1
|
Madsen-Bouterse SA, Herndon DR, Grossman PC, Rivolta AA, Fry LM, Murdoch BM, Piel LMW. Differential Immunological Responses of Adult Domestic and Bighorn Sheep to Inoculation with Mycoplasma ovipneumoniae Type Strain Y98. Microorganisms 2024; 12:2658. [PMID: 39770861 PMCID: PMC11728652 DOI: 10.3390/microorganisms12122658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Bighorn sheep (BHS) populations have been reported to experience high levels of morbidity and mortality following infection with Mycoplasma ovipneumoniae. This contrasts with the subclinical presentation in domestic sheep (DS). Understanding this difference requires baseline knowledge of pre- and post-infection immune responses of both species. The present study identifies differences in leukocyte phenotypes between adult BHS and DS before and after intranasal inoculation with 1 × 108Mycoplasma ovipneumoniae. Prior to inoculation, BHS were confirmed to have a higher abundance of leukocyte CD14 and serum concentrations of IL-36RA. In contrast, DS had a higher leukocyte abundance of CD16 in addition to previously observed integrin markers and CD172a, as well as greater serum TNF-α concentrations. Within 15 days of inoculation, BHS displayed signs of mild respiratory disease and M. ovipneumoniae DNA was detected on nasal swabs using a quantitative PCR; meanwhile, DS exhibited few to no clinical signs and had levels of M. ovipneumoniae DNA below the standard curve threshold. Immunologic markers remained relatively consistent pre- and post-inoculation in DS, while BHS demonstrated changes in the peripheral leukocyte expression of CD172a and CD14. Circulating serum IL-36RA decreased and CXCL10 increased within BHS. These findings highlight significant differences in cellular immunity between BHS and DS, raised and housed under similar conditions, prior to and following inoculation with M. ovipneumoniae.
Collapse
Affiliation(s)
- Sally A. Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (S.A.M.-B.); (A.A.R.); (L.M.F.)
| | - David R. Herndon
- USDA-ARS Animal Disease Research Unit, Pullman, WA 99164, USA; (D.R.H.); (P.C.G.)
| | - Paige C. Grossman
- USDA-ARS Animal Disease Research Unit, Pullman, WA 99164, USA; (D.R.H.); (P.C.G.)
| | - Alejandra A. Rivolta
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (S.A.M.-B.); (A.A.R.); (L.M.F.)
| | - Lindsay M. Fry
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (S.A.M.-B.); (A.A.R.); (L.M.F.)
- USDA-ARS Animal Disease Research Unit, Pullman, WA 99164, USA; (D.R.H.); (P.C.G.)
| | - Brenda M. Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Lindsay M. W. Piel
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (S.A.M.-B.); (A.A.R.); (L.M.F.)
- USDA-ARS Animal Disease Research Unit, Pullman, WA 99164, USA; (D.R.H.); (P.C.G.)
| |
Collapse
|
2
|
Grandoni F, Scatà MC, Martucciello A, De Carlo E, De Matteis G, Hussen J. Comprehensive phenotyping of peripheral blood monocytes in healthy bovine. Cytometry A 2021; 101:122-130. [PMID: 34382742 DOI: 10.1002/cyto.a.24492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022]
Abstract
Monocytes are bone marrow derived innate myeloid cells that circulate in the blood and play important roles in infection and inflammation. As part of the mononuclear phagocytic system, monocytes provide innate effector functions, support the adaptive immune response, and play a role in the maintenance of tissue homeostasis. In addition to their role in sensing pathogen-associated molecular patterns using several pattern recognition receptors, monocytes are characterized by their ability to ingest and kill microbes, to produce cytokines and chemokines, and to present antigens to T cells. For a long time, monocytes have been considered as a homogenous cell population, characterized by the expression of CD14, the receptor of lipopolysaccharide. Studies in several species have shown that the monocyte population consists of phenotypically and functionally different cell subsets. In this review, we report a comprehensive phenotyping of monocyte subsets in cattle. In addition, the most characterizing cell markers and gating strategies for detailed immunophenotyping of bovine monocyte subsets are discussed.
Collapse
Affiliation(s)
- Francesco Grandoni
- Centro di ricerca Zootecnia e Acquacoltura (Research Centre for Animal Production and Aquaculture), CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Monterotondo, Rome, Italy
| | - Maria Carmela Scatà
- Centro di ricerca Zootecnia e Acquacoltura (Research Centre for Animal Production and Aquaculture), CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Monterotondo, Rome, Italy
| | - Alessandra Martucciello
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Esterina De Carlo
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Giovanna De Matteis
- Centro di ricerca Zootecnia e Acquacoltura (Research Centre for Animal Production and Aquaculture), CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Monterotondo, Rome, Italy
| | - Jamal Hussen
- Department of Microbiology, King Faisal University College of Veterinary Medicine, Al-Ahsa, Saudi Arabia
| |
Collapse
|
3
|
Mai N, Prifti V, Lim K, O'Reilly MA, Kim M, Halterman MW. Lung SOD3 limits neurovascular reperfusion injury and systemic immune activation following transient global cerebral ischemia. J Stroke Cerebrovasc Dis 2020; 29:104942. [PMID: 32807413 PMCID: PMC7438610 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Studies implicate the lung in moderating systemic immune activation via effects on circulating leukocytes. In this study, we investigated whether targeted expression of the antioxidant extracellular superoxide dismutase (SOD3) within the lung would influence post-ischemic peripheral neutrophil activation and CNS reperfusion injury. METHODS Adult, male mice expressing human SOD3 within type II pneumocytes were subjected to 15 min of transient global cerebral ischemia. Three days post-reperfusion, lung and brain tissue was collected and analyzed by immunohistochemistry for inflammation and injury markers. In vitro motility and neurotoxicity assays were conducted to ascertain the direct effects of hSOD3 on PMN activation. Results were compared against C57BL/6 age and sex-matched controls. RESULTS Relative to wild-type controls, hSOD3 heterozygous mice exhibited a reduction in lung inflammation, blood-brain barrier damage, and post-ischemic neuronal injury within the hippocampus and cortex. PMNs harvested from hSOD3 mice were also resistant to LPS priming, slower-moving, and less toxic to primary neuronal cultures. CONCLUSIONS Constitutive, focal expression of hSOD3 is neuroprotective in a model of global cerebral ischemia-reperfusion injury. The underlying mechanism of SOD3-dependent protection is attributable in part to effects on the activation state and toxic potential of circulating neutrophils. These results implicate lung-brain coupling as a determinant of cerebral ischemia-reperfusion injury and highlight post-stroke lung inflammation as a potential therapeutic target in acute ischemic cerebrovascular injuries.
Collapse
Affiliation(s)
- Nguyen Mai
- Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester NY 14642 United States
| | - Viollandi Prifti
- Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester NY 14642 United States
| | - Kihong Lim
- Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642 United States
| | - Michael A O'Reilly
- Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester NY 14642 United States
| | - Minsoo Kim
- Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642 United States
| | - Marc W Halterman
- Departments of Neurology & Neuroscience, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 United States; Departments of Neurology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642 United States.
| |
Collapse
|
4
|
Oliveira BM, Pinto A, Correia A, Ferreira PG, Vilanova M, Teixeira L. Characterization of Myeloid Cellular Populations in Mesenteric and Subcutaneous Adipose Tissue of Holstein-Friesian Cows. Sci Rep 2020; 10:1771. [PMID: 32019985 PMCID: PMC7000716 DOI: 10.1038/s41598-020-58678-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells resident in adipose tissue have important functions in local and systemic metabolic homeostasis. Nevertheless, these immune cell populations remain poorly characterized in bovines. Recently, we described diverse lymphocyte subpopulations in adipose tissue of Holstein-Friesian cows. Here, we aimed at characterising myeloid cell populations present in bovine adipose tissue using multicolour flow cytometry, cell sorting and histochemistry/immunohistochemistry. Macrophages, CD14+CD11b+MHC-II+CD45+ cells, were identified in mesenteric and subcutaneous adipose tissue, though at higher proportions in the latter. Mast cells, identified as SSC-AhighCD11b−/+CD14−MHC-II−CH138A−CD45+ cells, were also observed in adipose tissue and found at higher proportions than macrophages in mesenteric adipose tissue. Neutrophils, presenting a CH138A+CD11b+ phenotype, were also detected in mesenteric and subcutaneous adipose tissue, however, at much lower frequencies than in the blood. Our gating strategy allowed identification of eosinophils in blood but not in adipose tissue although being detected by morphological analysis at low frequencies in some animals. A population not expressing CD45 and with the CH138A+ CD11b−MHC-II− phenotype, was found abundant and present at higher proportions in mesenteric than subcutaneous adipose tissue. The work reported here may be useful for further studies addressing the function of the described cells.
Collapse
Affiliation(s)
- Bárbara M Oliveira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana Pinto
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Alexandra Correia
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Paula G Ferreira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Manuel Vilanova
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Luzia Teixeira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal. .,UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
5
|
Washington EA, Barber SR, Murray CM, Davies HMS, Kimpton WG, Yen HH. Lymphatic cannulation models in sheep: Recent advances for immunological and biomedical research. J Immunol Methods 2018; 457:6-14. [PMID: 29625076 DOI: 10.1016/j.jim.2018.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Lymphatic cannulation models are useful tools for studying the immunobiology of the lymphatic system and the immunopathology of specific tissues in diseases. Sheep cannulations have been used extensively, as models for human physiology, fetal and neonatal development, human diseases, and for studies of ruminant pathobiology. The development of new and improved cannulation techniques in recent years has meant that difficult to access sites, such as mucosal associated tissues, are now more readily available to researchers. This review highlights the new approaches to cannulation and how these, in combination with advanced omics technologies, will direct future research using the sheep model.
Collapse
Affiliation(s)
- Elizabeth A Washington
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart R Barber
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina M Murray
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Helen M S Davies
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wayne G Kimpton
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hung-Hsun Yen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia..
| |
Collapse
|
6
|
Grandoni F, Elnaggar MM, Abdellrazeq GS, Signorelli F, Fry LM, Marchitelli C, Hulubei V, Khaliel SA, Torky HA, Davis WC. Characterization of leukocyte subsets in buffalo (Bubalus bubalis) with cross-reactive monoclonal antibodies specific for bovine MHC class I and class II molecules and leukocyte differentiation molecules. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:101-109. [PMID: 28433527 DOI: 10.1016/j.dci.2017.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Although buffaloes (Bubalus bubalis) are a major component of the livestock industry worldwide, limited progress has been made in the study of the mechanisms regulating the immune response to pathogens and parasites affecting their health and productivity. This has been, in part, attributable to the limited availability of reagents to study immune responses in buffalo. As reported here, a set of cross-reactive monoclonal antibodies (mAbs), developed against bovine, ovine and caprine leukocyte differentiation molecules (LDM) and major histocompatibility complex (MHC) molecules, were identified and used to compare expression of LDM in Italian and Egyptian buffalo. The results show most of the epitopes identified with the mAbs are conserved on LDM and MHC I and II molecules in both lineages of buffalo. Comparison of the composition of lymphocyte subsets between buffalo and cattle revealed they are similar except for expression of CD2 and CD8 on workshop cluster one (WC1) positive γδ T cells. In cattle, CD8 is expressed on a subset of CD2+/WC1- γδ T cells that are present in low frequency in blood of young and old animals, whereas, CD8-/CD2-/WC1+ γδ T cells are present in high frequency in young animals, decreasing with age. In the buffalo, CD2 is expressed on a subset of WC1+ γδ T cells and CD8 is expressed on all WC1+ γδ T cells. The availability of this extensive set of mAbs provides opportunities to study the immunopathogenesis of pathogens and parasites affecting the health of buffalo.
Collapse
Affiliation(s)
- Francesco Grandoni
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per la Produzione delle Carni e Il Miglioramento genetico (CREA-PCM), Monterotondo, Roma, Italy
| | - Mahmoud M Elnaggar
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Gaber S Abdellrazeq
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Federica Signorelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per la Produzione delle Carni e Il Miglioramento genetico (CREA-PCM), Monterotondo, Roma, Italy
| | - Lindsay M Fry
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; USDA, ARS, Animal Disease Research Unit, Pullman, WA 99164, USA
| | - Cinzia Marchitelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per la Produzione delle Carni e Il Miglioramento genetico (CREA-PCM), Monterotondo, Roma, Italy
| | - Victoria Hulubei
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Samy A Khaliel
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Helmy A Torky
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - William C Davis
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
7
|
Cassirer EF, Manlove KR, Almberg ES, Kamath PL, Cox M, Wolff P, Roug A, Shannon J, Robinson R, Harris RB, Gonzales BJ, Plowright RK, Hudson PJ, Cross PC, Dobson A, Besser TE. Pneumonia in bighorn sheep: Risk and resilience. J Wildl Manage 2017. [DOI: 10.1002/jwmg.21309] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Kezia R. Manlove
- Department of Veterinary Microbiology and PathologyWashington State UniversityPullmanWA 99164USA
| | - Emily S. Almberg
- Montana Department of Fish, Wildlife, and Parks1400 South 19th St.BozemanMT 59717USA
| | | | - Mike Cox
- Nevada Department of Wildlife6980 Sierra Center Parkway, Suite 120RenoNV 89511USA
| | - Peregrine Wolff
- Nevada Department of Wildlife6980 Sierra Center Parkway, Suite 120RenoNV 89511USA
| | - Annette Roug
- Utah Division of Wildlife Resources1594 W. North Temple, Suite 2110Salt Lake CityUT 84116USA
| | - Justin Shannon
- Utah Division of Wildlife Resources1594 W. North Temple, Suite 2110Salt Lake CityUT 84116USA
| | - Rusty Robinson
- Utah Division of Wildlife Resources1594 W. North Temple, Suite 2110Salt Lake CityUT 84116USA
| | - Richard B. Harris
- Washington Department of Fish and Wildlife600 Capitol Way NorthOlympiaWA 98501USA
| | - Ben J. Gonzales
- Wildlife Investigations LaboratoryCalifornia Department of Fish and Wildlife1701 Nimbus RoadRancho CordovaCA 95670‐4503USA
| | - Raina K. Plowright
- Department of Microbiology and ImmunologyMontana State UniversityBozemanMT 59717USA
| | - Peter J. Hudson
- Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPA 16802USA
| | - Paul C. Cross
- U.S. Geological SurveyNorthern Rocky Mountain Science CenterBozemanMT 59715USA
| | - Andrew Dobson
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJ 08544USA
| | - Thomas E. Besser
- Department of Veterinary Microbiology and PathologyWashington State UniversityPullmanWA 99164USA
| |
Collapse
|
8
|
Mai N, Prifti L, Rininger A, Bazarian H, Halterman MW. Endotoxemia induces lung-brain coupling and multi-organ injury following cerebral ischemia-reperfusion. Exp Neurol 2017; 297:82-91. [PMID: 28757259 DOI: 10.1016/j.expneurol.2017.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/04/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022]
Abstract
Post-ischemic neurodegeneration remains the principal cause of mortality following cardiac resuscitation. Recent studies have implicated gastrointestinal ischemia in the sepsis-like response associated with the post-cardiac arrest syndrome (PCAS). However, the extent to which the resulting low-grade endotoxemia present in up to 86% of resuscitated patients affects cerebral ischemia-reperfusion injury has not been investigated. Here we report that a single injection of low-dose lipopolysaccharide (50μg/kg, IP) delivered after global cerebral ischemia (GCI) induces blood-brain barrier permeability, microglial activation, cortical injury, and functional decline in vivo, compared to ischemia alone. And while GCI was sufficient to induce neutrophil (PMN) activation and recruitment to the post-ischemic CNS, minimal endotoxemia exhibited synergistic effects on markers of systemic inflammation including PMN priming, lung damage, and PMN burden within the lung and other non-ischemic organs including the kidney and liver. Our findings predict that acute interventions geared towards blocking the effects of serologically occult endotoxemia in survivors of cardiac arrest will limit delayed neurodegeneration, multi-organ dysfunction and potentially other features of PCAS. This work also introduces lung-brain coupling as a novel therapeutic target with broad effects on innate immune priming and post-ischemic neurodegeneration following cardiac arrest and related cerebrovascular conditions.
Collapse
Affiliation(s)
- Nguyen Mai
- Center for Neurotherapeutics Discovery, University of Rochester, Rochester, NY 14642, United States
| | - Landa Prifti
- Center for Neurotherapeutics Discovery, University of Rochester, Rochester, NY 14642, United States
| | - Aric Rininger
- Center for Neurotherapeutics Discovery, University of Rochester, Rochester, NY 14642, United States
| | - Hannah Bazarian
- Center for Neurotherapeutics Discovery, University of Rochester, Rochester, NY 14642, United States
| | - Marc W Halterman
- Center for Neurotherapeutics Discovery, University of Rochester, Rochester, NY 14642, United States; Department of Neurology, University of Rochester, Rochester, NY 14642, United States.
| |
Collapse
|
9
|
Differential Susceptibility of Bighorn Sheep (Ovis canadensis) and Domestic Sheep (Ovis aries) Neutrophils to Mannheimia haemolytica Leukotoxin is not due to Differential Expression of Cell Surface CD18. J Wildl Dis 2017; 53:625-629. [PMID: 28323564 DOI: 10.7589/2016-11-244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bighornsheep ( Ovis canadensis ) are more susceptible to pneumonia caused by Mannheimia haemolytica than are domestic sheep ( Ovis aries ). Leukotoxin produced by M. haemolytica is the principal virulence factor involved in pneumonia pathogenesis. Although leukotoxin is cytolytic to all subsets of ruminant leukocytes, neutrophils are the most susceptible subset. Bighorn sheep neutrophils are four- to eightfold more susceptible to leukotoxin-induced cytolysis than are domestic sheep neutrophils. We hypothesized that the higher susceptibility of bighorn sheep neutrophils, in comparison to domestic sheep neutrophils, is due to higher expression of CD18, the receptor for leukotoxin on leukocytes. Our objective was to quantify CD18 expression on neutrophils of bighorn sheep and domestic sheep. Cell-surface CD18 expression on bighorn sheep and domestic sheep neutrophils was measured as antibody binding capacity of cells by flow cytometric analysis with two fluorochrome-conjugated anti-CD18 monoclonal antibodies (BAQ30A and HUH82A) and microspheres. Contrary to our expectations, CD18 expression was higher (P<0.0001) with monoclonal antibody BAQ30A and was higher (P<0.0002) as well with monoclonal antibody HUH80A on domestic sheep neutrophils in comparison to bighorn sheep neutrophils. These findings suggest that the higher in vitro susceptibility to leukotoxin of bighorn sheep neutrophils compared to domestic sheep neutrophils is not due to higher expression of the leukotoxin receptor CD18 on bighorn sheep neutrophils.
Collapse
|