. Doeven
- School of Life and Environmental SciencesDeakin UniversityGeelongVIC3216Australia
| | - Brenna Parke
- Department of BioengineeringImperial College LondonSW7 2AZLondonU.K.
| | - Scott D. Adams
- School of EngineeringDeakin UniversityGeelongVIC3216Australia
| | - Susannah J. Tye
- Queensland Brain InstituteThe University of QueenslandSt. LuciaQLD4072Australia
| | - Parastoo Hashemi
- Department of BioengineeringImperial College LondonSW7 2AZLondonU.K.
| | - Michael Berk
- School of Medicine, IMPACTDeakin UniversityGeelongVIC3216Australia
| | | |
Collapse
|
5
|
Zafar K, Wasim M, Fatima B, Hussain D, Mehmood R, Najam-Ul-Haq M. Quantification of tramadol and serotonin by cobalt nickel tungstate in real biological samples to evaluate the effect of analgesic drugs on neurotransmitters. Sci Rep 2023; 13:10239. [PMID: 37353529 PMCID: PMC10290146 DOI: 10.1038/s41598-023-37053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
In this work, CoNiWO4 nanocomposite was used as an electrochemical sensor for the simultaneous electrochemical detection of tramadol and serotonin. The nanocomposite was synthesized using a hydrothermal method and characterized via XRD, SEM, TGA, Zeta, UV, and FTIR. The sensor was developed by depositing CoNiWO4-NPs onto the glassy carbon electrode surface. Tramadol and serotonin were detected by employing cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. Analytes were detected at different pH, concentrations, and scan rates. The prepared sensor showed a 0-60 µM linear range, with a LOD of 0.71 µM and 4.29 µM and LOQ of 14.3 µM and 2.3 µM for serotonin and tramadol, respectively. Finally, the modified electrode (CoNiWO4-GCE) was applied to determine tramadol and serotonin in biological samples.
Collapse
Affiliation(s)
- Komal Zafar
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Wasim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | | | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
6
|
Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life (Basel) 2023; 13:life13030706. [PMID: 36983860 PMCID: PMC10051737 DOI: 10.3390/life13030706] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Several environmental stresses, including biotic and abiotic factors, adversely affect the growth and development of crops, thereby lowering their yield. However, abiotic factors, e.g., drought, salinity, cold, heat, ultraviolet radiations (UVr), reactive oxygen species (ROS), trace metals (TM), and soil pH, are extremely destructive and decrease crop yield worldwide. It is expected that more than 50% of crop production losses are due to abiotic stresses. Moreover, these factors are responsible for physiological and biochemical changes in plants. The response of different plant species to such stresses is a complex phenomenon with individual features for several species. In addition, it has been shown that abiotic factors stimulate multi-gene responses by making modifications in the accumulation of the primary and secondary metabolites. Metabolomics is a promising way to interpret biotic and abiotic stress tolerance in plants. The study of metabolic profiling revealed different types of metabolites, e.g., amino acids, carbohydrates, phenols, polyamines, terpenes, etc, which are accumulated in plants. Among all, primary metabolites, such as amino acids, carbohydrates, lipids polyamines, and glycine betaine, are considered the major contributing factors that work as osmolytes and osmoprotectants for plants from various environmental stress factors. In contrast, plant-derived secondary metabolites, e.g., phenolics, terpenoids, and nitrogen-containing compounds (alkaloids), have no direct role in the growth and development of plants. Nevertheless, such metabolites could play a significant role as a defense by protecting plants from biotic factors such as herbivores, insects, and pathogens. In addition, they can enhance the resistance against abiotic factors. Therefore, metabolomics practices are becoming essential and influential in plants by identifying different phytochemicals that are part of the acclimation responses to various stimuli. Hence, an accurate metabolome analysis is important to understand the basics of stress physiology and biochemistry. This review provides insight into the current information related to the impact of biotic and abiotic factors on variations of various sets of metabolite levels and explores how primary and secondary metabolites help plants in response to these stresses.
Collapse
|
7
|
Malá Z, Gebauer P. Analytical isotachophoresis 1967–2022: From standard analytical technique to universal on-line concentration tool. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Graf HG, Rudisch BM, Ude L, Müller L, Huhn C. Picomolar detection limits for glyphosate by two-dimensional column-coupled isotachophoresis/capillary zone electrophoresis-mass spectrometry. J Sep Sci 2022; 45:3887-3899. [PMID: 35998068 DOI: 10.1002/jssc.202200519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
Capillary electrophoresis-mass spectrometry often lacks sufficient limits of detection for trace substances in the environment due to its low loadability. To overcome this problem, we conducted a feasibility study for column-coupling isotachophoresis to capillary electrophoresis-mass spectrometry. The first dimension isotachophoresis preconcentrated the analytes. The column-coupling of both dimensions was achieved by a hybrid capillary microfluidic chip setup. Reliable analyte transfer by voltage switching was enabled by an in-chip capacitively coupled contactless conductivity detector placed around the channel of the common section between two T-shaped crossings in the chip connecting both dimensions. This eliminated the need to calculate the moment of analyte transfer. A commercial capillary electrophoresis-mass spectrometry instrument with easily installable adaptations operated the setup. Prior to coupling isotachophoresis with capillary zone electrophoresis-mass spectrometry, both dimensions were optimized individually by simulations and verified experimentally. Both dimensions were able to stack/separate all degradation products of glyphosate, the most important herbicide applied worldwide. The first dimension isotachophoresis also removed phosphate, which is a critical matrix component in many environmental samples. Enrichment and separation of glyphosate and its main degradation product aminomethylphosphonic acid by the 2D setup provided an excellent limit of detection of 150 pM (25 ng/L) for glyphosate. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hannes Georg Graf
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | - Lukas Ude
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Linda Müller
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Recent progress in analytical capillary isotachophoresis (2018 - March 2022). J Chromatogr A 2022; 1677:463337. [PMID: 35868155 DOI: 10.1016/j.chroma.2022.463337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022]
Abstract
This review brings a survey of papers on analytical capillary and microchip isotachophoresis published since 2018 until the first quarter of 2022. Theoretical papers extending fundamental knowledge include those on computer simulations that remain an important research tool useful in the design of electrolyte systems. Many papers are focused on instrumental aspects where new media including microfluidic devices and their hyphenation to various detection techniques bring remarkable results. Papers reporting analytical applications demonstrate the potential of contemporary analytical isotachophoresis. Although it is not being used on a mass scale, its special features are attracting continued interest resulting in applications of isotachophoresis both as a stand-alone analytical method and as a part of multidimensional separation techniques.
Collapse
|
10
|
MA Y, HU Y, ZHENG L, CHEN L, ZHAO X, QU F. [Annual review of capillary electrophoresis technology in 2021]. Se Pu 2022; 40:591-599. [PMID: 35791597 PMCID: PMC9404112 DOI: 10.3724/sp.j.1123.2022.03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 11/25/2022] Open
Abstract
This paper provides an annual review of capillary electrophoresis (CE) technology in 2021. A total of 291 research papers related to CE technology published in 2021 were retrieved from the ISI Web of Science using the keywords, "capillary electrophoresis-mass spectrometry" "capillary isoelectric focusing" "micellar electrokinetic chromatography", or "capillary electrophoresis" (not "capillary electrochromatography" "microchip" and "capillary monolithic column"). In addition, nine research papers related to CE technology in Chinese journals were reviewed: Chinese Journal of Chromatography and Chinese Journal of Analytical Chemistry. This review focused on seven papers published in Coordination Chemistry Reviews, Angewandte Chemie-International Edition, Nature Protocols, TrAC-Trends in Analytical Chemistry, and Signal Transduction and Targeted Therapy with impact factors (IFs) greater than 10.0, as well as 42 papers reported in Analytical Chemistry, Analytica Chimica Acta, Talanta, and Food Chemistry with IFs between 5.0 and 10.0. This review also provides a comprehensive overview of representative CE works in Journal of Chromatography A and Electrophoresis with IFs<5.0, as well as important Chinese journals, Chinese Journal of Chromatography and Chinese Journal of Analytical Chemistry. According to the IF, this paper introduces the representative work of CE-related papers to allow readers to quickly understand the important research progress of CE technology in the past year.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng QU
- *Tel:(010)68918015,E-mail:(屈锋)
| |
Collapse
|
11
|
Cizmarova I, Matuskova M, Stefanik O, Horniakova A, Mikus P, Piestansky J. Determination of thiamine and pyridoxine in food supplements by a green ultrasensitive two-dimensional capillary electrophoresis hyphenated with mass spectrometry. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Wang M, Gong Q, Liu W, Tan S, Xiao J, Chen C. Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical and food analysis (2019-2021). J Sep Sci 2022; 45:1918-1941. [PMID: 35325510 DOI: 10.1002/jssc.202100727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
So far, the potential of capillary electrophoresis (CE) in the application fields has been increasingly excavated due to the advantages of simple operation, short analysis time, high-resolution, less sample consumption and low cost. This review examines the implementations and advancements of CE in different application fields (environmental, pharmaceutical, clinical and food analysis) covering the literature from 2019 to 2021. In addition, ultrasmall sample injection volume (nanoliter range) and short optical path lead to relatively low concentration sensitivity of the most frequently used UV-absorption spectrophotometric detection, so the pretreatment technology being developed has been gradually utilized to overcome this problem. Despite the review is focused on the development of CE in the fields of environmental, pharmaceutical, clinical and food analysis, the new sample pretreatment techniques of microextraction and enrichment which fit excellently to CE in recent three years are also described briefly. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengyao Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Qian Gong
- Department of Pharmacy, Hunan Cancer Hospital/ The Affiliated Cancer Hospital of School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
13
|
Piestansky J, Cizmarova I, Matuskova M, Mikus P. Comparison of 1D a 2D ITP-MS performance parameters and application possibilities: Ultratrace determination of B vitamins in human urine. Electrophoresis 2021; 43:998-1009. [PMID: 34597419 DOI: 10.1002/elps.202100209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 12/21/2022]
Abstract
The possibility to investigate analytes at ultra-low concentration levels still remains a hot topic in bioanalysis. In this area, various preconcentration techniques are an integral part of analytical procedures. When applying electromigration separation techniques, an isotachophoresis has been advantageously employed many times for this purpose. To solve current biomedical tasks effectively, an advanced two-dimensional isotachophoretic instrument (in a hydrodynamically closed separation system with an enhanced sample load capacity) hyphenated with mass spectrometry (ITP-ITP-MS) has been proposed by Foret and coworkers. As a continuation, this work represents the first study dealing with a full validation of an ITP-ITP-MS method. In order to see the benefits of an online ITP sample pretreatment (preconcentration and clean-up) on the performance parameters, the developed 2D ITP-MS method was compared with a corresponding 1D ITP-MS method. Application potentialities of the compared methods were demonstrated via a determination of two B vitamins, namely thiamine and pyridoxine, in human urine samples. The developed 2D ITP-MS method showed its enhanced effectivity and usefulness for a routine biomedical use (here, a reliable screening of trace B vitamins in human urine without an offline sample preparation).
Collapse
Affiliation(s)
- Juraj Piestansky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.,Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Michaela Matuskova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.,Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
14
|
Helena H, Ivona V, Roman Ř, František F. Current applications of capillary electrophoresis-mass spectrometry for the analysis of biologically important analytes in urine (2017 to mid-2021): A review. J Sep Sci 2021; 45:305-324. [PMID: 34538010 PMCID: PMC9292318 DOI: 10.1002/jssc.202100621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
Capillary electrophoresis coupled online with mass detection is a modern tool for analyzing wide ranges of compounds in complex samples, including urine. Capillary electrophoresis with mass spectrometry allows the separation and identification of various analytes spanning from small ions to high molecular weight protein complexes. Similarly to the much more common liquid chromatography‐mass spectrometry techniques, the capillary electrophoresis separation reduces the complexity of the mixture of analytes entering the mass spectrometer resulting in reduced ion suppression and a more straightforward interpretation of the mass spectrometry data. This review summarizes capillary electrophoresis with mass spectrometry studies published between the years 2017 and 2021, aiming at the determination of various compounds excreted in urine. The properties of the urine, including its diagnostical and analytical features and chemical composition, are also discussed including general protocols for the urine sample preparation. The mechanism of the electrophoretic separation and the instrumentation for capillary electrophoresis with mass spectrometry coupling is also included. This review shows the potential of the capillary electrophoresis with mass spectrometry technique for the analyses of different kinds of analytes in a complex biological matrix. The discussed applications are divided into two main groups (capillary electrophoresis with mass spectrometry for the determination of drugs and drugs of abuse in urine and capillary electrophoresis with mass spectrometry for the studies of urinary metabolome).
Collapse
Affiliation(s)
- Hrušková Helena
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Voráčová Ivona
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Řemínek Roman
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Foret František
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|