1
|
Reyes AWB, Hop HT, Arayan LT, Huy TXN, Min W, Lee HJ, Chang HH, Kim S. Tannic acid-mediated immune activation attenuates Brucella abortus infection in mice. J Vet Sci 2018; 19:51-57. [PMID: 28693306 PMCID: PMC5799400 DOI: 10.4142/jvs.2018.19.1.51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/17/2017] [Accepted: 05/05/2017] [Indexed: 01/27/2023] Open
Abstract
Brucellosis is an emerging infectious disease affecting humans and animals. In this study, we investigated the in vitro and in vivo effects of tannic acid (TA) against Brucella abortus infection. After infection, F-actin polymerization and mitogen-activated protein kinases (MAPKs) (ERK 1/2 and p38α) phosphorylation were reduced in TA-treated cells compared with that in control cells. The mice were infected via an intraperitoneal route and were orally given TA or phosphate-buffered saline for 14 days. Spleen weights of the TA-treated and control mice were not different; however, splenic proliferation of B. abortus was significantly reduced in the TA-treated group. Immune response analysis showed that, compared with the control group, non-infected TA-treated mice displayed increased levels of interferon-γ (IFN-γ), monocyte chemoattractant protein-1 (MCP-1), and interleukin-10 at 3 days post-infection and a further increase in IFN-γ and MCP-1 at 14 days post-infection. In contrast, compared with the control group, infected TA-treated mice displayed elevated levels of IFN-γ at 3 days post-infection, which continued to increase at 14 days post-infection, as was also observed for tumor necrosis factor. Taken together, the results showing TA activation of cytokine production and inhibition of bacterial proliferation in the host highlight a potential use of TA treatment in the control of Brucella infection.
Collapse
Affiliation(s)
- Alisha W B Reyes
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Huynh T Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Lauren T Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Tran X N Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hong Hee Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
2
|
Reyes AWB, Arayan LT, Hop HT, Ngoc Huy TX, Vu SH, Min W, Lee HJ, Kim S. Effects of gallic acid on signaling kinases in murine macrophages and immune modulation against Brucella abortus 544 infection in mice. Microb Pathog 2018; 119:255-259. [DOI: 10.1016/j.micpath.2018.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
|
3
|
Reyes AWB, Simborio HLT, Hop HT, Arayan LT, Min WG, Lee HJ, Rhee MH, Chang HH, Kim S. Inhibitory effect of red ginseng acidic polysaccharide from Korean red ginseng on phagocytic activity and intracellular replication of Brucella abortus in RAW 264.7 cells. J Vet Sci 2017; 17:315-21. [PMID: 26726017 PMCID: PMC5037298 DOI: 10.4142/jvs.2016.17.3.315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/24/2015] [Accepted: 11/09/2015] [Indexed: 01/11/2023] Open
Abstract
Korean red ginseng (KRG) has long been used in traditional Korean and Oriental medicine. However, the anti-bacterial mechanism and therapeutic efficiency of KGR for intracellular Brucella infection are still unclear. In this study, the bactericidal activity of Korean red ginseng acidic polysaccharide (RGAP) on Brucella (B.) abortus and its cytotoxic effects on RAW 264.7 cells were evaluated. In addition, B. abortus internalization and intracellular replication in macrophages were investigated after RGAP treatment. RGAP-incubated cells displayed a marked reduction in the adherence, internalization and intracellular growth of B. abortus in macrophages. Furthermore, decreased F-actin fluorescence was observed relative to untreated B. abortus-infected cells. Western blot analysis of intracellular signaling proteins revealed reduced ERK, JNK and p38α phosphorylation levels in B. abortus-infected RGAP-treated cells compared to the control. Moreover, elevated co-localization of B. abortus-containing phagosomes with lysosome-associated membrane protein 1 (LAMP-1) were observed in RGAP-treated cells compared with the control. Overall, the results of this study suggest that RGAP can disrupt phagocytic activity of B. abortus via suppression of mitogen-activated protein kinases (MAPKs) signaling proteins ERK, JNK and p38 levels and inhibit intracellular replication of B. abortus by enhancing phagolysosome fusion, which may provide an alternative control of brucellosis.
Collapse
Affiliation(s)
- Alisha Wehdnesday Bernardo Reyes
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Hannah Leah Tadeja Simborio
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Won Gi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Hong Hee Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
4
|
Reyes AWB, Hop HT, Arayan LT, Huy TXN, Park SJ, Kim KD, Min W, Lee HJ, Rhee MH, Kwak YS, Kim S. The host immune enhancing agent Korean red ginseng oil successfully attenuates Brucella abortus infection in a murine model. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:5-14. [PMID: 28012988 DOI: 10.1016/j.jep.2016.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng Meyer (Araliaceae), is one of the most valuable traditional Chinese medicines and is used for the treatment of various human diseases. In this study, we elucidated the protective mechanism of the essential oil from Korean red ginseng (RGO) against Brucella infection. MATERIALS AND METHODS The effects of RGO on Brucella abortus viability, NO production, uptake and intracellular growth in macrophages were investigated. Mice were intraperitoneally infected with B. abortus and orally treated with RGO for 14 days. The weights and bacterial numbers from each spleen were monitored, and the sera were evaluated for cytokine production. RESULTS B. abortus viability was not affected, whereas NO production, internalization and intracellular replication were inhibited in RGO-treated macrophages. Bacterial adherence, F-actin polymerization and MAPK signaling protein phosphorylation (ERK1/2, JNK and p38α) were reduced and the co-localization of B. abortus-containing phagosomes with LAMP-1 was augmented in RGO-treated cells compared to untreated cells. RGO displayed protective effects against cell damage by inhibiting nitrite production during B. abortus infection in macrophages. Moreover, the spleen weight and bacterial burden were lower in the RGO-treated group than in the control group. The uninfected RGO-treated mice displayed increased TNF-α and IFN-γ production, whereas the B. abortus-infected RGO-treated mice showed reduced IL-10 production compared to the control. CONCLUSION RGO exhibits protective effects against B. abortus infection in vitro and in vivo, which emphasize the beneficial effects of RGO in the prevention and treatment of brucellosis.
Collapse
Affiliation(s)
- Alisha Wehdnesday Bernardo Reyes
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea; Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna 4031, Philippines.
| | - Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Soo Jong Park
- Division of Applied Life Science (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea.
| | - Yi-Seong Kwak
- Research Institute of Technology, Korea Ginseng Corporation, Taejon 305-805, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
5
|
Nocodazole treatment interrupted Brucella abortus invasion in RAW 264.7 cells, and successfully attenuated splenic proliferation with enhanced inflammatory response in mice. Microb Pathog 2017; 103:87-93. [DOI: 10.1016/j.micpath.2016.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
|
6
|
Reyes A, Kim D, Simborio H, Hop H, Arayan L, Min W, Lee J, Chang H, Kim S. Methyl gallate limits infection in mice challenged with Brucella abortus
while enhancing the inflammatory response. J Appl Microbiol 2016; 120:552-9. [DOI: 10.1111/jam.13019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/15/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022]
Affiliation(s)
- A.W.B. Reyes
- Institute of Animal Medicine; College of Veterinary Medicine; Gyeongsang National University; Jinju Korea
- Department of Veterinary Paraclinical Sciences; College of Veterinary Medicine; University of the Philippines Los Baños; Laguna Philippines
| | - D.G. Kim
- Institute of Animal Medicine; College of Veterinary Medicine; Gyeongsang National University; Jinju Korea
| | - H.L.T. Simborio
- Institute of Animal Medicine; College of Veterinary Medicine; Gyeongsang National University; Jinju Korea
| | - H.T. Hop
- Institute of Animal Medicine; College of Veterinary Medicine; Gyeongsang National University; Jinju Korea
| | - L.T. Arayan
- Institute of Animal Medicine; College of Veterinary Medicine; Gyeongsang National University; Jinju Korea
| | - W. Min
- Institute of Animal Medicine; College of Veterinary Medicine; Gyeongsang National University; Jinju Korea
| | - J.J. Lee
- Animal and Plant Quarantine Agency; Anyang Gyeonggi-do Korea
| | - H.H. Chang
- Institute of Agriculture and Life Science; Gyeongsang National University; Jinju Korea
| | - S. Kim
- Institute of Animal Medicine; College of Veterinary Medicine; Gyeongsang National University; Jinju Korea
- Institute of Agriculture and Life Science; Gyeongsang National University; Jinju Korea
| |
Collapse
|
7
|
von Bargen K, Gagnaire A, Arce-Gorvel V, de Bovis B, Baudimont F, Chasson L, Bosilkovski M, Papadopoulos A, Martirosyan A, Henri S, Mège JL, Malissen B, Gorvel JP. Cervical Lymph Nodes as a Selective Niche for Brucella during Oral Infections. PLoS One 2015; 10:e0121790. [PMID: 25919005 PMCID: PMC4412401 DOI: 10.1371/journal.pone.0121790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/03/2015] [Indexed: 12/23/2022] Open
Abstract
Cervical lymph nodes (CLN) are the first lymph nodes encountered by material taking the oral route. To study their role in orally acquired infections, we analyzed 307 patients of up to 14 years treated in the university clinic of Skopje, Macedonia, for brucellosis, a zoonotic bacterial disease frequently acquired by ingestion of contaminated dairy products. From these children, 36% had lymphadenopathy. Among orally infected children, lymphadenopathy with CLN being the only lymph nodes affected was significantly more frequent as compared to those infected by contact with animals (83% vs. 63%), suggesting a possible involvement of CLN during orally acquired human brucellosis. Using a murine model where bacteria are delivered into the oral cavity, we show that Brucella quickly and selectively colonize the CLN where they proliferate and persist over long periods of time for up to 50 days post-infection. A similar efficient though less specific drainage to CLN was found for Brucella, Salmonella typhimurium and fluorescent microspheres delivered by gavage, a pathway likely representing a mixed infection mode of intragastric and oral infection, suggesting a central pathway of drained material. Microspheres as well as bacteria drained to CLN predominately reside in cells expressing CD68 and no or low levels of CD11c. Even though no systemic response could be detected, Brucella induced a locally restricted inflammatory reaction with increased expression levels of interferon γ, interleukin (IL)-6, IL-12, granzyme B and a delayed induction of Nos2. Inflammation led to pronounced lymphadenopathy, infiltration of macrophages/monocytes expressing high levels of major histocompatibility complex II and to formation of epitheloid granulomas. Together, these results highlight the role of CLN in oral infections as both, an initial and efficient trap for bacterial invaders and as possible reservoir for chronic pathogens. They likewise cast a new light on the significance of oral routes for means of vaccination.
Collapse
Affiliation(s)
- Kristine von Bargen
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Aurélie Gagnaire
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Béatrice de Bovis
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Fannie Baudimont
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Lionel Chasson
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Mile Bosilkovski
- University Clinic for Infectious Diseases and Febrile Conditions, Skopje, Republic of Macedonia
| | - Alexia Papadopoulos
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Anna Martirosyan
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Jean-Louis Mège
- Unité des Rickettsies, Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), UMR6020, Faculté de Médecine, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
- * E-mail:
| |
Collapse
|