1
|
Armijos-Capa G, Tuninetti JS, Thomas AH, Serrano MP. Enhancement of the Photosensitizing Properties of 6-Carboxypterin through Covalent Binding to the pH-Responsive and Biocompatible Poly(allylamine Hydrochloride). ACS APPLIED MATERIALS & INTERFACES 2024; 16:3922-3934. [PMID: 38061363 DOI: 10.1021/acsami.3c13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A polymeric photosensitizer was synthesized through covalent attachment of the natural photosensitizer 6-carboxypterin (Cap) to a poly(allylamine hydrochloride) (PAH) polymer. The optimization of the functionalization steps and purification procedure is described. The overall yield of the functionalization reaction was 67% to generate the modified polymer (PAH-Cap), featuring a Cap substitution degree of approximately 1% and advantageous spectroscopic properties. Photosensitizing properties of PAH-Cap were observed to occur via both photooxidation mechanisms, i.e., type I and type II. This feature was demonstrated using a biologically relevant target molecule, 2'-deoxyguanosine (dG). The spectroscopic, photophysical, and photochemical behaviors in aqueous environments were studied and compared to Cap. To explore possible further relevant biological applications, experiments with PAH-Cap and dG were carried out at physiological pH. PAH-Cap can generate singlet molecular oxygen and initiate an electron transfer process at pH 7 in air-saturated solutions upon UVA irradiation. Moreover, based on its spectroscopic features, visible light can be used to initiate the photooxidation of biological compounds in water, with many interesting advantages compared to free Cap and other related pteridines. These advantages include an enhancement of the photosensitizing effect at physiological pH and the potential of PAH-Cap for its use as a building block in supramolecular assemblies. The functionalization strategy hereby described can be employed for the preparation of robust photoactive polymers with great potential for its application in photodynamic therapy (PDT) and disinfection technologies.
Collapse
Affiliation(s)
- Gerardo Armijos-Capa
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata B1904DPI, Argentina
| | - Jimena S Tuninetti
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata B1904DPI, Argentina
| | - Andrés H Thomas
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata B1904DPI, Argentina
| | - Mariana P Serrano
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata B1904DPI, Argentina
| |
Collapse
|
2
|
Davodabadi F, Sajjadi SF, Sarhadi M, Mirghasemi S, Nadali Hezaveh M, Khosravi S, Kamali Andani M, Cordani M, Basiri M, Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol 2023; 958:176013. [PMID: 37633322 DOI: 10.1016/j.ejphar.2023.176013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shaghayegh Mirghasemi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Nadali Hezaveh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Samin Khosravi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Kamali Andani
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555. Katowice, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada.
| |
Collapse
|
3
|
del Moral M, Loeck M, Muntimadugu E, Vives G, Pham V, Pfeifer P, Battaglia G, Muro S. Role of the Lactide:Glycolide Ratio in PLGA Nanoparticle Stability and Release under Lysosomal Conditions for Enzyme Replacement Therapy of Lysosomal Storage Disorders. J Funct Biomater 2023; 14:440. [PMID: 37754854 PMCID: PMC10531859 DOI: 10.3390/jfb14090440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Prior studies demonstrated that encapsulation in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) enhanced the delivery of enzymes used for replacement therapy (ERT) of lysosomal storage disorders (LSDs). This study examined how the copolymer lactide:glycolide ratio impacts encapsulation, physicochemical characteristics, stability, and release under lysosomal conditions. Hyaluronidase, deficient in mucopolysaccharidosis IX, was encapsulated in NPs synthesized using 50:50, 60:40, or 75:25 lactide:glycolide copolymers. All NPs had diameters compatible with cellular transport (≤168 nm) and polydispersity indexes (≤0.16) and ζ-potentials (≤-35 mV) compatible with colloidal stability. Yet, their encapsulation efficiency varied, with 75:25 NPs and 60:40 NPs having the lowest and highest EE, respectively (15% vs. 28%). Under lysosomal conditions, the 50:50 copolymer degraded fastest (41% in 1 week), as expected, and the presence of a targeting antibody coat did not alter this result. Additionally, 60:40 NPs destabilized fastest (<1 week) because of their smaller diameter, and 75:25 NPs did not destabilize in 4 weeks. All formulations presented burst release under lysosomal conditions (56-78% of the original load within 30 min), with 50:50 and 60:40 NPs releasing an additional small fraction after week 1. This provided 4 weeks of sustained catalytic activity, sufficient to fully degrade a substrate. Altogether, the 60:40 NP formulation is preferred given its higher EE, and 50:50 NPs represent a valid alternative, while the highest stability of 75:25 NPs may impair lysosomes. These results can guide future studies aiming to translate PLGA NP-based ERT for this and other LSDs.
Collapse
Affiliation(s)
- Maria del Moral
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Applied Materials Chemistry Master Program (M.d.M) and Biomedicine Doctorate Program, University of Barcelona, 08007 Barcelona, Spain
| | - Maximilian Loeck
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Applied Materials Chemistry Master Program (M.d.M) and Biomedicine Doctorate Program, University of Barcelona, 08007 Barcelona, Spain
| | - Eameema Muntimadugu
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA
| | - Guillem Vives
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Degree Program, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Vy Pham
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Peter Pfeifer
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Institution of Catalonia for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
- Institution of Catalonia for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
4
|
Shih TM, Hsiao JF, Shieh DB, Tsai GE. Acidic Microenvironment-Sensitive Core-Shell Microcubes: The Self-assembled and the Therapeutic Effects for Caries Prevention. Eur J Dent 2023; 17:863-870. [PMID: 36535661 PMCID: PMC10569861 DOI: 10.1055/s-0042-1757464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The aim of this study was to develop a new material with integrated interface design that could achieve the purpose of environmental-sensing controlled release against cariogenic bacteria. Furthermore, this material can rebalance oral flora and serve as a preventive and reparative measure of dental caries. MATERIALS AND METHODS NaF@PAA@HA@polyelectrolytes@HA@PAA particles were synthesized using the method of two-solution phases precipitation followed by biocompatible polymers coating layer by layer. The structure of the particles was confirmed by transmission electron microscope. The fluoride release profile was measured by fluoride ion electrode. Antimicrobial activity against the cariogenic microorganisms was analyzed by scanning electron microscopy and energy dispersive spectrum. The efficacy experiments were conducted on tooth enamel slides to evaluated fluoride absorption and antibacterial activity of the prototype toothpaste containing microcube particles RESULTS: The structure of NaF@PAA@HA@polyelectrolytes@HA@PAA particles showed a core surrounded by tooth-adhesion polymer layers in thin fin or filament structure. The loaded concentration of fluoride in the particles' core was 148,996 ± 28,484 ppm. NaF@PAA@HA@polyelectrolytes@HA@PAA particles showed selective inhibition of cariogenic microorganisms over probiotic strains and stronger fluoride adhesion on tooth enamel. A burst release (over 80%) of fluoride from the particle-containing toothpaste was observed under cariogenic acidic environment (pH < 5), while it remained extremely low under neutral environment. Compared with the best results of commercial toothpastes, our prototype toothpaste increased enamel fluoride uptake by 8-fold in normal enamel slides and by 11-fold in the slides with induced white spot lesions after either 1- or 7-day treatment. The prototype toothpaste also showed better inhibition of cariogenic microorganisms than the commercial brands. The coverage area of cariogenic bacteria under our toothpaste treatment was 73% on normal enamel slides compared with the commercial brands, while it was 69% in the induced white spot lesions. CONCLUSIONS In our study, an intelligent toothpaste was developed that selectively inhibits cariogenic bacteria by microenvironment proton-triggered fluoride release. Such novel design would accomplish a favorable flora balance for optimal long-term oral health.
Collapse
Affiliation(s)
- Tsai-Miao Shih
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei City, Taiwan
| | - Jui-Fu Hsiao
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei City, Taiwan
| | - Dar-Bin Shieh
- School of Dentistry and Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Applied Nanomedicine and Core Facility Center, National Cheng Kung University, Tainan, Taiwan
- Department of Stomatology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Guochuan Emil Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei City, Taiwan
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Los Angeles, California, United States
| |
Collapse
|
5
|
Gileva A, Trushina D, Yagolovich A, Gasparian M, Kurbanova L, Smirnov I, Burov S, Markvicheva E. Doxorubicin-Loaded Polyelectrolyte Multilayer Capsules Modified with Antitumor DR5-Specific TRAIL Variant for Targeted Drug Delivery to Tumor Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:902. [PMID: 36903780 PMCID: PMC10005140 DOI: 10.3390/nano13050902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Recently, biodegradable polyelectrolyte multilayer capsules (PMC) have been proposed for anticancer drug delivery. In many cases, microencapsulation allows to concentrate the substance locally and prolong its flow to the cells. To reduce systemic toxicity when delivering highly toxic drugs, such as doxorubicin (DOX), the development of a combined delivery system is of paramount importance. Many efforts have been made to exploit the DR5-dependent apoptosis induction for cancer treatment. However, despite having a high antitumor efficacy of the targeted tumor-specific DR5-B ligand, a DR5-specific TRAIL variant, its fast elimination from a body limits its potential use in a clinic. A combination of an antitumor effect of the DR5-B protein with DOX loaded in the capsules could allow to design a novel targeted drug delivery system. The aim of the study was to fabricate PMC loaded with a subtoxic concentration of DOX and functionalized with the DR5-B ligand and to evaluate a combined antitumor effect of this targeted drug delivery system in vitro. In this study, the effects of PMC surface modification with the DR5-B ligand on cell uptake both in 2D (monolayer culture) and 3D (tumor spheroids) were studied by confocal microscopy, flow cytometry and fluorimetry. Cytotoxicity of the capsules was evaluated using an MTT test. The capsules loaded with DOX and modified with DR5-B demonstrated synergistically enhanced cytotoxicity in both in vitro models. Thus, the use of the DR5-B-modified capsules loaded with DOX at a subtoxic concentration could provide both targeted drug delivery and a synergistic antitumor effect.
Collapse
Affiliation(s)
- Anastasia Gileva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Daria Trushina
- Laboratory of Bioorganic Structures, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Anne Yagolovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Marine Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Leyli Kurbanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Ivan Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Sergey Burov
- Cytomed JSC, Orlovo-Denisovsky pr. 14, 197375 St. Petersburg, Russia
| | - Elena Markvicheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
6
|
Artzy-Schnirman A, Abu-Shah E, Chandrawati R, Altman E, Yusuf N, Wang ST, Ramos J, Hansel CS, Haus-Cohen M, Dahan R, Arif S, Dustin ML, Peakman M, Reiter Y, Stevens MM. Artificial Antigen Presenting Cells for Detection and Desensitization of Autoreactive T cells Associated with Type 1 Diabetes. NANO LETTERS 2022; 22:4376-4382. [PMID: 35616515 PMCID: PMC9185737 DOI: 10.1021/acs.nanolett.2c00819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Autoimmune diseases and in particular type 1 diabetes rely heavily on treatments that target the symptoms rather than prevent the underlying disease. One of the barriers to better therapeutic strategies is the inability to detect and efficiently target rare autoreactive T-cell populations that are major drivers of these conditions. Here, we develop a unique artificial antigen-presenting cell (aAPC) system from biocompatible polymer particles that allows specific encapsulation of bioactive ingredients. Using our aAPC, we demonstrate that we are able to detect rare autoreactive CD4 populations in human patients, and using mouse models, we demonstrate that our particles are able to induce desensitization in the autoreactive population. This system provides a promising tool that can be used in the prevention of autoimmunity before disease onset.
Collapse
Affiliation(s)
- Arbel Artzy-Schnirman
- Department
of Materials, Department of Bioengineering and Institute for Biomedical
Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, U.K.
| | - Enas Abu-Shah
- Kennedy
Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology
and Musculoskeletal Sciences, University
of Oxford, Oxford OX3 7FY, U.K.
- Sir
William Dunn School of Pathology, University
of Oxford, Oxford OX1 3RE, U.K.
| | - Rona Chandrawati
- Department
of Materials, Department of Bioengineering and Institute for Biomedical
Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, U.K.
| | - Efrat Altman
- Laboratory
of Molecular Immunology, Faculty of Biology and Technion Integrated
Cancer Center, Technion-Israel Institute
of Technology, Haifa 3200003, Israel
| | - Norkhairin Yusuf
- Department
of Immunobiology, Guy’s, King’s
& St Thomas’ School of Medicine, second Floor, New Guy’s
House, Guy’s Hospital, London SE1 9RT, U.K.
| | - Shih-Ting Wang
- Department
of Materials, Department of Bioengineering and Institute for Biomedical
Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, U.K.
| | - Jose Ramos
- Department
of Materials, Department of Bioengineering and Institute for Biomedical
Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, U.K.
| | - Catherine S. Hansel
- Department
of Materials, Department of Bioengineering and Institute for Biomedical
Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, U.K.
| | - Maya Haus-Cohen
- Laboratory
of Molecular Immunology, Faculty of Biology and Technion Integrated
Cancer Center, Technion-Israel Institute
of Technology, Haifa 3200003, Israel
| | - Rony Dahan
- Department
of Systems Immunology, Weizmann Institute
of Science, Rehovot 761001, Israel
| | - Sefina Arif
- Department
of Immunobiology, Guy’s, King’s
& St Thomas’ School of Medicine, second Floor, New Guy’s
House, Guy’s Hospital, London SE1 9RT, U.K.
| | - Michael L. Dustin
- Kennedy
Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology
and Musculoskeletal Sciences, University
of Oxford, Oxford OX3 7FY, U.K.
| | - Mark Peakman
- Department
of Immunobiology, Guy’s, King’s
& St Thomas’ School of Medicine, second Floor, New Guy’s
House, Guy’s Hospital, London SE1 9RT, U.K.
| | - Yoram Reiter
- Laboratory
of Molecular Immunology, Faculty of Biology and Technion Integrated
Cancer Center, Technion-Israel Institute
of Technology, Haifa 3200003, Israel
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering and Institute for Biomedical
Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, U.K.
| |
Collapse
|
7
|
Triple-layered encapsulation through direct droplet impact. J Colloid Interface Sci 2022; 615:887-896. [DOI: 10.1016/j.jcis.2022.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022]
|
8
|
Müllner M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem Commun (Camb) 2022; 58:5683-5716. [PMID: 35445672 DOI: 10.1039/d2cc01601j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular polymer bottlebrushes are densely grafted, individual macromolecules with nanoscale proportions. The last decade has seen an increased focus on this material class, especially in nanomedicine and for biomedical applications. This Feature Article provides an overview of major developments in this area to highlight the many opportunities that these polymer architectures bring to nano-bio research. The article covers aspects of bottlebrush synthesis and summarises their use in drug and gene delivery, imaging, as theranostics and as prototype materials to correlate nanoparticle structure and composition to biological function and behaviour. Areas for future research in this area are discussed.
Collapse
Affiliation(s)
- Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Layer-by-Layer Pirfenidone/Cerium Oxide Nanocapsule Dressing Promotes Wound Repair and Prevents Scar Formation. Molecules 2022; 27:molecules27061830. [PMID: 35335197 PMCID: PMC8955702 DOI: 10.3390/molecules27061830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
An increase in the levels of reactive oxygen species (ROS) and high expression levels of transforming growth factor-β (TGF-β) in wound tissue are two major problems for wound repair and scar inhibition. Modulation of the wound microenvironment is considered to be able to overcome these issues. Two possible solutions include the use of cerium oxide nanoparticles (CeO2) as an enzyme-like ROS scavenger and pirfenidone (PFD) as an anti-fibrotic drug to inhibit the expression of TGF-β. However, CeO2 is easily adsorbed by biological macromolecules and loses its enzyme-like activity. Furthermore, the intracellular delivery of PFD is difficult. Herein, the layer-by-layer method was used to prepare nanocapsules (NCs) with a sophisticated structure featuring PFD at their core and CeO2 in their shell; these NCs were referred to as PFD/CeO2 NCs. PFD/CeO2 NCs were supposed to efficiently achieve intracellular delivery of PFD and successfully scavenged ROS from the microenvironment. Cellular experiments verified that PFD/CeO2 NCs had good biocompatibility, satisfactory cellular uptake, and favorable ROS-scavenging capacity. To be applied directly to the wound, PFD/CeO2 NCs were then adhered to plasma-etched polylactic acid (PLA) fiber membranes to prepare a new wound dressing. Animal experiments further demonstrated that the dressing accelerated the epithelialization of the wound, reduced the levels of ROS and TGF-β, improved the arrangement and proportion of collagen fibers, and finally, achieved satisfactory wound-repairing and anti-scarring effects. These results provide a new concept for promoting wound repair and preventing scar formation.
Collapse
|
10
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
11
|
Yin L, Liu L, Zhang N. Brush-like polymers: design, synthesis and applications. Chem Commun (Camb) 2021; 57:10484-10499. [PMID: 34550120 DOI: 10.1039/d1cc03940g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the development of controlled polymerisation, almost all polymerisation strategies have been successfully transplanted to surface-initiated polymerisation. The resulting polymer brushes have emerged as an effective tool for surface functionalization and modulation of the surface properties of materials. To meet various demands it is possible to tailor a material surface with polymer brushes that have diverse dimensionalities, morphologies and compositions. The crowded environment within polymer brushes as well as the stretched conformation of polymer chains sometimes provide unique physicochemical properties, which lead to the delicate creation of inorganic-organic hybridised nanostructures, anti-fouling coatings, biomedical carriers, and materials for use in lubrication, photonics and energy storage. So far, challenges remain in the high-precision synthesis and topological control needed to realize extended applications of polymer brushes. In this Feature Article, we highlight the topology, potential application prospects and various synthetic protocols, particularly for recently established methods, for the efficient synthesis of polymer brushes, as well as their benefits and limitations.
Collapse
Affiliation(s)
- Liying Yin
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Lin Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Ning Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| |
Collapse
|
12
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
13
|
Wang Y, Li B, Li Y, Chen X. Research progress on enhancing the performance of autotrophic nitrogen removal systems using microbial immobilization technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145136. [PMID: 33609842 DOI: 10.1016/j.scitotenv.2021.145136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The autotrophic nitrogen removal process has great potential to be applied to the biological removal of nitrogen from wastewater, but its application is hindered by its unstable operation under adverse environmental conditions, such as those presented by low temperatures, high organic matter concentrations, or the presence of toxic substances. Granules and microbial entrapment technology can effectively retain and enrich microbial assemblages in reactors to improve operating efficiency and reactor stability. The carriers can also protect the reactor's internal microorganisms from interference from the external environment. This article critically reviews the existing literature on autotrophic nitrogen removal systems using immobilization technology. We focus our discussion on the natural aggregation process (granulation) and entrapment technology. The selection of carrier materials and entrapment methods are identified and described in detail and the mechanisms through which entrapment technology protects microorganisms are analyzed. This review will provide a better understanding of the mechanisms through which immobilization operates and the prospects for immobilization technology to be applied in autotrophic nitrogen removal systems.
Collapse
Affiliation(s)
- Yue Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Ye Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoguo Chen
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
14
|
Ma X, Sui H, Yu Q, Cui J, Hao J. Silica Capsules Templated from Metal-Organic Frameworks for Enzyme Immobilization and Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3166-3172. [PMID: 33651618 DOI: 10.1021/acs.langmuir.1c00065] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by the unique biological microenvironments of eukaryotic cells, hollow capsules are promising to immobilize enzymes due to their advantages for physical protection and improved activity of enzymes. Herein, we report a facile method to fabricate silica (SiO2) capsules using zeolitic imidazole framework-8 nanoparticles (ZIF-8 NPs) as templates for enzyme immobilization and catalysis. Enzyme-encapsulated SiO2 capsules are obtained by encapsulation of enzymes in ZIF-8 NPs and subsequent coating of silica layers, followed by the removal of templates in a mild condition (i.e., ethylenediaminetetraacetic acid (EDTA) solution). The enzyme (i.e., horseradish peroxidase, HRP) activity in SiO2 capsules is improved more than 15 times compared to that of enzyme-loaded ZIF-8 NPs. Enzymes in SiO2 capsules maintain a high relative activity after being subjected to high temperature, enzymolysis, and recycling compared to free enzymes. In addition, multienzymes (e.g., glucose oxidase and HRP) can also be coencapsulated within SiO2 capsules to show a reaction with a high cascade catalytic efficacy. This work provides a versatile strategy for enzyme immobilization and protection with potential applications in biocatalysis.
Collapse
Affiliation(s)
- Xuebin Ma
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Haiyan Sui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Qun Yu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
15
|
Sousa CFV, Fernandez-Megia E, Borges J, Mano JF. Supramolecular dendrimer-containing layer-by-layer nanoassemblies for bioapplications: current status and future prospects. Polym Chem 2021; 12:5902-5930. [DOI: 10.1039/d1py00988e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
This review provides a comprehensive and critical overview of the supramolecular dendrimer-containing multifunctional layer-by-layer nanoassemblies driven by a multitude of intermolecular interactions for biological and biomedical applications.
Collapse
Affiliation(s)
- Cristiana F. V. Sousa
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Kozlovskaya V, Alford A, Dolmat M, Ducharme M, Caviedes R, Radford L, Lapi SE, Kharlampieva E. Multilayer Microcapsules with Shell-Chelated 89Zr for PET Imaging and Controlled Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56792-56804. [PMID: 33306342 DOI: 10.1021/acsami.0c17456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Radionuclide-functionalized drug delivery vehicles capable of being imaged via positron emission tomography (PET) are of increasing interest in the biomedical field as they can reveal the in vivo behavior of encapsulated therapeutics with high sensitivity. However, the majority of current PET-guided theranostic agents suffer from poor retention of radiometal over time, low drug loading capacities, and time-limited PET imaging capability. To overcome these challenges, we have developed hollow microcapsules with a thin (<100 nm) multilayer shell as advanced theranostic delivery systems for multiday PET tracking in vivo. The 3 μm capsules were fabricated via the aqueous multilayer assembly of a natural antioxidant, tannic acid (TA), and a poly(N-vinylpyrrolidone) (PVPON) copolymer containing monomer units functionalized with deferoxamine (DFO) to chelate the 89Zr radionuclide, which has a half-life of 3.3 days. We have found using radiochromatography that (TA/PVPON-DFO)6 capsules retained on average 17% more 89Zr than their (TA/PVPON)6 counterparts, which suggests that the covalent attachment of the DFO to PVPON provides stable 89Zr chelation. In vivo PET imaging studies performed in mice demonstrated that excellent stability and imaging contrast were still present 7 days postinjection. Animal biodistribution analyses showed that capsules primarily accumulated in the spleen, liver, and lungs with negligible accumulation in the femur, with the latter confirming the stable binding of the radiotracer to the capsule walls. The application of therapeutic ultrasound (US) (60 s of 20 kHz US at 120 W cm-2) to Zr-functionalized capsules could release the hydrophilic anticancer drug doxorubicin from the capsules in the therapeutic amounts. Polymeric capsules with the capability of extended in vivo PET-based tracking and US-induced drug release provide an advanced platform for development of precision-targeted therapeutic carriers and could aid in the development of more effective drug delivery systems.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanomaterials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maksim Dolmat
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maxwell Ducharme
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Racquel Caviedes
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Lauren Radford
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanomaterials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
17
|
Iyisan B, Thiramanas R, Nazarova N, Avlasevich Y, Mailänder V, Baluschev S, Landfester K. Temperature Sensing in Cells Using Polymeric Upconversion Nanocapsules. Biomacromolecules 2020; 21:4469-4478. [PMID: 32432855 PMCID: PMC7656512 DOI: 10.1021/acs.biomac.0c00377] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Indexed: 12/17/2022]
Abstract
Monitoring local temperature inside cells is crucial when interpreting biological activities as enhanced cellular metabolism leads to higher heat production and is commonly correlated with the presence of diseases such as cancer. In this study, we report on polymeric upconversion nanocapsules for potential use as local nanothermometers in cells by exploiting the temperature dependence of the triplet-triplet annihilation upconversion phenomenon. Nanocapsules synthesized by the miniemulsion solvent evaporation technique are composed of a polymer shell and a liquid core of rice bran oil, hosting triplet-triplet annihilation upconversion active dyes as sensitizer and emitter molecules. The sensitivity of the triplet-triplet annihilation upconversion to the local oxygen concentration was overcome by the oxygen reduction ability of the rice bran oil core. The triplet-triplet annihilation upconversion process could thus successfully be applied at different levels of oxygen presence including at ambient conditions. Using this method, the local temperature within a range of 22 to 40 °C could be determined when the upconversion nanocapsules were taken up by HeLa cells with good cellular viability. Thus, the higher cell temperatures where the cells show enhanced metabolic activity led to a significant increase in the delayed fluorescence spectrum of the upconversion nanocapsules. These findings are promising for further development of novel treatment and diagnostic tools in medicine.
Collapse
Affiliation(s)
- Banu Iyisan
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Raweewan Thiramanas
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Nadzeya Nazarova
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuri Avlasevich
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstr.
1, 55131 Mainz, Germany
| | - Stanislav Baluschev
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Optics and Spectroscopy
Department, Faculty of Physics, Sofia University,“St. Kliment Ochridski”,
5 James Bourchier, 1164 Sofia, Bulgaria
| | - Katharina Landfester
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
18
|
Drachuk I, Harbaugh S, Chávez JL, Kelley-Loughnane N. Improving the Activity of DNA-Encoded Sensing Elements through Confinement in Silk Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48329-48339. [PMID: 33064462 DOI: 10.1021/acsami.0c13713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Assembling synthetic bioparts into simplified artificial cells holds tremendous promise for advancing studies into the synthesis, biosensing, and delivery of biomolecules. Currently, the most successful techniques for encapsulation of the transcription-translation machinery exploit compartmentalization in liposomal vesicles. However, improvements to these methods may increase permeability to polar molecules, functionalization of the membrane with biologically active elements, and encapsulation efficiency. Microcapsules prepared via templated layer-by-layer (LbL) assembly using natural polymers have the potential to resolve some of the hurdles associated with liposomes. Here, we introduce a design for immobilizing DNA templates encoding translationally activated riboswitches and RNA aptamers into microcapsules prepared from regenerated silk fibroin protein. Adjusting several key parameters such as the presence of a polymer primer, concentration of silk protein, and DNA loadings during LbL assembly resulted in biocompatible, semipermeable, DNA-laden microcapsules. To preserve bioactivity, DNA was immobilized inside of the capsule membrane, which not only promoted stability during long-term storage at ambient conditions but also improved output response from spatially confined DNA-encoded sensing elements (SEs). Multiple copies of mRNA and GFPa1 protein were synthesized upon activation with specific analytes during in vitro transcription/translation reactions, demonstrating that selective permeability of silk microcapsules was essential for the diffusion of components of the cell-free system inside of the capsules. Further functionalization of capsule shells with gold nanoparticles (AuNPs) and antibodies (IgG) demonstrated the applicability of microcompartmentalized colloidal objects carrying SEs for remote sensing and/or targeted delivery. In the future, multifunctional, biocompatible silk-based microcapsules loaded with different RNA sensors can help advance the design of multiplexed biosensors tracking multiple biomarkers in complex media.
Collapse
Affiliation(s)
- Irina Drachuk
- UES Inc., Dayton, Ohio 45432, United States
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Svetlana Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Jorge L Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| |
Collapse
|
19
|
Pelras T, Nonappa, Mahon CS, Müllner M. Cylindrical Zwitterionic Particles via Interpolyelectrolyte Complexation on Molecular Polymer Brushes. Macromol Rapid Commun 2020; 42:e2000401. [PMID: 32964563 DOI: 10.1002/marc.202000401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/30/2020] [Indexed: 11/12/2022]
Abstract
The fabrication of macromolecular architectures with high aspect ratio and well-defined internal and external morphologies remains a challenge. The combination of template chemistry and self-assembly concepts to construct peculiar polymer architectures via a bottom-up approach is an emerging approach. In this study, a cylindrical template-namely a core-shell molecular polymer brush-and linear diblock copolymers (DBCP) associate to produce high aspect ratio polymer particles via interpolyelectrolyte complexation. Induced, morphological changes are studied using cryogenic transmission electron and atomic force microscopy, while the complexation is further followed by isothermal titration calorimetry and ξ-potential measurements. Depending on the nature of the complexing DBCP, distinct morphological differences can be achieved. While polymers with a non-ionic block lead to internal compartmentalization, polymers featuring zwitterionic domains lead to a wrapping of the brush template.
Collapse
Affiliation(s)
- Théophile Pelras
- Key Centre for Polymers and Colloids, School of Chemistry and Sydney Nano, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, FI-33101, Tampere, Finland
| | - Clare S Mahon
- Department of Chemistry, Durham University, DH1 3LE, Durham, UK
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry and Sydney Nano, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
20
|
Taki AC, Francis JE, Skakic I, Dekiwadia C, McLean TR, Bansal V, Smooker PM. Protein-only nanocapsules induce cross-presentation in dendritic cells, demonstrating potential as an antigen delivery system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102234. [PMID: 32522709 DOI: 10.1016/j.nano.2020.102234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023]
Abstract
Templating has been demonstrated to be an efficient method of nanocapsule preparation. However, there have been no reports of using protein-only nanocapsules as an antigen delivery system. Such a system would enable the delivery of antigen without additional polymers. This study focused on defining the structural and cellular characteristics of nanocapsules consisting of antigen (ovalbumin) alone, synthesized by the templating method using highly monodispersed solid core mesoporous shell (SC/MS) and mesoporous (MS) silica nanoparticles of 410 nm and 41 nm in diameter, respectively. The synthesized ovalbumin nanocapsules were homogeneous in structure, and cellular uptake was observed in DC2.4 murine immature dendritic cells with minimal cytotoxicity. The nanocapsules were localized intracellularly and induced antigen presentation by the cross-presentation pathway. The templating system, using SC/MS and MS silica nanoparticles, was demonstrated to be an effective nanocapsule synthesis method for a new antigen delivery system.
Collapse
Affiliation(s)
- Aya C Taki
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Jasmine E Francis
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Ivana Skakic
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC, Australia.
| | - Thomas R McLean
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Vipul Bansal
- RMIT NanoBiotechnology Research Laboratory, Ian Potter NanoBioSensing Facility, School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Peter M Smooker
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
21
|
Van der Meeren L, Li J, Konrad M, Skirtach AG, Volodkin D, Parakhonskiy BV. Temperature Window for Encapsulation of an Enzyme into Thermally Shrunk, CaCO
3
Templated Polyelectrolyte Multilayer Capsules. Macromol Biosci 2020; 20:e2000081. [DOI: 10.1002/mabi.202000081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
| | - Jie Li
- Department of BiotechnologyGhent University Ghent 9000 Belgium
| | - Manfred Konrad
- Max Planck Institute for Biophysical Chemistry Göttingen 37077 Germany
| | | | - Dmitry Volodkin
- School of Science and TechnologyNottingham Trent University Nottingham NG11 8NS UK
| | | |
Collapse
|
22
|
Zartner L, Muthwill MS, Dinu IA, Schoenenberger CA, Palivan CG. The rise of bio-inspired polymer compartments responding to pathology-related signals. J Mater Chem B 2020; 8:6252-6270. [PMID: 32452509 DOI: 10.1039/d0tb00475h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-organized nano- and microscale polymer compartments such as polymersomes, giant unilamellar vesicles (GUVs), polyion complex vesicles (PICsomes) and layer-by-layer (LbL) capsules have increasing potential in many sensing applications. Besides modifying the physicochemical properties of the corresponding polymer building blocks, the versatility of these compartments can be markedly expanded by biomolecules that endow the nanomaterials with specific molecular and cellular functions. In this review, we focus on polymer-based compartments that preserve their structure, and highlight the key role they play in the field of medical diagnostics: first, the self-assembling abilities that result in preferred architectures are presented for a broad range of polymers. In the following, we describe different strategies for sensing disease-related signals (pH-change, reductive conditions, and presence of ions or biomolecules) by polymer compartments that exhibit stimuli-responsiveness. In particular, we distinguish between the stimulus-sensitivity contributed by the polymer itself or by additional compounds embedded in the compartments in different sensing systems. We then address necessary properties of sensing polymeric compartments, such as the enhancement of their stability and biocompatibility, or the targeting ability, that open up new perspectives for diagnostic applications.
Collapse
Affiliation(s)
- Luisa Zartner
- Chemistry Department, University of Basel, Mattenstr. 24a, BPR1096, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
23
|
Quang Tran H, Bhave M, Yu A. Current Advances of Hollow Capsules as Controlled Drug Delivery Systems. ChemistrySelect 2020. [DOI: 10.1002/slct.201904598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huy Quang Tran
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| |
Collapse
|
24
|
Abstract
In nature, various specific reactions only occur in spatially controlled environments. Cell compartment and subcompartments act as the support required to preserve the bio-specificity and functionality of the biological content, by affording absolute segregation. Inspired by this natural perfect behavior, bottom-up approaches are on focus to develop artificial cell-like structures, crucial for understanding relevant bioprocesses and interactions or to produce tailored solutions in the field of therapeutics and diagnostics. In this review, we discuss the benefits of constructing polymer-based single and multicompartments (capsules and giant unilamellar vesicles (GUVs)), equipped with biomolecules as to mimic cells. In this respect, we outline key examples of how such structures have been designed from scratch, namely, starting from the application-oriented selection and synthesis of the amphiphilic block copolymer. We then present the state-of-the-art techniques for assembling the supramolecular structure while permitting the encapsulation of active compounds and the incorporation of peptides/membrane proteins, essential to support in situ reactions, e.g., to replicate intracellular signaling cascades. Finally, we briefly discuss important features that these compartments offer and how they could be applied to engineer the next generation of microreactors, therapeutic solutions, and cell models.
Collapse
|
25
|
Preparation of submicron capsules containing fragrance and their application as emulsifier. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03186-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Biswal AK, Saha S. Controllable fabrication of biodegradable Janus and multi-layered particles with hierarchically porous structure. J Colloid Interface Sci 2020; 566:120-134. [DOI: 10.1016/j.jcis.2020.01.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
|
27
|
Van der Meeren L, Li J, Parakhonskiy BV, Krysko DV, Skirtach AG. Classification of analytics, sensorics, and bioanalytics with polyelectrolyte multilayer capsules. Anal Bioanal Chem 2020; 412:5015-5029. [PMID: 32103307 DOI: 10.1007/s00216-020-02428-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/05/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Abstract
Polyelectrolyte multilayer (PEM) capsules, constructed by LbL (layer-by-layer)-adsorbing polymers on sacrificial templates, have become important carriers due to multifunctionality of materials adsorbed on their surface or encapsulated into their interior. They have been also been used broadly used as analytical tools. Chronologically and traditionally, chemical analytics has been developed first, which has long been synonymous with all analytics. But it is not the only development. To the best of our knowledge, a summary of all advances including their classification is not available to date. Here, we classify analytics, sensorics, and biosensorics functionalities implemented with polyelectrolyte multilayer capsules and coated particles according to the respective stimuli and application areas. In this classification, three distinct categories are identified: (I) chemical analytics (pH; K+, Na+, and Pb2+ ion; oxygen; and hydrogen peroxide sensors and chemical sensing with surface-enhanced Raman scattering (SERS)); (II) physical sensorics (temperature, mechanical properties and forces, and osmotic pressure); and (III) biosensorics and bioanalytics (fluorescence, glucose, urea, and protease biosensing and theranostics). In addition to this classification, we discuss also principles of detection using the above-mentioned stimuli. These application areas are expected to grow further, but the classification provided here should help (a) to realize the wealth of already available analytical and bioanalytical tools developed with capsules using inputs of chemical, physical, and biological stimuli and (b) to position future developments in their respective fields according to employed stimuli and application areas. Graphical abstract.
Collapse
Affiliation(s)
- Louis Van der Meeren
- Nano-Biotechnology Group, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Jie Li
- Nano-Biotechnology Group, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Group, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent, 9000, Ghent, Belgium.,Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russian Federation, 603950
| | - Andre G Skirtach
- Nano-Biotechnology Group, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium. .,Cancer Research Institute Ghent, 9000, Ghent, Belgium. .,Advanced Light Microscopy Centre, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
28
|
Haladjova E, Ugrinova I, Rangelov S. One-pot synthesis of oligonucleotide-grafted polymeric nanoparticles. SOFT MATTER 2020; 16:191-199. [PMID: 31774098 DOI: 10.1039/c9sm01796h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A feasible one-pot approach for constructing oligonucleotide-grafted polymeric nanoparticles is reported. The approach involves formation of mesoglobules from a thermoresponsive polymer, coating of the mesoglobules with a cross-linked polymeric shell, and grafting the latter with oligonucleotide strands. Dynamic and static light scattering are used to parameterize the novel constructs. They are relatively large structures with hydrodynamic radii and molar masses reaching 200 nm and 150.0 × 106 g mol-1, respectively. The oligonucleotide-grafted polymeric nanoparticles are of spherical morphology and moderately negative (-12.4 to -19.1 mV) ζ potential as revealed by AFM, TEM, and electrophoretic light scattering. In accordance with their large size, they are found to carry thousands of oligonucleotide strands per particle. The novel constructs are thermoresponsive. They undergo reversible collapse upon heating and swelling upon cooling, which is associated with changes in the grafting density and, hence, the conformation of the oligonucleotide strands from unextended at room temperature to a more extended one at elevated temperatures. The versatility of the approach is demonstrated by varying the type of the cross-linked shell and content of the oligonucleotide strands and, hence, the grafting density. Appropriate diversification and modifications are suggested as well.
Collapse
Affiliation(s)
- Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Bl. 103-A, 1113 Sofia, Bulgaria.
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Bl. 21, 1113 Sofia, Bulgaria
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Bl. 103-A, 1113 Sofia, Bulgaria.
| |
Collapse
|
29
|
Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02372-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Li Y, Gao H, Yu H, Jiang K, Yu H, Yang Y, Song Y, Zhang W, Shi H, Lu Z, Liu K. Two-dimensional polymers with versatile functionalities via gemini monomers. SCIENCE ADVANCES 2019; 5:eaaw9120. [PMID: 31803831 PMCID: PMC6874491 DOI: 10.1126/sciadv.aaw9120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Two-dimensional synthetic polymers (2DSPs) are sheet-like macromolecules consisting of covalently linked repeat units in two directions. Access to 2DSPs with controlled size and shape and diverse functionality has been limited because of the need for monomers to retain their crystallinity throughout polymerization. Here, we describe a synthetic strategy for 2DSPs that obviates the need for crystallinity, via the free radical copolymerization of amphiphilic gemini monomers and their monomeric derivatives arranged in a bilayer at solid-liquid interfaces. The ease of this strategy allowed the preparation of 2DSPs with well-controlled size and shape and diverse functionality on solid templates composed of various materials with wide-ranging surface curvatures and dimensions. The resulting 2DSPs showed remarkable mechanical strength and have multiple applications, such as nanolithographic resist and antibacterial agent. The broad scope of this approach markedly expands the chemistry, morphology, and functionality of 2DSPs accessible for practical applications.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Huimin Gao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Huan Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ke Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hua Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021, China
| |
Collapse
|
31
|
Deng R, Wang Y, Yang L, Bain CD. In Situ Fabrication of Polymeric Microcapsules by Ink-Jet Printing of Emulsions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40652-40661. [PMID: 31581770 DOI: 10.1021/acsami.9b14417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phase separation driven by solvent evaporation of emulsions can be used to create polymeric microcapsules. The combination of emulsion solvent evaporation with ink-jet printing allows the rapid fabrication of polymeric microcapsules at a target location on a surface. The ink is an oil-in-water emulsion containing in the dispersed phase a shell-forming polymer, a core-forming fluid that is a poor solvent for the polymer, and a low-boiling good solvent. After the emulsion is printed onto the substrate, the good solvent evaporates by diffusion through the aqueous phase, and the polymer and the poor solvent phase separate to form microcapsules. The continuous aqueous phase contains polyvinyl alcohol that serves as an emulsifier and a binder of the capsules to the substrate. This method is demonstrated for microcapsules with various shell-forming polymers (polystyrene, poly(methylmethacrylate) and poly(l-lactide)) and core-forming poor solvents (hexadecane and a 4-heptanone/sunflower oil mixture). Cargoes such as fluorescent dyes (Nile Red and tetracyanoquinodimethane) or active ingredients (e.g., the fungicide tebuconazole) can be encapsulated. Uniform microcapsules are obtained by printing emulsions containing monodisperse oil droplets produced in a microfluidic device. We discuss the physical parameters that need to be controlled for the successful fabrication of microcapsules in inkjet printing. The method for rapid, in situ encapsulation could be useful for controlled-release applications such as in agrochemical sprays, fragrances, functional coatings, and topical medicines.
Collapse
Affiliation(s)
- Renhua Deng
- Department of Chemistry , Durham University , Stockton Road , Durham DH1 3LE , U.K
| | - Yilin Wang
- Department of Chemistry , Durham University , Stockton Road , Durham DH1 3LE , U.K
| | - Lisong Yang
- Department of Chemistry , Durham University , Stockton Road , Durham DH1 3LE , U.K
| | - Colin D Bain
- Department of Chemistry , Durham University , Stockton Road , Durham DH1 3LE , U.K
| |
Collapse
|
32
|
Yan X, Ramos RANS, Alcouffe P, Munoz LE, Bilyy RO, Ganachaud F, Bernard J. Programmable Hierarchical Construction of Mixed/Multilayered Polysaccharide Nanocapsules through Simultaneous/Sequential Nanoprecipitation Steps. Biomacromolecules 2019; 20:3915-3923. [DOI: 10.1021/acs.biomac.9b00990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xibo Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Université de Lyon, Lyon F-69003, France
- INSA-Lyon, IMP, Villeurbanne F-69621, France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne F-69621, France
| | - Ricardo Almeida Neves Sampayo Ramos
- Université de Lyon, Lyon F-69003, France
- INSA-Lyon, IMP, Villeurbanne F-69621, France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne F-69621, France
| | - Pierre Alcouffe
- Université de Lyon, Lyon F-69003, France
- INSA-Lyon, IMP, Villeurbanne F-69621, France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne F-69621, France
| | - Luis E. Munoz
- Department of Internal Medicine 3−Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Rostyslav O. Bilyy
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- Institute of Cell Biology, NASU, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - François Ganachaud
- Université de Lyon, Lyon F-69003, France
- INSA-Lyon, IMP, Villeurbanne F-69621, France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne F-69621, France
- CNRS, Solvay, Complex Assemblies Soft Matter Lab, University of Pennsylvania, 350 Patterson Boulevard, Bristol, Pennsylvania 19007, United States
| | - Julien Bernard
- Université de Lyon, Lyon F-69003, France
- INSA-Lyon, IMP, Villeurbanne F-69621, France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne F-69621, France
| |
Collapse
|
33
|
Cai Z, Shi J, Li W, Wu Y, Zhang Y, Zhang S, Jiang Z. Mussel-Inspired pH-Switched Assembly of Capsules with an Ultrathin and Robust Nanoshell. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28228-28235. [PMID: 31310494 DOI: 10.1021/acsami.9b11445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enclosed films, also called capsules, bearing an ultrathin and robust nanoshell have sparked much interest for use in many applications, for which facile preparation methods are urgently pursued. Inspired by the pH-programmed adhesion/cohesion of mussel-secreted foot proteins, polyphenol/polyamine capsules with an ultrathin and robust nanoshell are fabricated through a pH-switched assembly on sacrificial calcium carbonate (CaCO3) templates. Polyphenols adhere to the templates at pH 6.0 and rapidly cohere with polyamines at pH 8.0. The pH-switched assembly process is accomplished in only a few minutes where multiple instances of electrostatic interactions and chemical conjugation between polyphenols and polyamines occur. As a result, the capsules exhibit a nanoshell thickness of ∼10 nm and a superior mechanical strength of ∼1.575 GPa (elasticity modulus). Cell mimics are prepared through encasing enzymes in the lumen and present an activity recovery of ∼70% along with little activity decline during reuse. Amine or phenolic groups on the nanoshell of capsules are then applied to induce the generation of titania or silver nanoparticles, which may expand the applications of the capsules to the photo- and biorelated realms. Our study not only deepens the understanding of the adhering process of mussels but also offers a generic method toward functional materials for diverse applications.
Collapse
Affiliation(s)
- Ziyi Cai
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Jiafu Shi
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | | | - Yizhou Wu
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Yishan Zhang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Shaohua Zhang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Zhongyi Jiang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| |
Collapse
|
34
|
Begum S, Hassan Z, Bräse S, Wöll C, Tsotsalas M. Metal-Organic Framework-Templated Biomaterials: Recent Progress in Synthesis, Functionalization, and Applications. Acc Chem Res 2019; 52:1598-1610. [PMID: 30977634 DOI: 10.1021/acs.accounts.9b00039] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The integration of a porous crystalline framework with soft polymers to create novel biomaterials has tremendous potential yet remains very challenging to date. Metal-organic framework (MOF)-templated polymers (MTPs) have emerged as persistent modular materials that can be tailored for desired biofunctions. These represent a novel class of hierarchically structured assemblies that combine the advantages of MOFs (precisely controlled structure, enormous diversity in framework topology, and high porosity) with the intrinsic behaviors of polymers (soft texture, flexibility, biocompatibility, and improved stability under physiological conditions). Transformation of surface-anchored MOFs (SURMOFs) via orthogonal covalent cross-linking yields surface-anchored polymeric gels (SURGELs) that open up exciting new opportunities to create soft nanoporous materials. SURGELs overcome the main drawbacks of SURMOFs, such as their limited stability under physiological conditions and their potential to release toxic metal ions, a substantial problem for applications in life sciences. MOF (SURMOF)-templated polymerization processes control the synthesis on a molecular level. Additionally, the morphology of the original MOF crystal template is replicated in the final network polymers. The MOF-templated polymerization can be induced by light, a catalyst, or temperature using several types of reactions, including thiol-ene, metal-free alkyne-azide click reactions, and Glaser-Hay coupling. In the case of photoinduced reactions, the cross-linking process can be locally confined, allowing control of the macroscopic patterning of the resulting network polymer. The use of layer-by-layer (lbl) techniques in the SURMOF synthesis serves the purpose of precise, layer-selective incorporation of functionalities via the combination of the postsynthetic modification and heteroepitaxy strategies. Transforming the functionalized SURMOF into a SURGEL allows the fabrication of polymers with desired bioactive functions at the internal or external surfaces. This Account highlights our ongoing research and inspiring progress in transforming SURMOFs into persistent, modular nanoporous materials tailored with biofunctions. Using cell culture studies, we present various aspects of SURGEL materials, such as the ability to deliver bioactive molecules to adhering cells on SURGEL surfaces, applications to advanced drug delivery systems, the ability to tune cell adhesion via surface modification, and the development of porphyrin-based SURGEL thin films with antimicrobial properties. Then we critically examine the challenges and limitations of current systems and discuss future research directions and new approaches for advancing MOF-templated biocompatible materials, emphasizing the need to include responsive and adaptive functionalities into the system. We emphasize that the hierarchical structure, ranging from the molecular to the macroscopic scale, allows for optimization of the material properties across all length scales relevant for cell-material interactions.
Collapse
Affiliation(s)
- Salma Begum
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Zahid Hassan
- Institute for Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute for Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| |
Collapse
|
35
|
Doxorubicin-loaded biodegradable capsules: Temperature induced shrinking and study of cytotoxicity in vitro. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Silva HD, Beldíková E, Poejo J, Abrunhosa L, Serra AT, Duarte CM, Brányik T, Cerqueira MA, Pinheiro AC, Vicente AA. Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Jafari A, Sun H, Sun B, Mohamed MA, Cui H, Cheng C. Layer-by-layer preparation of polyelectrolyte multilayer nanocapsules via crystallized miniemulsions. Chem Commun (Camb) 2019; 55:1267-1270. [PMID: 30632551 DOI: 10.1039/c8cc08043g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Well-defined polyelectrolyte multilayer nanocapsules (NCs) are synthesized by layer-by-layer deposition of poly(acrylic acid) and poly(allylamine hydrochloride) over crystallized miniemulsion nanoparticles, followed by shell crosslinking and template removal. This synthetic approach allows well-controlled dimensions of NCs due to the high colloidal stability of the templates, and may also permit a broad composition range of NCs because of the mild conditions for template removal.
Collapse
Affiliation(s)
- Amin Jafari
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Perton F, Harlepp S, Follain G, Parkhomenko K, Goetz JG, Bégin-Colin S, Mertz D. Wrapped stellate silica nanocomposites as biocompatible luminescent nanoplatforms assessed in vivo. J Colloid Interface Sci 2019; 542:469-482. [PMID: 30772509 DOI: 10.1016/j.jcis.2019.01.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 11/17/2022]
Abstract
The engineering of luminescent nanoplatforms for biomedical applications displaying ability for scaling-up, good colloidal stability in aqueous solutions, biocompatibility, and providing an easy detection in vivo by fluorescence methods while offering high potential of functionalities, is currently a challenge. The original strategy proposed here involves the use of large pore (ca. 15 nm) mesoporous silica (MS) nanoparticles (NPs) having a stellate morphology (denoted STMS) on which fluorescent InP/ZnS quantum dots (QDs) are covalently grafted with a high yield (≥90%). These nanoplatforms are after that further coated to avoid a potential QDs release. To protect the QDs from potential release or dissolution, two wrapping methods are developed: (i) a further coating with a silica shell having small pores (≤2 nm) or (ii) a tight polysaccharide shell deposited on the surface of these STMS@QDs particles via an original isobutyramide (IBAM)-mediated method. Both wrapping approaches yield to novel luminescent nanoplatforms displaying a highly controlled structure, a high size monodispersity (ca. 200 and 100 nm respectively) and colloidal stability in aqueous solutions. Among both methods, the IBAM-polysaccharide coating approach is shown the most suitable to ensure QDs protection and to avoid metal cation release over three months. Furthermore, these original STMS@QDs@polysaccharide luminescent nanoplatforms are shown biocompatible in vitro with murine cancer cells and in vivo after injections within zebrafish (ZF) translucent embryos where no sign of toxicity is observed during their development over several days. As assessed by in vivo confocal microscopy imaging, these nanoplatforms are shown to rapidly extravasate from blood circulation to settle in neighboring tissues, ensuring a remanent fluorescent labelling of ZF tissues in vivo. Such fluorescent and hybrid STMS composites are envisioned as novel luminescent nanoplatforms for in vivo fluorescence tracking applications and offer a versatile degree of additional functionalities (drug delivery, incorporation of magnetic/plasmonic core).
Collapse
Affiliation(s)
- Francis Perton
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504, CNRS-Université de Strasbourg, 23 rue du Loess, BP 34 67034, Strasbourg Cedex 2, France
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Gautier Follain
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Ksenia Parkhomenko
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé, 25 rue Becquerel, 67087 Strasbourg, France
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504, CNRS-Université de Strasbourg, 23 rue du Loess, BP 34 67034, Strasbourg Cedex 2, France.
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504, CNRS-Université de Strasbourg, 23 rue du Loess, BP 34 67034, Strasbourg Cedex 2, France.
| |
Collapse
|
39
|
Wang X, Chen L, Sun G, Liu R. Hollow Microcapsules with Controlled Mechanical Properties Templated from Pickering Emulsion Droplets. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue Wang
- School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Linlin Chen
- School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Guanqing Sun
- School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Ren Liu
- School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| |
Collapse
|
40
|
Iyisan B, Landfester K. Polymeric Nanocarriers. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Crecente‐Campo J, Alonso MJ. Engineering, on-demand manufacturing, and scaling-up of polymeric nanocapsules. Bioeng Transl Med 2019; 4:38-50. [PMID: 30680317 PMCID: PMC6336665 DOI: 10.1002/btm2.10118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022] Open
Abstract
Polymeric nanocapsules are versatile delivery systems with the capacity to load lipophilic drugs in their oily nucleus and hydrophilic drugs in their polymeric shell. The objective of this work was to expand the technological possibilities to prepare customized nanocapsules. First, we adapted the solvent displacement technique to modulate the particle size of the resulting nanocapsules in the 50-500 nm range. We also produced nanosystems with a shell made of one or multiple polymer layers i.e. chitosan, dextran sulphate, hyaluronate, chondroitin sulphate, and alginate. In addition, we identified the conditions to translate the process into a miniaturized high-throughput tailor-made fabrication that enables massive screening of formulations. Finally, the production of the nanocapsules was scaled-up both in a batch production, and also using microfluidics. The versatility of the properties of these nanocapsules and their fabrication technologies is expected to propel their advance from bench to clinic.
Collapse
Affiliation(s)
- José Crecente‐Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus VidaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus VidaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
42
|
Iyisan B, Landfester K. Modular Approach for the Design of Smart Polymeric Nanocapsules. Macromol Rapid Commun 2018; 40:e1800577. [DOI: 10.1002/marc.201800577] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/14/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Banu Iyisan
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | | |
Collapse
|
43
|
Mirgorodskaya AB, Kushnazarova RA, Nikitina AV, Semina II, Nizameev IR, Kadirov MK, Khutoryanskiy VV, Zakharova LY, Sinyashin OG. Polyelectrolyte nanocontainers: Controlled binding and release of indomethacin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
Forero Ramirez LM, Babin J, Schmutz M, Durand A, Six JL, Nouvel C. Multi-reactive surfactant and miniemulsion Atom Transfer Radical Polymerization: An elegant controlled one-step way to obtain dextran-covered nanocapsules. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Ménard M, Meyer F, Parkhomenko K, Leuvrey C, Francius G, Bégin-Colin S, Mertz D. Mesoporous silica templated-albumin nanoparticles with high doxorubicin payload for drug delivery assessed with a 3-D tumor cell model. Biochim Biophys Acta Gen Subj 2018; 1863:332-341. [PMID: 30391506 DOI: 10.1016/j.bbagen.2018.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022]
Abstract
Human serum albumin (HSA) nanoparticles emerge as promising carriers for drug delivery. Among challenges, one important issue is the design of HSA nanoparticles with a low mean size of ca. 50 nm and having a high drug payload. The original strategy developed here is to use sacrificial mesoporous nanosilica templates having a diameter close to 30 nm to drive the protein nanocapsule formation. This new approach ensures first an efficient high drug loading (ca. 30%) of Doxorubicin (DOX) in the porous silica by functionalizing silica with an aminosiloxane layer and then allows the one-step adsorption and the physical cross-linking of HSA by modifying the silica surface with isobutyramide (IBAM) groups. After silica template removal, homogenous DOX-loaded HSA nanocapsules (30-60 nm size) with high drug loading capacity (ca. 88%) are thus formed. Such nanocapsules are shown efficient in multicellular tumor spheroid models (MCTS) of human hepatocarcinoma cells by their significant growth inhibition with respect to controls. Such a new synthesis approach paves the way toward new protein based nanocarriers for drug delivery.
Collapse
Affiliation(s)
- Mathilde Ménard
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS, Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg, France; Université de Strasbourg, INSERM, UMR_S 1121 Biomatériaux et bioingénierie, FMTS, 11 rue Humann, 67085 Strasbourg, Cedex, France
| | - Florent Meyer
- Université de Strasbourg, INSERM, UMR_S 1121 Biomatériaux et bioingénierie, FMTS, 11 rue Humann, 67085 Strasbourg, Cedex, France.
| | - Ksenia Parkhomenko
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé, 25 rue Becquerel, 67087 Strasbourg, France
| | - Cédric Leuvrey
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS, Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg, France
| | - Grégory Francius
- CNRS - Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy F-54600, France
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS, Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg, France.
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS, Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg, France.
| |
Collapse
|
46
|
Palumbo F, Treglia A, Lo Porto C, Fracassi F, Baruzzi F, Frache G, El Assad D, Pistillo BR, Favia P. Plasma-Deposited Nanocapsules Containing Coatings for Drug Delivery Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35516-35525. [PMID: 30231206 DOI: 10.1021/acsami.8b11504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Coatings consisting in gentamicin-containing nanocapsules have been synthetized by means of an aerosol-assisted atmospheric pressure plasma deposition process. The influence of different parameters affecting the process has been extensively investigated by means of a morphological and chemical characterization of the coatings. Scanning electron microscopy highlighted the presence of nanocapsules whose size and abundance depend on power input and deposition time. A detailed analysis carried out with matrix-assisted laser desorption ionization coupled to high-resolution mass spectrometry allowed to detect and identify the presence of gentamicin embedded in the coatings and its rearrangement, as a result of the interaction with the plasma. The release of gentamicin in water has been monitored by means of UV-vis fluorescence spectroscopy, and its biological activity has been evaluated as well by the disk diffusion assay against Staphylococcus aureus and Pseudomonas aeruginosa. It is confirmed that the antibacterial activity of gentamicin is preserved in the plasma-deposited coatings. Preliminary cytocompatibility investigations indicated that eukaryotic cells well tolerate the release of gentamicin from the coatings.
Collapse
Affiliation(s)
| | | | | | | | - Federico Baruzzi
- Institute of Sciences of Food Production , National Research Council of Italy , Via Amendola, 122/O , 70126 Bari , Italy
| | - Gilles Frache
- Material Research & Technology Department , Luxembourg Institute of Science and Technology , 41, rue du Brill , L-4422 Belvaux , Luxembourg
| | - Dana El Assad
- Material Research & Technology Department , Luxembourg Institute of Science and Technology , 41, rue du Brill , L-4422 Belvaux , Luxembourg
| | - Bianca Rita Pistillo
- Material Research & Technology Department , Luxembourg Institute of Science and Technology , 41, rue du Brill , L-4422 Belvaux , Luxembourg
| | | |
Collapse
|
47
|
Kozlovskaya V, Chen J, Zavgorodnya O, Hasan MB, Kharlampieva E. Multilayer Hydrogel Capsules of Interpenetrated Network for Encapsulation of Small Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11832-11842. [PMID: 30188139 DOI: 10.1021/acs.langmuir.8b02465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report on a facile capsule-based platform for efficient encapsulation of a broad spectrum of hydrophilic compounds with molecular weight less than 1000 g mol-1. The encapsulated compounds extend from low-molecular-weight anionic Alexa Fluor 532 dye and cationic anticancer drug doxorubicin (DOX) to fluorescein isothiocyanate-dextrans with Mw ranging from 4000 to 40 000 g mol-1. The pH-sensitive hydrogel capsules with an interpenetrated network shell are synthesized by layer-by-layer assembly of poly(methacrylic acid) (PMAA, Mw = 150 000 g mol-1) and poly( N-vinylpyrrolidone) (PVPON, Mw = 1 300 000 g mol-1) on 5 μm silica microparticles followed by chemical cross-linking of the PMAA multilayers. Following core dissolution, the result is a hollow microcapsule with PVPON interpenetrated in the PMAA network. The capsules exhibit a reversible change in the diameter with a swelling ratio of 1.5 upon pH variation from 7.5 to 5.5. Capsules cross-linked for 4 h display high permeability toward molecules with molecular weight under 1000 g mol-1 at pH = 7.5 but exclude dextran molecules with Mw ≥ 40 000 g mol-1. Encapsulation of small molecules was achieved at pH = 7.5 followed by sealing the capsule wall with 40 000 g mol-1 dextran at pH = 5.5. This approach results in negatively charged molecules such as Alexa Fluor being entrapped within the capsule cavity, whereas positively charged molecules such as DOX are encapsulated within the negatively charged capsule shell. Considering the simple postloading approach, the ability to entrap both anionic and cationic small molecules, and the pH-responsiveness of the interpenetrated network in the physiologically relevant range, these capsules offer a versatile method for controlled delivery of multiple hydrophilic compounds.
Collapse
|
48
|
Pelras T, Mahon CS, Nonappa, Ikkala O, Gröschel AH, Müllner M. Polymer Nanowires with Highly Precise Internal Morphology and Topography. J Am Chem Soc 2018; 140:12736-12740. [DOI: 10.1021/jacs.8b08870] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Théophile Pelras
- School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, 2006 New South Wales, Australia
- The University of Sydney Nano Institute, Sydney, 2006 New South Wales, Australia
| | - Clare S. Mahon
- School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, 2006 New South Wales, Australia
| | - Nonappa
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Olli Ikkala
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - André H. Gröschel
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Markus Müllner
- School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, 2006 New South Wales, Australia
- The University of Sydney Nano Institute, Sydney, 2006 New South Wales, Australia
| |
Collapse
|
49
|
Cui J, Björnmalm M, Ju Y, Caruso F. Nanoengineering of Poly(ethylene glycol) Particles for Stealth and Targeting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10817-10827. [PMID: 30132674 DOI: 10.1021/acs.langmuir.8b02117] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The assembly of particles composed solely or mainly of poly(ethylene glycol) (PEG) is an emerging area that is gaining increasing interest within bio-nano science. PEG, widely considered to be the "gold standard" among polymers for drug delivery, is providing a platform for exploring fundamental questions and phenomena at the interface between particle engineering and biomedicine. These include the targeting and stealth behaviors of synthetic nanomaterials in biological environments. In this feature article, we discuss recent work in the nanoengineering of PEG particles and explore how they are enabling improved targeting and stealth performance. Specific examples include PEG particles prepared through surface-initiated polymerization, mesoporous silica replication via postinfiltration, and particle assembly through metal-phenolic coordination. This particle class exhibits unique in vivo behavior (e.g., biodistribution and immune cell interactions) and has recently been explored for drug delivery applications.
Collapse
Affiliation(s)
- Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and the School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| |
Collapse
|
50
|
Fu X, Hosta-Rigau L, Chandrawati R, Cui J. Multi-Stimuli-Responsive Polymer Particles, Films, and Hydrogels for Drug Delivery. Chem 2018. [DOI: 10.1016/j.chempr.2018.07.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|