1
|
Obata Y, Sakamaki H. Improving the chromatographic separation of phosphorothioate oligonucleotide from impurities by optimizing selectivity through mobile-phase conditions in Ion-pair reversed-phase high-performance liquid chromatography. J Chromatogr A 2025; 1750:465915. [PMID: 40188785 DOI: 10.1016/j.chroma.2025.465915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
A diastereomer peak broadening has been observed in phosphorothioate (PS) oligonucleotide analysis in several modes of high-performance liquid chromatography (HPLC). PS oligonucleotide impurities are of various types, and their physicochemical properties are similar to those of PS oligonucleotides. Consequently, quality control requires the chromatographic separation of PS oligonucleotide from impurities and separation of impurities from one another, which is challenging. In this study, to optimize the selectivity for effectively separating PS oligonucleotide from its impurities such as phosphodiester impurities (POs) and n - 1 truncated sequences (n - 1 s) in ion-pair reversed-phase (IP-RP) HPLC, the effect of mobile-phase conditions on the selectivity was investigated. Most importantly, it was demonstrated that the selectivity for the diastereomers of PS oligonucleotides is optimally reduced by the ion-pair (IP) system using alkylamine with a tertiary or quaternary structure and alkyl chain lengths of ≥4, using a method of observing the peak widths of PS oligonucleotides. Alternatively, using counterion species, such as hydrophobic alkyl carboxylic acid, improves the selectivity between the PS oligonucleotide and its impurities. Consequently, the IP system using tributylamine and heptanoic acid is proposed as the system that has optimal selectivity. This system can separate PS oligonucleotides from spiked PO and n - 1 groups involving those with different positions and has outstanding quantitative performance at the 0.2 %-5 % range. This study provides a guidance for optimizing the selectivity for IP-RP HPLC, and the proposed IP system could be useful for ensuring the quality control of antisense oligonucleotides including PS linkages.
Collapse
Affiliation(s)
- Yuki Obata
- Chemicals Evaluation and Research Institute, Japan, 1600 Shimotakano, Sugito-machi, Kitakatsushika-gun, Saitama 345-0043, Japan.
| | - Hiroshi Sakamaki
- Chemicals Evaluation and Research Institute, Japan, 1600 Shimotakano, Sugito-machi, Kitakatsushika-gun, Saitama 345-0043, Japan.
| |
Collapse
|
2
|
Fekete S, Imiołek M, Gritti F, Lauber M, Addepalli B, Xu M. Selected new approaches and future perspectives in liquid chromatography for the analysis of emerging modalities. Eur J Pharm Sci 2025; 209:107101. [PMID: 40222419 DOI: 10.1016/j.ejps.2025.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Emerging biopharmaceutical modalities, such as genetic medicines and RNA therapies, offer transformative potential for treating previously intractable diseases. However, these complex drugs present unique analytical challenges due to their intricate structures, sophisticated manufacturing processes, and modality-specific product quality attributes. Liquid chromatography (LC) has emerged as a versatile tool for addressing these challenges, enabling precise characterization and quality control strategies. This review highlights recent advancements in LC technologies, including low-adsorption hardware, ultra-wide pore size exclusion chromatography (SEC) columns, and innovative separation modes such as slalom chromatography and pressure-enhanced liquid chromatography (PELC). These developments tackle issues such as non-specific adsorption, carryover, and inadequate selectivity while improving resolution and robustness for large biomolecules like mRNA, adeno-associated viruses (AAVs), and lipid nanoparticles (LNPs). Novel approaches, such as tandem SEC systems, gradient SEC columns, and dual stationary phase gradients, further expand the scope of LC techniques by enhancing separations for diverse analyte sizes and complexities. Additionally, practical innovations like bracketed injection methods and new enzymatic tools for oligo-mapping improve reproducibility, efficiency, and confidence in RNA sequence analysis. These advancements not only address current analytical limitations but also pave the way for regulatory-compliant approaches, which will support the broader adoption of LC in both discovery and quality control settings. As the field continues to evolve, these innovations are poised to play a pivotal role in ensuring the safety, efficacy, and consistency of next-generation therapeutics.
Collapse
|
3
|
D'Atri V, Barrientos RC, Losacco GL, Rudaz S, Delobel A, Regalado EL, Guillarme D. Trends in Pharmaceutical Analysis: The Evolving Role of Liquid Chromatography. Anal Chem 2025; 97:4706-4727. [PMID: 40008977 DOI: 10.1021/acs.analchem.4c06662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Affiliation(s)
- Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gioacchino Luca Losacco
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Arnaud Delobel
- Quality Assistance S.A., Technnoparc de Thudinie 2, 6536 Donstiennes, Belgium
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
4
|
Xia W, Tan Y, Liu Y, Xie N, Zhu H. Prospect of extracellular vesicles in tumor immunotherapy. Front Immunol 2025; 16:1525052. [PMID: 40078996 PMCID: PMC11897508 DOI: 10.3389/fimmu.2025.1525052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Extracellular vesicles (EVs), as cell-derived small vesicles, facilitate intercellular communication within the tumor microenvironment (TME) by transporting biomolecules. EVs from different sources have varied contents, demonstrating differentiated functions that can either promote or inhibit cancer progression. Thus, regulating the formation, secretion, and intake of EVs becomes a new strategy for cancer intervention. Advancements in EV isolation techniques have spurred interest in EV-based therapies, particularly for tumor immunotherapy. This review explores the multifaceted functions of EVs from various sources in tumor immunotherapy, highlighting their potential in cancer vaccines and adoptive cell therapy. Furthermore, we explore the potential of EVs as nanoparticle delivery systems in tumor immunotherapy. Finally, we discuss the current state of EVs in clinical settings and future directions, aiming to provide crucial information to advance the development and clinical application of EVs for cancer treatment.
Collapse
Affiliation(s)
- Wenbo Xia
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunhan Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongen Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Peterka O, Langová A, Jirásko R, Holčapek M. Bioinert UHPLC system improves sensitivity and peak shapes for ionic metabolites. J Chromatogr A 2025; 1740:465588. [PMID: 39662336 DOI: 10.1016/j.chroma.2024.465588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
The analysis of ionic compounds by liquid chromatography is challenging due to the interaction of analytes with the metal surface of the instrument and the column, leading to poor peak shape and decreased sensitivity. The use of bioinert materials in the chromatographic system minimizes these unrequired interactions. In this work, the ultrahigh-performance liquid chromatography (UHPLC) with bioinert components was connected to a high-resolution mass spectrometer to develop a method for untargeted metabolomic analysis. 81 standards of metabolites were used for the development and optimization of the method. In comparison to the conventional chromatographic system, the application of bioinert technology resulted in significantly improved peak shapes and increased sensitivity, especially for metabolites containing phosphate groups. The calibration curves were constructed for the evaluation of the method performance, showing a wide dynamic range, low limit of detection, and linear regression coefficients higher than 0.99 for all standards. The optimized method was applied to the analysis of NIST SRM 1950 human plasma, which allowed the detection of 156 metabolites and polar lipids based on the combination of mass accuracy in the full-scan mass spectra in both polarity modes, characteristic fragment ions in MS/MS, and logical chromatographic behavior leading to the high confidence level of annotation/identification. We have demonstrated an improvement in the peak shapes and sensitivity of ionic metabolites using bioinert technology, which indicates the potential for the analysis of other ionic compounds, e.g., molecules containing phosphate groups.
Collapse
Affiliation(s)
- Ondřej Peterka
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Alena Langová
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic.
| |
Collapse
|
6
|
Wei B, Dai L, Zhang K. Applications of hydrophilic interaction and mixed-mode liquid chromatography in pharmaceutical analysis. J Chromatogr A 2025; 1739:465524. [PMID: 39613506 DOI: 10.1016/j.chroma.2024.465524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Hydrophilic Interaction Liquid Chromatography (HILIC) and Mixed-Mode Chromatography (MMC) excel in separating polar, hydrophilic, and charged analytes due to unique hydrophilic or mixed-mode retention mechanisms. They represent a complementary approach to the widely used Reversed Phase Liquid Chromatography (RPLC). Often, where RPLC struggles, HILIC and MMC thrive. The applications of HILIC and MMC in pharmaceutical analysis are expanding rapidly across a variety of drug modalities. This article reviews advances in the applications of HILIC and MMC in seven major areas of pharmaceutical analysis: synthetic small molecules, counterions and salts, lipids and surfactants, carbohydrates, amino acids and peptides, proteins, and nucleic acids in the past two decades. We aim to provide comprehensive information and strategic guidance to facilitate future research, development and applications in these areas.
Collapse
Affiliation(s)
- Bingchuan Wei
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lulu Dai
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
7
|
Guillarme D, Fekete S, Studzińska S. Protocol for Oligonucleotides Characterization Using Hydrophilic Interaction Chromatography. J Sep Sci 2025; 48:e70088. [PMID: 39876571 DOI: 10.1002/jssc.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/30/2025]
Abstract
Oligonucleotides (ONs) are an increasingly popular category of molecules in the pharmaceutical landscape, particularly attractive for the treatment of genetic and rare diseases. However, analyzing these molecules presents significant challenges, due to their highly hydrophilic nature, multiple negative charges, and the presence of closely related impurities resulting from the complex solid-phase synthesis process. Ion pairing reverse-phase liquid chromatography (IP-RPLC) is the preferred technique for ONs analysis but is not ideal for mass spectrometry (MS) coupling. Consequently, there is a growing interest in exploring alternative strategies with hydrophilic interaction chromatography (HILIC) emerging as one of the most promising options. As HILIC is not yet fully established for the analysis of ONs, we have prepared this protocol paper to facilitate entry into this field. It not only provides best practices, opportunities, and potential advantages but also caveats and other important considerations for using HILIC to characterize ONs. The paper addresses the selection of stationary and mobile phases, optimization of gradient conditions, MS coupling, and key aspects to consider when manipulating ON samples. We hope this protocol will help establish HILIC as a more universal solution for ONs analysis.
Collapse
Affiliation(s)
- Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | | - Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
8
|
Mahdi G, Alamdary A, Kaghazian H, Ahmadi N, Mardani R, Gholami A. Biopharmaceutical Analysis by HPLC: Practices and Challenges. Chonnam Med J 2025; 61:19-31. [PMID: 39958269 PMCID: PMC11821985 DOI: 10.4068/cmj.2025.61.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 02/18/2025] Open
Abstract
High-Performance Liquid Chromatography (HPLC) is an essential analytical technique in the biopharmaceutical industry, crucial for the separation, identification, and quantification of complex biological molecules such as monoclonal antibodies and recombinant proteins. It plays a vital role in assessing the purity, potency, and stability of biopharmaceutical products, which are critical for regulatory approval. HPLC offers high resolution and sensitivity, allowing for the detection of small quantities of compounds in complex samples. Its versatility is evident in various modes, including reversed-phase, ion-exchange, size-exclusion, and affinity chromatography. However, challenges remain, such as selecting the appropriate stationary phase, addressing peak overlapping and matrix interference, and optimizing operational parameters like flow rate and mobile phase composition. Standardization and method validation are essential for ensuring reproducibility, accuracy, and regulatory compliance in HPLC analyses. The need for reliable reference materials and calibration methods is also a significant challenge. Recent advancements in HPLC technology, including ultra-high-performance liquid chromatography (UHPLC) and hybrid systems that integrate HPLC with mass spectrometry, are helping to overcome these challenges by enhancing sensitivity, resolution, and analysis speed. In summary, as biopharmaceutical products grow more complex, HPLC's role will continue to evolve, highlighting the need for ongoing research and development to refine this critical analytical tool.
Collapse
Affiliation(s)
- Golshan Mahdi
- Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Ashkan Alamdary
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Hooman Kaghazian
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Nayebali Ahmadi
- Department of Medical Lab Technology, Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajab Mardani
- Department of Viral Vaccine, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Gholami
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Goyon A. Keeping up with a Quickly Diversifying Pharmaceutical Landscape. ACS MEASUREMENT SCIENCE AU 2024; 4:615-619. [PMID: 39713029 PMCID: PMC11659996 DOI: 10.1021/acsmeasuresciau.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 12/24/2024]
Abstract
Small molecules and antibodies have dominated the pharmaceutical landscape for decades. However, limitations associated with therapeutic targets deemed "undruggable" and progress in biology and chemistry have led to the blossoming of drug modalities and therapeutic approaches. In 2023, a high number of 9 oligonucleotide and peptide products were approved by the Food and Drug Administration (FDA), accounting for 16% of all drugs approved. Additionally, for the first time, a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 gene therapy product was approved for the treatment of sickle cell disease. New drug modalities possess a wide range of physicochemical properties and structures, which complicates their analytical characterization. Impurities are formed at each step of the oligonucleotide and peptide solid phase synthesis and during shelf life. Longer chain lengths lead to a higher number of closely related impurities that become increasingly more difficult to separate from the full-length product. Chemical modifications such as phosphorothioates (PS) result in the presence of diastereomers, which often require orthogonal methods for their profiling and strategies to prevent their interference with the separation of achiral impurities. In-vitro produced mRNA and plasmid DNA also present a variety of quality attributes that need to be determined, such as the polyA tail length or capping efficiency. Analytical challenges arise from the variety of drug modality physiochemical properties and attributes, fast turnaround times, and heightened level of characterization needed to enable data-driven decisions early in the drug development process. This perspective provides the author's views on the lessons learned and strategies employed in recent years.
Collapse
Affiliation(s)
- Alexandre Goyon
- Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
10
|
Abernathy S, Rayhan A, Limbach PA. Stationary phase effects in hydrophilic interaction liquid chromatographic separation of oligonucleotides. Analyst 2024; 150:185-196. [PMID: 39611213 PMCID: PMC11734610 DOI: 10.1039/d4an01155d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The use of liquid chromatography coupled with mass spectrometry (LC-MS) for the characterization of oligonucleotides and nucleic acids is a powerful analytical method. Recently, hydrophilic interaction chromatography (HILIC) has been proposed as a reasonable alternative to ion-pair reversed phase separations of oligonucleotides prior to MS. A wide variety of HILIC stationary phase surface chemistries are currently available. Although their selectivity can be considerably different, few studies have compared these chemistries for LC-MS analysis of oligonucleotides. We evaluated ten different HILIC column chemistries to understand their capabilities for separating a variety of oligonucleotides. In general, we found that most columns were ineffective at separating larger (n > 15-mer) oligonucleotides under the mobile phase and gradient conditions evaluated here. However, several stationary phases were found to be effective for separating smaller oligonucleotides such as endonuclease digestion products. Given that early eluting oligonucleotides were found to be compatible with standard electrospray ionization conditions, several different HILIC stationary phase options are available for LC-MS studies of smaller oligonucleotides including those generated in RNA modification mapping experiments.
Collapse
Affiliation(s)
- Scott Abernathy
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, Ohio 45221-0172, USA.
| | - Asif Rayhan
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, Ohio 45221-0172, USA.
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, Ohio 45221-0172, USA.
| |
Collapse
|
11
|
Guo Y. Separation of nucleobases, nucleosides, nucleotides and oligonucleotides by hydrophilic interaction liquid chromatography (HILIC): A state-of-the-art review. J Chromatogr A 2024; 1738:465467. [PMID: 39486254 DOI: 10.1016/j.chroma.2024.465467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The polar nature of nucleobases, nucleosides and nucleotides makes hydrophilic interaction chromatography (HILIC) a good choice of technology for separation. Both naturally occurring and modified nucleosides and nucleotides have been successfully separated in HILIC. A wide range of stationary phases with different retention and selectivity are suitable for the separation of nucleobases, nucleosides and nucleotides; and a sufficient knowledge base is also available to guide method development. Although oligonucleotides are significantly different from nucleotides in terms of polarity and charges, HILIC has been shown to be a viable alternative to ion-pairing reversed-phase liquid chromatography (IP-RPLC). Only a few polar stationary phases have been shown to provide satisfactory performance; however, the requirements for the mobile phase composition including organic solvent, mobile phase pH and salt concentration are sufficiently understood. This review provides a comprehensive evaluation of the chromatographic conditions with a historical perspective on adopting and developing HILIC for the separation of nucleobases, nucleosides, nucleotides and oligonucleotides. The areas for more research and potential directions for future development activities are identified and discussed.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, 230 Park Ave. Florham Park, New Jersey 07932, USA.
| |
Collapse
|
12
|
Tiambeng TN, Yan Y, Patel SK, Cotham VC, Wang S, Li N. Characterization of adeno-associated virus capsid proteins using denaturing size-exclusion chromatography coupled with mass spectrometry. J Pharm Biomed Anal 2024; 253:116524. [PMID: 39442445 DOI: 10.1016/j.jpba.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Recombinant adeno-associated viruses (AAVs) are a highly effective platform for gene delivery for the treatment of many human diseases. Characterization of AAV viral protein attributes (VP), such as serotype identity, VP stoichiometry, and VP post-translational modifications, is essential to ensure product and process consistency. While size-exclusion chromatography (SEC) coupled with mass spectrometry (MS) is commonly used in the biopharmaceutical industry for analyzing protein therapeutics, its application to intact AAV VP components has not gained traction, presumably due to difficulties in achieving adequate resolution of VP(1-3) monomers. Herein, we describe the development of a denaturing SEC method and optimization of SEC parameters, including stationary phase pore size, column temperature, and mobile phase composition, to achieve effective chromatographic separation of VP(1-3). We demonstrate that an optimized dSEC-MS method featuring MS-compatible formic acid, can effectively separate VP(1-3) across AAV1, 2, 5, 6, 8, and 9 serotypes using a single column and mobile phase condition. A case study was included to showcase successful application of the dSEC-MS method in analyzing changes across different AAV production processes, yielding similar conclusions to an orthogonal approach, such as hydrophilic interaction chromatography (HILIC)- MS. Additionally, dSEC integrated with fluorescence (FLR) and ultraviolet (UV) detection can be used to semi-quantitatively identify both AAV DNA and VP components from empty and full AAV samples. Overall, this robust and MS-friendly methodological advancement could greatly streamline the development and analytical quality control processes for AAV-based gene therapies, providing a highly sensitive method for intact VP characterization.
Collapse
Affiliation(s)
- Timothy N Tiambeng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA
| | - Yuetian Yan
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA.
| | - Shailin K Patel
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA
| | - Victoria C Cotham
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA
| | - Shunhai Wang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA
| |
Collapse
|
13
|
Galmiche M, Monat MA, Lopez DA, Lamboley C, Connolly P, Girel S, Guillarme D, Meister I, Rudaz S. Substantial benefits of an inert biphenyl column for the analysis of steroids and their phase II metabolites in biological samples. J Sep Sci 2024; 47:e2400436. [PMID: 39169650 DOI: 10.1002/jssc.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Steroids can be used as biomarkers in clinical metabolomics and other fields related to human toxicology. This chemical group is known for its complexity, considering its number of isobaric compounds and the wide variety of phases I and II metabolic pathways that parent compounds can undergo. For a successful analysis of steroids in biological samples, liquid chromatography separation must be finely tuned. It is especially challenging for glucuronidated and sulfated steroids derivatives that bear polar heads and can be affected by non-specific adsorption. The benefits of a biphenyl stationary phase chemistry for the selectivity of the separation of steroids and their phase II metabolites and the extent to which nonspecific adsorption phenomena could degrade chromatographic performance were investigated. Replacing a conventional hardware by a passivated hardware allowed to considerably reduce peaks width and asymmetry of sulfated species. The addition of weak ion pairing agents in the mobile phase could also help to reduce non-specific adsorption but are detrimental to mass spectrometry detection. As confirmed by the successful detection of 52 steroids in plasma, the use of a biphenyl stationary phase complemented by a passivated column hardware is of great help for a successful biomedical analysis of steroids and their phase II metabolites.
Collapse
Affiliation(s)
- Mathieu Galmiche
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Marie-Anaïs Monat
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | | | | | | - Sergey Girel
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Isabel Meister
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
14
|
Gilar M, Koshel BM, Birdsall RE. Ion-pair reversed-phase and hydrophilic interaction chromatography methods for analysis of phosphorothioate oligonucleotides. J Chromatogr A 2023; 1712:464475. [PMID: 39491274 DOI: 10.1016/j.chroma.2023.464475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
In this study we investigated the separation of a 25 mer fully phosphorothioated oligonucleotide from its truncated n-1 (24 mer) species and selected phosphodiester 25 mer impurities using ion-pair reversed-phase chromatography. The hydrophobicity of ion-pairing agents (alkylamines) impacts n-1 separation selectivity. 25 mer impurities with single and double phosphodiester bonds eluted prior to the parent phosphorothioate oligonucleotide in the same region as 24 mer impurities, which complicated the chromatographic separation. An alternative technique, hydrophilic interaction chromatography, provided a different retention pattern; 24 mer n-1 impurities eluted prior to the 25 mer, while the phosphodiester impurities eluted after the full-length oligonucleotide. This enabled an improved chromatographic separation of the truncated and phosphodiester impurities from the phosphorothioate oligonucleotide of interest.
Collapse
Affiliation(s)
- Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA.
| | | | | |
Collapse
|
15
|
Goyon A, Blevins MS, Napolitano JG, Nguyen D, Goel M, Scott B, Wang J, Koenig SG, Chen T, Zhang K. Characterization of antisense oligonucleotide and guide ribonucleic acid diastereomers by hydrophilic interaction liquid chromatography coupled to mass spectrometry. J Chromatogr A 2023; 1708:464327. [PMID: 37660562 DOI: 10.1016/j.chroma.2023.464327] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Oligonucleotides have become an essential modality for a variety of therapeutic approaches, including cell and gene therapies. Rapid progress in the field has attracted significant research in designing novel oligonucleotide chemistries and structures. Beyond their polar nature, the length of large RNAs and presence of numerous diastereomers for phosphorothioate (PS)-modified RNAs pose heightened challenges for their characterization. In this study, the stereochemistry of a fully-modified antisense oligonucleotide (ASO) and partially-modified guide RNAs (gRNAs) was investigated using HILIC and orthogonal techniques. The profiles of three lots of a fully-modified ASO with PS linkages were compared using ion-pairing RPLC (IPRP) and HILIC. Interestingly, three isomer peaks were partially resolved by HILIC for two lots while only one peak was observed on the IPRP profile. Model oligonucleotides having the same sequence of the five nucleotides incorporated to the 3'-end of the gRNA but differing in their number and position of PS linkages were investigated by HILIC, IPRP, ion mobility spectrometry-mass spectrometry (IM-MS) and nuclear magnetic resonance (NMR). An strategy was ultimately designed to aid in the characterization of gRNA stereochemistry. Ribonuclease (RNase) T1 digestion enabled the characterization of gRNA diastereomers by reducing their number from 32 at the gRNA intact level to 4 or 8 at the fragment level. To our knowledge, this is the first time that HILIC has successfully been utilized for the profiling of diastereomers for various oligonucleotide formats and chemical modifications.
Collapse
Affiliation(s)
- Alexandre Goyon
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Molly S Blevins
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - José G Napolitano
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Daniel Nguyen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Meenakshi Goel
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brandon Scott
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jenny Wang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefan G Koenig
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tao Chen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
16
|
Hayashida M, Suzuki R, Horie S, Masuda J, Yamaguchi T, Obika S. Applicability of supercritical fluid chromatography for oligonucleotide analysis: A proof-of-concept study. J Chromatogr A 2023; 1708:464333. [PMID: 37660558 DOI: 10.1016/j.chroma.2023.464333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
We evaluated the suitability of supercritical fluid chromatography (SFC) for oligonucleotide analysis using 4-mer oligonucleotides with various phosphorothioate (PS) contents as model compounds. Column screening showed that the diol-modified column was able to separate sequences with different PS contents. Optimization of the column body and additives allowed us to analyze polar oligonucleotides using SFC. Various sequences were also analyzed using the optimized method. A good peak shape was obtained when the guanine plus cytosine content of the analyte was two or less in the 4-mer oligonucleotides. Furthermore, we found that the retention times of the selected sequences were positively correlated with polar surface areas, indicating that oligonucleotides interact with polar stationary phases. In contrast, more hydrophobic full PS sequences were retained more strongly in the diol column than the full phosphodiester (PO) sequences. This suggests that the diol column has unique selectivity for PO and PS linkages. These results indicate that SFC is potentially applicable to oligonucleotide analysis with a separation mechanism that is different from that of ion-pair reversed-phase liquid chromatography.
Collapse
Affiliation(s)
- Momoka Hayashida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Shimadzu Analytical Innovation Research Laboratories, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Risa Suzuki
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinnosuke Horie
- Shimadzu Analytical Innovation Research Laboratories, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan; Shimadzu Europa GmbH, Albert-Hahn-Strasse 6-10, Duisburg 47269, Federal Republic of Germany
| | - Junichi Masuda
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
17
|
Managing nonspecific adsorption to liquid chromatography hardware: A review. Anal Chim Acta 2023; 1250:340994. [PMID: 36898813 DOI: 10.1016/j.aca.2023.340994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/19/2023]
Abstract
The choice of alternative materials over stainless steel hardware in the construction of liquid chromatography systems has unveiled the degree to which nonspecific adsorption impacts the reproducibility of LC methods. Some of the major contributors to nonspecific adsorption losses are charged metallic surfaces and leached metallic impurities, that may interact with the analyte and result in analyte loss and overall poor chromatographic performance. In this review, we describe several mitigation strategies available to chromatographers to minimize nonspecific adsorption to chromatographic systems. Alternative surfaces to stainless steel such as titanium, PEEK, and hybrid surface technologies are discussed. Furthermore, mobile phase additives used to prevent metal ion-analyte interactions are reviewed. Nonspecific adsorption of analytes is not reserved to metallic surfaces, as analytes may adsorb to the surfaces of filters, tubes, and pipette tips during sample preparation. Identifying the source of nonspecific interactions is paramount, as mitigation strategies may differ depending on what stage nonspecific losses are taking place. With this in mind, we discuss diagnostic methods that may help the chromatographer to differentiate losses resulting from sample preparation, and losses during LC runs.
Collapse
|
18
|
Guimaraes GJ, Leach FE, Bartlett MG. Microflow Liquid Chromatography – Multi-Emitter Nanoelectrospray Mass Spectrometry of Oligonucleotides. J Chromatogr A 2023; 1696:463976. [PMID: 37054634 DOI: 10.1016/j.chroma.2023.463976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
While the most sensitive LC-MS methods for oligonucleotide analysis contain ion-pairs in the mobile phase, these modifiers have been associated with instrument contamination and ion suppression. Typically, entire LC-MS systems are reserved for oligonucleotide LC-MS when using ion-pairing buffers. To overcome these limitations, numerous HILIC methods, liberated from ion-pairs, have been recently developed. Since ion-pairs play a role in analyte desorption from ESI droplets, their removal from mobile phases tend to impact method sensitivity. An effective way to recover MS sensitivity is to reduce the LC flow rate and therefore reduce ESI droplet size. With a focus on MS sensitivity, this study investigates the applicability of a microflow LC- nanoelectrospray MS platform in oligonucleotide ion-pair RP and HILIC LC-MS methods. The platform is effective and substantially increased the MS sensitivity of HILIC methods. Furthermore, LC method development for both types of separations provide insight into microflow chromatography of oligonucleotides, an under investigated chromatographic scale.
Collapse
|
19
|
Descamps A, Van der Borght K, De Spiegeleer A, Wynendaele E, De Spiegeleer B. Peptidomics: LC-MS operational parameters do matter. J Pharm Biomed Anal 2023; 229:115348. [PMID: 36963248 DOI: 10.1016/j.jpba.2023.115348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
The sensitive and specific detection of peptides at low levels in biofluids is critical to increase the lab-to-human translation of peptidomic research. An interesting group of peptides with increasing evidence for involvement in human diseases are quorum sensing peptides. To obtain more reliable conclusions on peptide measurands in biofluids, a selection of often neglected parts of the analytical process using LC-MS were investigated, with novel approaches recommended for each part. Quorum sensing peptides were used as the main model-peptides. The peptidomic parts investigated and discussed here are: Our work addresses aQbD-approached solutions to these challenges, encompassing sample stabilization measures, a suitable peptide anti-adsorption tool, judicious choice of injection solvent versus gradient system and optimal duty cycle parameters. Our recommendations will improve the peptidomics bio-analytics of not only quorum sensing peptides, but can also be of value for other measurands at low concentrations.
Collapse
Affiliation(s)
- Amélie Descamps
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) group, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Kevin Van der Borght
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Anton De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) group, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) group, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) group, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
20
|
Issaka E, Wariboko MA, Johnson NAN, Aniagyei OND. Advanced visual sensing techniques for on-site detection of pesticide residue in water environments. Heliyon 2023; 9:e13986. [PMID: 36915503 PMCID: PMC10006482 DOI: 10.1016/j.heliyon.2023.e13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Pesticide usage has increased to fulfil agricultural demand. Pesticides such as organophosphorus pesticides (OPPs) are ubiquitous in world food production. Their widespread usage has unavoidable detrimental consequences for humans, wildlife, water, and soil environments. Hence, the development of more convenient and efficient pesticide residue (PR) detection methods is of paramount importance. Visual detecting approaches have acquired a lot of interest among different sensing systems due to inherent advantages in terms of simplicity, speed, sensitivity, and eco-friendliness. Furthermore, various detections have been proven to enable real-life PR surveillance in environment water. Fluorometric (FL), colourimetric (CL), and enzyme-inhibition (EI) techniques have emerged as viable options. These sensing technologies do not need complex operating processes or specialist equipment, and the simple colour change allows for visual monitoring of the sensing result. Visual sensing techniques for on-site detection of PR in water environments are discussed in this paper. This paper further reviews prior research on the integration of CL, FL, and EI-based techniques with nanoparticles (NPs), quantum dots (QDs), and metal-organic frameworks (MOFs). Smartphone detection technologies for PRs are also reviewed. Finally, conventional methods and nanoparticle (NPs) based strategies for the detection of PRs are compared.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of Environmental Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mary Adumo Wariboko
- School of Medicine, Faculty of Dermatology and Venereology, Jiangsu University, Zhenjiang 212013, PR China
| | | | | |
Collapse
|
21
|
Fekete S, Doneanu C, Addepalli B, Gaye M, Nguyen J, Alden B, Birdsall R, Han D, Isaac G, Lauber M. Challenges and emerging trends in liquid chromatography-based analyses of mRNA pharmaceuticals. J Pharm Biomed Anal 2023; 224:115174. [PMID: 36446261 PMCID: PMC9678211 DOI: 10.1016/j.jpba.2022.115174] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Lipid encapsulated messenger RNA (LNP mRNA) has garnered a significant amount of interest from the pharmaceutical industry and general public alike. This attention has been catalyzed by the clinical success of LNP mRNA for SARS-CoV-2 vaccination as well as future promises that might be fulfilled by the biotechnology pipeline, such as the in vivo delivery of a CRISPR/Cas9 complex that can edit patient cells to reduce levels of low-density lipoprotein. LNP mRNAs are comprised of various chemically diverse molecules brought together in a sophisticated intermolecular complex. This can make it challenging to achieve thorough analytical characterization. Nevertheless, liquid chromatography is becoming an increasingly relied upon technique for LNP mRNA analyses. Although there have been significant advances in all types of LNP mRNA analyses, this review focuses on recent developments and the possibilities of applying anion exchange (AEX) and ion pairing reversed phase (IP-RP) liquid chromatography for intact mRNAs as well as techniques for oligo mapping analysis, 5' endcap testing and lipid compositional assays.
Collapse
|
22
|
Stoll DR. Essentials of LC Troubleshooting, Part V: What Happened to My Sensitivity? LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.uk2876b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Some liquid chromatography (LC) troubleshooting topics never get old because there are some problems that persist in the practice of LC, even as instrument technology improves over time. There are many ways for things to go wrong in an LC system that ultimately manifests as detection sensitivity that is lower than expected. Developing a short list of the likely causes of these results can help streamline our troubleshooting experience when sensitivity-related problems occur.
Collapse
|