1
|
Zhong Y, Li H, Lin Z, Li G. Advances in covalent organic frameworks for sample preparation. J Chromatogr A 2024; 1736:465398. [PMID: 39342731 DOI: 10.1016/j.chroma.2024.465398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Sample preparation is crucial in analytical chemistry, impacting result accuracy, sensitivity, and reliability. Solid-phase separation media, especially adsorbents, are vital for preparing of liquid and gas samples, commonly analyzed by most analytical instruments. With the advancements in materials science, covalent organic frameworks (COFs) constructed through strong covalent bonds, have been increasingly employed in sample preparation in recent years. COFs have outstanding selectivity and/or excellent adsorption capacity for a single target or can selectively adsorb multiple targets from complex matrix, due to their large specific surface area, adjustable pore size, easy modification, and stable chemical properties. In this review, we summarize the classification of COFs, such as pristine COFs, COF composite particles, and COFs-based substrates. We aim to provide a comprehensive understanding of the different classifications of COFs in sample preparation within the last three years. The challenges and development trends of COFs in sample preparation are also presented.
Collapse
Affiliation(s)
- Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Chen P, Zhang Q, Yin H, Di S, Liu H, Qin H, Liu M, Liu Y, Li Z, Zhu S. Recent Progress and Applications of Advanced Nanomaterials in Solid-Phase Extraction. Electrophoresis 2024. [PMID: 39498723 DOI: 10.1002/elps.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Sample preparation maintains a key bottleneck in the whole analytical procedure. Solid-phase sorbents (SPSs) have garnered increasing attention in sample preparation research due to their crucial roles in achieving high clean-up and enrichment efficiency in the analysis of trace targets present in complex matrices. Novel nanoscale materials with improved characteristics have garnered considerable interest across different scientific disciplines due to the limited capabilities of traditional bulk-scale materials. The purpose of this review is to offer a thorough summary of the latest developments and uses of SPSs in preparing samples for chromatographic analysis, focusing on the years 2020-2024. The techniques for preparing SPSs are examined, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), carbon nanoparticles (CNPs), molecularly imprinted polymers (MIPs), and metallic nanomaterials (MNs). Examining the pros and cons of different extraction methods, including solid-phase extraction (SPE), magnetic SPE (MSPE), flow-based SPE (FBA-SPE), solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and dispersive SPE (DSPE), is the main focus. Furthermore, this article presents the utilization of SPE technology for isolating common contaminants in various environmental, biological, and food specimens. We highlight the persistent challenges in SPSs and anticipate future advancements and applications of novel SPSs.
Collapse
Affiliation(s)
- Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Qiuyue Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hang Yin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Engineering Research Center of Ministry of Education for Clean Production of Textile Printing and Dyeing, Wuhan Textile University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hailan Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ming Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yunkang Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Zihan Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
3
|
Hu K, Zhou W, Yang C, Wang Y, Jiang RW, Zhang Z, Pawliszyn J. Rapid screening of drugs in environmental water using metal organic framework/Ti 3C 2T x composite coated blade spray-mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134609. [PMID: 38759280 DOI: 10.1016/j.jhazmat.2024.134609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Simultaneous rapid screening of multiple drugs of abuse in environmental water facilitates effective monitoring and trend assessments. Herein, a novel porphyrin-based metal organic frameworks modified Ti3C2Tx nanosheets (Cu-TCPP/Ti3C2Tx) composite was prepared and utilized as solid-phase microextraction (SPME) coating for the simultaneous analysis of 21 drugs from water samples. The composite was embedded with matrix-compatible polyacrylonitrile binder to prepare a coated blade with thin and uniform coating layer. Ambient mass spectrometry (MS) technique was used to create a coated blade spray-MS (CBS-MS) method for the quantitative determination of drugs in water samples. High throughput and automated sample preparation were achieved with the use of a Concept 96-well plate system, enabling analysis of 21 drugs of abuse within 1 min per sample, while using only 8 µL of organic solvent for desorption and CBS-MS detection. The developed method showed favorable linearity (R2 ≥ 0.9983) in the range of 0.05 to 10 ng mL-1, low limits of detection (1.5-9.0 ng L-1), sufficient recovery (67.6-133.2%), as well as satisfactory precision (RSDs≤13.5%). This study not only delivers a novel and efficient SPME coating composite, but also demonstrates the excellent performance of a high-throughput, efficient, and green analytical method for determination of drugs in environmental water.
Collapse
Affiliation(s)
- Kai Hu
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Wei Zhou
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Cheng Yang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuanpeng Wang
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Runshan Will Jiang
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
4
|
Liu X, Liu A, Liu B, Zhang M. Fabrication of Monodisperse Magnetic Polystyrene Mesoporous Composite Microspheres for High-Efficiency Selective Adsorption and Rapid Separation of Cationic Dyes in Textile Industry Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11277-11286. [PMID: 38751337 DOI: 10.1021/acs.langmuir.4c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Sustainable development has become an inevitable trend in the world's green chemical industry for a generation or more. In this study, a monodisperse magnetic polystyrene mesoporous composite microsphere (MPPS) composed of Fe3O4 nanoparticles loaded on polystyrene mesoporous microspheres is introduced. These microspheres serve as effective adsorbents for the swift removal of cationic dyes. The fabrication of the wastewater adsorbent, with its simple operation and economic practicality, involved a combination of dispersion polymerization, a sulfonation reaction, two-step swelling polymerization, and in situ alkaline oxidation technology. Notably, the adsorption capacity within 3 min reaches 184.0 mg/g, with an impressive adsorption efficiency of 92%. This is primarily attributed to the high specific surface area (Smax) of the MPPS providing more reaction sites for π-π interaction. Simultaneously, the attractive force between negatively charged sulfonic acid groups and cationic dyes is enhanced through surface modification of the MPPS. Furthermore, the MPPS, boasting a maximum saturation magnetization of 38.19 emu/g, ensures rapid separation from the solution for recycling within 3 s. Even after 5 cycles, the adsorption efficiency remains over 90%. The rapid separation of dyes is facilitated by the magnetic attraction of Fe3O4 nanoparticles from the MPPS under the application of a magnetic field. These composite mesoporous materials exhibit outstanding performance in both efficient selective adsorption and recyclability, presenting a novel green adsorbent with promising prospects for sustainable development. This innovation is poised to excel in fields such as sewage treatment, separation, and purification.
Collapse
Affiliation(s)
- Xiangchi Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ailing Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Baijun Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Mingyao Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
- School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
5
|
Yuan S, Xiang Y, Chen L, Xiang P, Li Y. Magnetic solid-phase extraction based on polydopamine-coated magnetic nanoparticles for rapid and sensitive analysis of eleven illicit drugs and metabolites in wastewater with the aid of UHPLC-MS/MS. J Chromatogr A 2024; 1718:464703. [PMID: 38340459 DOI: 10.1016/j.chroma.2024.464703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The quantification of illicit drugs in wastewater has become a valuable tool for monitoring illicit drug abuse. The commonly utilized methods for detecting drugs in wastewater require a substantial sample volume, extended pretreatment durations, and intricate procedures. This study first employed polydopamine-coated magnetic nanocomposites as adsorbents for magnetic solid-phase extraction, combined with UPLC-MS/MS, to simultaneously determine the concentrations of eleven common illicit drugs in wastewater. The synthesis process for Fe3O4@PDA is straightforward and high-yield. Benefiting from the strong magnetic response, good dispersibility, and abundant binding sites of the prepared nanocomposites, the extraction of illicit drugs from wastewater could be achieved in just 15 min. The method exhibited satisfactory limits of quantitation (ranging from 5 to 10 ng/L), commendable accuracy (ranging from 90.59 % to 106.80 %), good precision (with RSDs below 10 %), and less sample consumption (only 1 mL). The efficacy of this method was successfully validated through its application to actual wastewater samples collected from ten wastewater treatment plants. The results indicated that morphine, codeine, methamphetamine, and ketamine were the predominant illicit drugs present in the samples. The method developed is able to meet the needs of common illicit drug monitoring and high-throughput analysis requirements.
Collapse
Affiliation(s)
- Shuai Yuan
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Yangjiayi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lizhu Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ping Xiang
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China.
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
6
|
Ning H, Fan Y, Chen H, Liu H, Huang Z, Ke X, Xu Y, She Y. Preparation of mixed-mode weak cation exchange magnetic solid-phase extraction sorbent and its application in the extraction of 21 illicit drugs from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133007. [PMID: 37984142 DOI: 10.1016/j.jhazmat.2023.133007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
The detection of illicit drugs in wastewater can effectively monitor and evaluate the trend of illicit drug abuse. A novel mixed-mode cation exchange magnetic sorbent Fe3O4 @poly(ST/DVB/MA-COOH) was prepared and firstly applied as magnetically dispersed solid phase extraction material to efficiently, rapidly, and selectively extract 21 illicit drugs from wastewater. The selectivity of the sorbent was mainly attributed to the electrostatic interaction. The effects of Fe3O4 @poly(ST/DVB/MA-COOH) preparation and extraction conditions on the adsorption performance were thoroughly discussed. Among the 21 illicit drugs, the absolute extraction recovery values for 19 illicit drugs were greater than 80 % and the entire adsorption process could be achieved in one minute. Subsequently, the Fe3O4 @poly(ST/DVB/MA-COOH) sorbent combined with UHPLC-MS/MS was used to establish a quantitative method for the effectively extracted 19 illicit drugs in wastewater. The method had a good determination coefficient in the range of 0.2-200 ng/L and the limits of detection of the method were 0.03-0.67 ng/L. The spiked recovery values were in the range of 87.0-119.6 %. Finally, the method was successfully applied to the detection of 19 illicit drugs in wastewater samples and also compared with the commonly used SPE method. The obtained results indicate that Fe3O4 @poly(ST/DVB/MA-COOH) has great advantages in the detection of illicit drugs in wastewater.
Collapse
Affiliation(s)
- Hongyu Ning
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yilei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou 310053, China
| | - Hao Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou 310053, China
| | - Huijun Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhongping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xing Ke
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou 310053, China
| | - Yu Xu
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou 310053, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
Millán-Santiago J, Lucena R, Cárdenas S. Nylon 6-cellulose composite hosted in a hypodermic needle: Biofluid extraction and analysis by ambient mass spectrometry in a single device. J Pharm Anal 2023; 13:1346-1352. [PMID: 38174121 PMCID: PMC10759252 DOI: 10.1016/j.jpha.2023.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/28/2023] [Accepted: 06/27/2023] [Indexed: 01/05/2024] Open
Abstract
This study proposes a hypodermic needle (HN) as a sorbent holder and an electrospray (ESI) emitter, thus combining extraction and analysis in a single device. A novel nylon 6-cellulose (N6-Cel) composite sorbent is proposed to extract methadone from oral fluid samples. The cellulosic substrate provides the composite with high porosity, permitting the flow-through of the sample, while the polyamide contributes to the extraction of the analyte. The low price of the devices (considering the holder and the sorbent) contributes to the affordability of the method, and their small size allows easy transportation, opening the door to on-site extractions. Under the optimum conditions, the analyte can be determined by high-resolution ambient ionization mass spectrometry at a limit of detection (LOD) as low as 0.3 μg/L and precision (expressed as relative standard deviation, RSD) better than 9.3%. The trueness, expressed as relative recovery (RR), ranged from 90% to 109%. As high-resolution mass spectrometers are not available in many laboratories, the method was also adapted to low-resolution spectrometers. In this sense, the direct infusion of the eluates in a triple quadrupole-mass spectrometry provided an LOD of 2.2 μg/L. The RSD was better than 5.3%, and the RR ranged from 96% to 121%.
Collapse
Affiliation(s)
- Jaime Millán-Santiago
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Analytical Chemistry Department, Chemical Institute for Energy and Environment (IQUEMA), University of Cordoba, E-14071, Cordoba, Spain
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Analytical Chemistry Department, Chemical Institute for Energy and Environment (IQUEMA), University of Cordoba, E-14071, Cordoba, Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Analytical Chemistry Department, Chemical Institute for Energy and Environment (IQUEMA), University of Cordoba, E-14071, Cordoba, Spain
| |
Collapse
|
8
|
de Oliveira AFB, de Melo Vieira A, Santos JM. Trends and challenges in analytical chemistry for multi-analysis of illicit drugs employing wastewater-based epidemiology. Anal Bioanal Chem 2023; 415:3749-3758. [PMID: 36952026 PMCID: PMC10034891 DOI: 10.1007/s00216-023-04644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
Wastewater-based epidemiology (WBE) for quantification of illicit drug biomarkers (IDBs) in wastewater samples is an effective tool that can provide information about drug consumption. The most commonly quantified IDBs belong to different chemical classes, including cocaine, amphetamine-type stimulants, opioids, and cannabinoids, so the different chemical properties of these molecules pose a challenge in the development of analytical methods for multi-analyte analysis. Recent workflows include the steps of sampling and storage, sample preparation using solid-phase extraction (SPE) or without extraction, and quantification of analytes employing gas or liquid chromatography coupled with mass spectrometry. The greatest difficulty is due to the fact that wastewater samples are complex chemical mixtures containing analytes with different chemical properties, often present at low concentrations. Therefore, in the development of analytical methods, there is the need to simplify and optimize the analytical workflows, reducing associated uncertainties, analysis times, and costs. The present work provides a critical bibliographic survey of studies published from the year 2020 until now, highlighting the challenges and trends of published analytical workflows for the multi-analysis of IDBs in wastewater samples, considering sampling and sample preparation, method validation, and analytical techniques.
Collapse
Affiliation(s)
- Ana Flávia Barbosa de Oliveira
- Petroleum, Energy and Mass Spectrometry Research Group (PEM), Chemistry Department, Federal Rural University of Pernambuco (UFRPE), Recife, PE, 52171-900, Brazil
| | - Aline de Melo Vieira
- Petroleum, Energy and Mass Spectrometry Research Group (PEM), Chemistry Department, Federal Rural University of Pernambuco (UFRPE), Recife, PE, 52171-900, Brazil
| | - Jandyson Machado Santos
- Petroleum, Energy and Mass Spectrometry Research Group (PEM), Chemistry Department, Federal Rural University of Pernambuco (UFRPE), Recife, PE, 52171-900, Brazil.
| |
Collapse
|
9
|
GAO Y, DING Y, CHEN L, DU F, XIN X, FENG J, SUN M, FENG Y, SUN M. [Recent application advances of covalent organic frameworks for solid-phase extraction]. Se Pu 2023; 41:545-553. [PMID: 37387275 PMCID: PMC10311619 DOI: 10.3724/sp.j.1123.2022.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 07/01/2023] Open
Abstract
Covalent organic frameworks (COFs) are a type of crystalline porous polymers. It firstly prepared by thermodynamically controlled reversible polymerization to obtain chain units and connecting small organic molecular building units with a certain symmetry. These polymers are widely used in gas adsorption, catalysis, sensing, drug delivery, and many other fields. Solid-phase extraction (SPE) is a fast and simple sample pretreatment technology that can enrich analytes and improve the accuracy and sensitivity of analysis and detection; it is extensively employed in food safety detection, environmental pollutant analysis, and several other fields. How to improve the sensitivity, selectivity, and detection limit of the method during sample pretreatment have become a topic of great interest. COFs have recently been applied to sample pretreatment owing to their low skeleton density, large specific surface area, high porosity, good stability, facile design and modification, simple synthesis, and high selectivity. At present, COFs have also attracted extensive attention as new extraction materials in the field of SPE. These materials have been applied to the extraction and enrichment of diverse types of pollutants in food, environmental, and biological samples, such as heavy metal ions, polycyclic aromatic hydrocarbons, phenol, chlorophenol, chlorobenzene, polybrominated diphenyl ethers, estrogen, drug residues, pesticide residues, etc. COFs can be synthesized from different materials and exert different effects on different extracts. New types of COFs can also be synthesized via modification to achieve better extraction effects. In this work, the main types and synthesis methods of COFs are introduced, and the most important applications of COFs in the fields of food, environment and biology in recent years are highlighted. The development prospects of COFs in the field of SPE are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min SUN
- Tel:(0531)82765475,E-mail:(孙敏)
| |
Collapse
|