1
|
Chen L, Zhou C, Jiang F, Zhang L, Xu C. Squaraine-Linked Magnetic Covalent Organic Framework as a Solid-Phase Extraction Absorbent to Determine Trace Phenylpyrazoles. SMALL METHODS 2024; 8:e2400777. [PMID: 39225439 DOI: 10.1002/smtd.202400777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Phenylpyrazoles are widely used pesticides in the food industry. It is highly desirable to develop efficient pre-treatment and analysis methods to extract and detect phenylpyrazoles in complex food matrices. Herein, the study reports novel squaraine-linked zwitterionic core-shell magnetic covalent organic frameworks (MCOFs), which are found to be excellent pretreatment materials for the detection of trace phenylpyrazoles in samples. By coupling MCOFs to magnetic solid-phase extraction (MSPE) with Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) analysis, the detection of phenylpyrazoles (fipronil, fipronil sulfone, fipronil sulfide, fipronil de-sulfoxide, fipronil desulfinyl, ethiprole, and flufiprole) is achieved and shows good linearity at concentrations of 1-800 µg L-1 (R2 ≥ 0.9930). The limit of detection (LOD), limit of quantification (LOQ), and recovery rates are 0.01-0.50 µg kg-1, 0.04-1.72 µg kg-1, and 70.96-115.32%, respectively. More importantly, this method is successfully applied to determine the phenylpyrazoles in commercial egg, poultry, milk, jujube, cabbage, tea, and rice with a detection rate of ≈0.04%. Therefore, the developed method may contribute to a new strategy for the purification and multi-target extraction of complex food matrices.
Collapse
Affiliation(s)
- Li Chen
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430070, P. R. China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430070, P. R. China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430070, P. R. China
| | - Cuiyun Zhou
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430070, P. R. China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430070, P. R. China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430070, P. R. China
| | - Feng Jiang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430070, P. R. China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430070, P. R. China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430070, P. R. China
| | - Li Zhang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430070, P. R. China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, 430070, P. R. China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430070, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
2
|
Zhu S, Wang T, Xu Q, Wu Y, Gan N. Magnetic covalent organic framework as an absorbent coupled with a portable mass spectrometer for rapid detection of malachite green and its metabolite residues. J Chromatogr A 2024; 1736:465407. [PMID: 39368192 DOI: 10.1016/j.chroma.2024.465407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
It is important to develop specific adsorbents for malachite green and other fish drug residues. Herein, a simple strategy for synthesizing a novel magnetic covalent organic frameworks (rFe3O4@Py-COF) has been studied, and the materials were used as a magnetic absorbent for solid phase extraction (MSPE) of malachite green (MG) and its metabolite as leucomalachite green (LMG) in fishes. In this study, the mild reduction program of formic acid replacing traditional sodium borohydride as a reducing agent has been adopted to increase the stability of the framework, which can maintain the original high crystallinity and surface area of the reduced COF. The secondary amine bond is expected to be used as the reaction center for further functionalization of COF pore wall. Subsequently, rFe3O4@Py-COF (rmCOF) obtained after reduction was used as MSPE materials to detect MG and LMG by a portable mass spectrometer. After optimizing the conditions, the linearity is good within the range of 1.25∼100 μg/kg (R2≥0.9954), the limits of detection (LODs) are 0.31∼0.44 μg/kg with satisfactory recovery (85.0 %∼106.0 %). These results indicate that the assay is suitable for monitoring MG and LMG in complex aquatic foods, providing protection for food safety.
Collapse
Affiliation(s)
- Shanshan Zhu
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China; Faculty of information science and engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Tianliang Wang
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Qing Xu
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Yongxiang Wu
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
3
|
Lan H, Li X, Wu Z, Pan D, Gan N, Wen L. Detection of Veterinary Drugs in Food Using a Portable Mass Spectrometer Coupled with Solid-Phase Microextraction Arrow. Foods 2024; 13:3337. [PMID: 39456399 PMCID: PMC11507621 DOI: 10.3390/foods13203337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
A portable mass spectrometer (PMS) was combined with a mesoporous silica material (SBA-15) coated solid-phase microextraction (SPME) Arrow to develop a rapid, easy-to-operate and sensitive method for detecting five veterinary drugs-amantadine, thiabendazole, sulfamethazine, clenbuterol, and ractopamine-in milk and chicken samples. Equipped with a pulsed direct current electrospray ionization source and a hyperboloid linear ion trap, the PMS can simultaneously detect all five analytes in approximately 30 s using a one-microliter sample. Unlike traditional large-scale instruments, this method shows great potential for on-site detection with no need for chromatographic pre-separation and minimal sample preparation. The SBA-15-SPME Arrow, fabricated via electrospinning, demonstrated superior extraction efficiency compared to commercially available SPME Arrows. Optimization of the coating preparation conditions and SPME procedures was conducted to enhance the extraction efficiency of the SBA-15-SPME Arrow. The extraction and desorption processes were optimized to require only 15 and 30 min, respectively. The SBA-15-SPME Arrow-PMS method showed high precision and sensitivity, with detection limits and quantitation limits of 2.8-9.3 µg kg-1 and 10-28 µg kg-1, respectively, in milk. The LOD and LOQ ranged from 3.5 to 11.7 µg kg-1 and 12 to 35 µg kg-1, respectively, in chicken. The method sensitivity meets the requirements of domestic and international regulations. This method was successfully applied to detect the five analytes in milk and chicken samples, with recoveries ranging from 85% to 116%. This approach represents a significant advancement in food safety by facilitating rapid, in-field monitoring of veterinary drug residues.
Collapse
Affiliation(s)
- Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (X.L.); (Z.W.); (D.P.)
| | - Xueying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (X.L.); (Z.W.); (D.P.)
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (X.L.); (Z.W.); (D.P.)
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (X.L.); (Z.W.); (D.P.)
| | - Ning Gan
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China;
| | - Luhong Wen
- China Innovation Instrument Co., Ltd., Ningbo 315000, China;
| |
Collapse
|
4
|
Wang M, Wang L, Hou A, Hong M, Li C, Yue Q. Portable sensing methods based on carbon dots for food analysis. J Food Sci 2024; 89:3935-3949. [PMID: 38865253 DOI: 10.1111/1750-3841.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Food analysis is significantly important in monitoring food quality and safety for human health. Traditional methods for food detection mainly rely on benchtop instruments and require a certain amount of analysis time, which promotes the development of portable sensors. Portable sensing methods own many advantages over traditional techniques such as flexibility and accessibility in diverse environments, real-time monitoring, cost-effectiveness, and rapid deployment. This review focuses on the portable approaches based on carbon dots (CDs) for food analysis. CDs are zero-dimensional carbon-based material with a size of less than 10 nm. In the manner of sensing, CDs exhibit rich functional groups, low biotoxicity, good biocompatibility, and excellent optical properties. Furthermore, there are many methods for the synthesis of CDs using various precursor materials. The incorporation of CDs into food science and engineering for enhancing food safety control and risk assessment shows promising prospects.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Lijun Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Aiying Hou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Moschopoulou G, Tsekouras V, Mercader JV, Abad-Fuentes A, Kintzios S. Development of a Portable Cell-Based Biosensor for the Ultra-Rapid Screening for Boscalid Residues in Lettuce. BIOSENSORS 2024; 14:311. [PMID: 38920615 PMCID: PMC11201857 DOI: 10.3390/bios14060311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Fungal plant pathogens have posed a significant threat to crop production. However, the large-scale application of pesticides is associated with possible risks for human health and the environment. Boscalid is a widely used fungicide, consistently implemented for the management of significant plant pathogens. Conventionally, the detection and determination of boscalid residues is based on chromatographic separations. In the present study, a Bioelectric Recognition Assay (BERA)-based experimental approach combined with MIME technology was used, where changes in the electric properties of the membrane-engineering cells with anti-boscalid antibodies were recorded in response to the presence of boscalid at different concentrations based on the maximum residue level (MRL) for lettuce. The membrane-engineering Vero cells with 0.5 μg/mL of antibody in their surface were selected as the best cell line in combination with the lowest antibody concentration. Furthermore, the biosensor was tested against another fungicide in order to prove its selectivity. Finally, the BERA cell-based biosensor was able to detect the boscalid residue, below and above the MRL, in spiked lettuce leaf extracts in an entirely distinct and reproducible manner. This study indicates that the BERA-based biosensor, after further development and optimization, could be used for the routine, high-throughput detection of boscalid residue in lettuce, and not only that.
Collapse
Affiliation(s)
- Georgia Moschopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, European University for Smart Urban Coastal Sustainability, Iera Odos 75, 11855 Athens, Greece; (V.T.); (S.K.)
| | - Vasileios Tsekouras
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, European University for Smart Urban Coastal Sustainability, Iera Odos 75, 11855 Athens, Greece; (V.T.); (S.K.)
| | - Josep V. Mercader
- Department Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustí Escardino 7, 46980 Paterna, Spain; (J.V.M.); (A.A.-F.)
| | - Antonio Abad-Fuentes
- Department Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustí Escardino 7, 46980 Paterna, Spain; (J.V.M.); (A.A.-F.)
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, European University for Smart Urban Coastal Sustainability, Iera Odos 75, 11855 Athens, Greece; (V.T.); (S.K.)
| |
Collapse
|
6
|
Ding L, Guo J, Chen S, Wang Y. Electrochemical sensing mechanisms of neonicotinoid pesticides and recent progress in utilizing functional materials for electrochemical detection platforms. Talanta 2024; 273:125937. [PMID: 38503124 DOI: 10.1016/j.talanta.2024.125937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The excessive residue of neonicotinoid pesticides in the environment and food poses a severe threat to human health, necessitating the urgent development of a sensitive and efficient method for detecting trace amounts of these pesticides. Electrochemical sensors, characterized by their simplicity of operation, rapid response, low cost, strong selectivity, and high feasibility, have garnered significant attention for their immense potential in swiftly detecting trace target molecules. The detection capability of electrochemical sensors primarily relies on the catalytic activity of electrode materials towards the target analyte, efficient loading of biomolecular functionalities, and the effective conversion of interactions between the target analyte and its receptor into electrical signals. Electrode materials with superior performance play a crucial role in enhancing the detection capability of electrochemical sensors. With the continuous advancement of nanotechnology, particularly the widespread application of novel functional materials, there is paramount significance in broadening the applicability and expanding the detection range of pesticide sensors. This comprehensive review encapsulates the electrochemical detection mechanisms of neonicotinoid pesticides, providing detailed insights into the outstanding roles, advantages, and limitations of functional materials such as carbon-based materials, metal-organic framework materials, supramolecular materials, metal-based nanomaterials, as well as molecular imprinted materials, antibodies/antigens, and aptamers as molecular recognition elements in the construction of electrochemical sensors for neonicotinoid pesticides. Furthermore, prospects and challenges facing various electrochemical sensors based on functional materials for neonicotinoid pesticides are discussed, providing valuable insights for the future development and application of biosensors for simplified on-site detection of agricultural residues.
Collapse
Affiliation(s)
- Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shu Chen
- School of Bioengineering, Shandong Polytechnic, Jinan, 250104, PR China
| | - Yawen Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
7
|
Wu J, Wang Q, Tang O, Liao J, Zhao Q, Liang J, Feng H, Wang L, Wang H, Shen Q. On-site monitoring of nandrolone in cattle farming samples by portable atmospheric pressure chemical ionization mass spectrometry with ambient sampling. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1238:124107. [PMID: 38581929 DOI: 10.1016/j.jchromb.2024.124107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Nandrolone (NT) is a type of androgen anabolic steroid that is often illegally used in cattle farming, leading to unpredictable harm to human health via the food chain. In this study, a rapid detection method for NT in the samples of cattle farming was established using a portable mass spectrometer. The instrument parameters were optimized, including a thermal desorption temperature of 220 °C, a pump speed of 30 %, an APCI ionization voltage of 3900 v, and an injection volume of 6 μL. The samples of bovine urine, feed, sewage, and tissue were selected, and extracted using a solution of methanol:acetonitrile (1:1, v/v), followed by spiking a NT standard solution (1000 ng·mL-1) and ionization through the APCI ion source for detection. The results showed that NT could not be detected in beef and feed due to the complexity of the matrix, while clear signals of NT ions were observed in bovine urine and sewage samples, with LODs of 1000 and 100 ng·mL-1, respectively. Furthermore, quantitative analysis was attempted, and a good linear relationship (R2 = 0.9952) was observed for NT in sewage within the range of 100 to 1000 ng·mL-1. At spiked levels of 100, 500, 1000 and 2000 ng mL-1, the recovery rates ranged from 74.3 % to 92.8 %, with a relative standard deviation (n = 6) of less than 15 %. In conclusion, this detection method offers the advantages of simplicity, rapidity, strong timeliness, and specificity, making it suitable for on-site detection. It can be used for qualitative screening of nandrolone in bovine urine and quantitative analysis of nandrolone in sewage.
Collapse
Affiliation(s)
- Jiahui Wu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qingcheng Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou 311199, China
| | - Oushan Tang
- Shaoxing Second Hospital, Shaoxing 312000, China
| | - Jie Liao
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qiaoling Zhao
- Zhoushan Institute of Calibration and Testing for Quality and Technical Supervision, Zhoushan 316021, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou 310052, China
| | - Huina Feng
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou 311199, China
| | - Linhua Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou 311199, China.
| | - Haixing Wang
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou, China.
| | - Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
8
|
Wang J, Sun Y, Wang P, Sun Z, Wang Y, Gao M, Wang H, Wang X. A dual-emitting fluoroprobe fabricated by aloe leaf-based N-doped carbon quantum dots and copper nanoclusters for nitenpyram detection in waters by virtue of inner filter effect and static quenching principles. Anal Chim Acta 2024; 1289:342182. [PMID: 38245198 DOI: 10.1016/j.aca.2023.342182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
Fluorescence sensing technique has been used in environmental analysis due to its simplicity, low cost, and visualization. Although the fruit pulp-based biomass carbon quantum dots (CQDs) have excellent luminescent properties, aloe leaves possess the superiority of being easily accessible in all seasons compared to fruit pulp. Thus, we fabricated Aloe carazo leaf-based nitrogen doping-CQDs (N-CQDs) using a facile hydrothermal approach, which emitted bright blue fluorescence with a quantum yield of 21.4 %. By comparison, the glutathione-encapsulated copper nanoclusters (GSH-CuNCs) displayed strong red fluorescence. A blue/red dual emission based on the N-CQDs/CuNCs mixture was established for nitenpyram detection. At the 350-nm excitation, the N-CQD/CuNCs system produced dual-wavelength emitting peaks at 440 and 660 nm, respectively. Moreover, when nitenpyram was introduced into the system, the fluorescence intensities (FIs) of N-CQDs significantly decreased, whereas the FIs of GSH-CuNCs varied slightly; simultaneously, the solution color changed from bright blue to dark red. Both the spectral overlapping between nitenpyram's UV-Vis absorption and N-CQDs' excitation and almost unchanged fluorescence lifetimes indicated the occurrence of inner-filtering effect (IFE) in the dual-emitting fluoroprobe. In addition, the Stern-Volmer constant (Ksv = 6.92 × 103 M-1), temperature effect, as well as UV-Vis absorption of N-CQD/CuNCs before and after the addition of nitenpyram corroborated the static-quenching behavior. Consequently, the fluorescence-quenching of N-CQDs by nitenpyram was attributable to the joint IFE and static-quenching principles. A good linearity existed between the F660/F440 values and nitenpyram concentrations (0.5-200 μM) with a method detection limit of 0.15 μM. The dual-emitting fluoroprobe provided the satisfactory recoveries (95.0%-107.0 %) for nitenpyram detection in real-world waters, which were comparable with the results of traditional liquid chromatography coupled to tandem mass spectrometry method. Owing to its simple operations, low-cost, and adaptability for on-site outdoor monitoring, the newly developed dual-emitting fluoroprobe possesses great potential applications in routine monitoring of nitenpyram under field conditions.
Collapse
Affiliation(s)
- Junxia Wang
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yueying Sun
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Panpan Wang
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhengpeng Sun
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yawei Wang
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ming Gao
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
9
|
Yu X, Pu H, Sun DW. Developments in food neonicotinoids detection: novel recognition strategies, advanced chemical sensing techniques, and recent applications. Crit Rev Food Sci Nutr 2023; 65:1216-1234. [PMID: 38149655 DOI: 10.1080/10408398.2023.2290698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Neonicotinoid insecticides (NEOs) are a new class of neurotoxic pesticides primarily used for pest control on fruits and vegetables, cereals, and other crops after organophosphorus pesticides (OPPs), carbamate pesticides (CBPs), and pyrethroid pesticides. However, chronic abuse and illegal use have led to the contamination of food and water sources as well as damage to ecological and environmental systems. Long-term exposure to NEOs may pose potential risks to animals (especially bees) and even human health. Consequently, it is necessary to develop effective, robust, and rapid methods for NEOs detection. Specific recognition-based chemical sensing has been regarded as one of the most promising detection tools for NEOs due to their excellent selectivity, sensitivity, and robust interference resistance. In this review, we introduce the novel recognition strategies-enabled chemical sensing in food neonicotinoids detection in the past years (2017-2023). The properties and advantages of molecular imprinting recognition (MIR), host-guest recognition (HGR), electron-catalyzed recognition (ECR), immune recognition (IR), aptamer recognition (AR), and enzyme inhibition recognition (EIR) in the development of NEOs sensing platforms are discussed in detail. Recent applications of chemical sensing platforms in various food products, including fruits and vegetables, cereals, teas, honey, aquatic products, and others are highlighted. In addition, the future trends of applying chemical sensing with specific recognition strategies for NEOs analysis are discussed.
Collapse
Affiliation(s)
- Xinru Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Ahuja V, Singh A, Paul D, Dasgupta D, Urajová P, Ghosh S, Singh R, Sahoo G, Ewe D, Saurav K. Recent Advances in the Detection of Food Toxins Using Mass Spectrometry. Chem Res Toxicol 2023; 36:1834-1863. [PMID: 38059476 PMCID: PMC10731662 DOI: 10.1021/acs.chemrestox.3c00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.
Collapse
Affiliation(s)
- Vishal Ahuja
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- University
Centre for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| | - Amanpreet Singh
- Department
of Chemistry, University Institute of Science, Chandigarh University, Mohali, Punjab 140413, India
| | - Debarati Paul
- Amity
Institute of Biotechnology, AUUP, Noida, Uttar Pradesh 201313, India
| | - Diptarka Dasgupta
- Material
Resource Efficiency Division, CSIR-Indian
Institute of Petroleum, Dehradun 248005, India
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Sounak Ghosh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Roshani Singh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Gobardhan Sahoo
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Daniela Ewe
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| |
Collapse
|
11
|
Wu X, Luo Z, Li W, Xia L, Xiong Y. An optical and visual multi-mode sensing platform base on nitrogen, sulfur, boron co-doped carbon dots for rapid and simple determination of ferric ions in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122995. [PMID: 37329831 DOI: 10.1016/j.saa.2023.122995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Abnormal iron ions levels may lead to some diseases and serious environmental pollution. Herein, optical and visual detection strategies of Fe3+ in water based on co-doped carbon dots (CDs) were established in the present study. Firstly, a one-pot synthetic strategy for the preparation of the N, S, B co-doped CDs with a home microwave oven was developed. Secondly, the optical properties, chemical structures, and morphology of CDs were further characterized by fluorescence spectroscopy, Uv-vis absorption spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscope. Finally, the results indicated that the fluorescence of the co-doped CDs was quenched by ferric ions via the static mechanism and the aggregation of CDs, accompanied by the increased red color. The multi-mode sensing strategies of Fe3+ with fluorescence photometer, UV-visible spectrophotometer, portable colorimeter and smartphone had the advantages of good selectivity, excellent stability and high sensitivity. Fluorophotometry based on co-doped CDs was a powerful probe platform for measuring lower concentrations of Fe3+ due to its higher sensitivity, better linear relationship, lower limit of detection (0.27 μM) and limit of quantitation (0.91 μM). In addition, the visual detection methods with a portable colorimeter and smartphone had been proven to be very suitable for rapid and simple sensing of higher concentrations of Fe3+. Moreover, the co-doped CDs utilized for Fe3+ probes in tap water and boiler water obtained satisfactory results. Consequently, the efficient, versatile optical and visual multi-mode sensing platform could be extended to apply such a visual analysis of ferric ions in the biological, chemical and other fields.
Collapse
Affiliation(s)
- Xuewen Wu
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Zhenfeng Luo
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wei Li
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Lingfeng Xia
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yan Xiong
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|