1
|
Hryc J, Szczelina R, Markiewicz M, Pasenkiewicz-Gierula M. Lipid/water interface of galactolipid bilayers in different lyotropic liquid-crystalline phases. Front Mol Biosci 2022; 9:958537. [PMID: 36046609 PMCID: PMC9423040 DOI: 10.3389/fmolb.2022.958537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, carried out using computational methods, the organisation of the lipid/water interface of bilayers composed of galactolipids with both α-linolenoyl acyl chains is analysed and compared in three different lyotropic liquid-crystalline phases. These systems include the monogalactosyldiglyceride (MGDG) and digalactosyldiglyceride (DGDG) bilayers in the lamellar phase, the MGDG double bilayer during stalk phase formation and the inverse hexagonal MGDG phase. For each system, lipid-water and direct and water-mediated lipid-lipid interactions between the lipids of one bilayer leaflet and those of two apposing leaflets at the onset of new phase (stalk) formation, are identified. A network of interactions between DGDG molecules and its topological properties are derived and compared to those for the MGDG bilayer.
Collapse
Affiliation(s)
- Jakub Hryc
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Szczelina
- Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
| | - Michal Markiewicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
2
|
Walton CR, Shorttle O. Scum of the Earth: A Hypothesis for Prebiotic Multi-Compartmentalised Environments. Life (Basel) 2021; 11:life11090976. [PMID: 34575124 PMCID: PMC8472051 DOI: 10.3390/life11090976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Compartmentalisation by bioenergetic membranes is a universal feature of life. The eventual compartmentalisation of prebiotic systems is therefore often argued to comprise a key step during the origin of life. Compartments may have been active participants in prebiotic chemistry, concentrating and spatially organising key reactants. However, most prebiotically plausible compartments are leaky or unstable, limiting their utility. Here, we develop a new hypothesis for an origin of life environment that capitalises upon, and mitigates the limitations of, prebiotic compartments: multi-compartmentalised layers in the near surface environment—a ’scum’. Scum-type environments benefit from many of the same ensemble-based advantages as microbial biofilms. In particular, scum layers mediate diffusion with the wider environments, favouring preservation and sharing of early informational molecules, along with the selective concentration of compatible prebiotic compounds. Biofilms are among the earliest traces imprinted by life in the rock record: we contend that prebiotic equivalents of these environments deserve future experimental investigation.
Collapse
Affiliation(s)
- Craig Robert Walton
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
- Correspondence:
| | - Oliver Shorttle
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
- Institute of Astronomy, University of Cambridge, Cambridge CB3 OHA, UK;
| |
Collapse
|
3
|
Frias MA, Disalvo EA. Breakdown of classical paradigms in relation to membrane structure and functions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183512. [PMID: 33202248 DOI: 10.1016/j.bbamem.2020.183512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/10/2023]
Abstract
Updates of the mosaic fluid membrane model implicitly sustain the paradigms that bilayers are closed systems conserving a state of fluidity and behaving as a dielectric slab. All of them are a consequence of disregarding water as part of the membrane structure and its essential role in the thermodynamics and kinetics of membrane response to bioeffectors. A correlation of the thermodynamic properties with the structural features of water makes possible to introduce the lipid membrane as a responsive structure due to the relaxation of water rearrangements in the kinetics of bioeffectors' interactions. This analysis concludes that the lipid membranes are open systems and, according to thermodynamic of irreversible formalism, bilayers and monolayers can be reasonable compared under controlled conditions. The inclusion of water in the complex structure makes feasible to reconsider the concept of dielectric slab and fluidity.
Collapse
Affiliation(s)
- M A Frias
- Applied Biophysics and Food Research Center, CIBAAL-UNSE-CONICET, Santiago del Estero, Argentina
| | - E A Disalvo
- Applied Biophysics and Food Research Center, CIBAAL-UNSE-CONICET, Santiago del Estero, Argentina.
| |
Collapse
|
4
|
Cejas JP, Rosa AS, Nazareno MA, Disalvo EA, Frias MA. Interaction of chlorogenic acid with model lipid membranes and its influence on antiradical activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183484. [PMID: 33010206 DOI: 10.1016/j.bbamem.2020.183484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/28/2020] [Accepted: 09/22/2020] [Indexed: 01/13/2023]
Abstract
Chlorogenic acid (CGA) is a strong phenolic antioxidant with antibacterial properties composed by a caffeoyl ester of quinic acid. Although a number of benefits has been reported and related to interactions with the red blood cell membranes, details on its membrane action and how composition and membrane state may affect it, is not yet well defined. In this work, the interaction of CGA with lipid monolayers and bilayers composed by 1,2-dimiristoyl-sn-glycero-3-phosphocholine (DMPC); 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (14:0 diether PC); 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (16:0 diether PC) were studied at different surface pressures (π). The kinetics of interaction was found to be more rapid in DMPC than in the absence of carbonyl groups. Measurements by FTIR-ATR at different water activities confirm specific interactions of CGA with carbonyl and phosphate groups affecting water level along hydrocarbon region. The antioxidant activity of CGA in the presence of DMPC unilamellar vesicles, evidenced by the absorbance reduction of the radical cation ABTS•+, is significantly different with respect to aqueous solution. The influence of CGA on antiradical activity (ARA) with lipid membranes depending on the hydration state of the lipid interface is discussed.
Collapse
Affiliation(s)
- J P Cejas
- Applied Biophysics and Food Research Center, (CIBAAL-UNSE-CONICET), Santiago del Estero, Argentina
| | - A S Rosa
- Applied Biophysics and Food Research Center, (CIBAAL-UNSE-CONICET), Santiago del Estero, Argentina
| | - M A Nazareno
- Laboratory of Antioxidant and Oxidative Processes, Chemical Sciences Institute, Faculty of Agronomy and Agroindustry, National University of Santiago del Estero, CONICET, Santiago del Estero, Argentina
| | - E A Disalvo
- Applied Biophysics and Food Research Center, (CIBAAL-UNSE-CONICET), Santiago del Estero, Argentina
| | - M A Frias
- Applied Biophysics and Food Research Center, (CIBAAL-UNSE-CONICET), Santiago del Estero, Argentina.
| |
Collapse
|
5
|
Rosa AS, Disalvo EA, Frias MA. Water Behavior at the Phase Transition of Phospholipid Matrixes Assessed by FTIR Spectroscopy. J Phys Chem B 2020; 124:6236-6244. [DOI: 10.1021/acs.jpcb.0c03719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. S. Rosa
- Applied Biophysics and Food Research Center, National University of Santiago del Estero (CIBAAL-UNSE-CONICET), G4200 Santiago del Estero, Argentina
| | - E. A. Disalvo
- Applied Biophysics and Food Research Center, National University of Santiago del Estero (CIBAAL-UNSE-CONICET), G4200 Santiago del Estero, Argentina
| | - M. A. Frias
- Applied Biophysics and Food Research Center, National University of Santiago del Estero (CIBAAL-UNSE-CONICET), G4200 Santiago del Estero, Argentina
| |
Collapse
|
6
|
Pérez HA, Cejas JP, Rosa AS, Giménez RE, Disalvo EA, Frías MA. Modulation of Interfacial Hydration by Carbonyl Groups in Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2644-2653. [PMID: 32073276 DOI: 10.1021/acs.langmuir.9b03551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lack of carbonyl groups and the presence of ether bonds give the lipid interphase a different water organization around the phosphate groups that affects the compressibility and electrical properties of lipid membranes. Generalized polarization of 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (14:0 diether PC) in correlation with Fourier transform infrared (FTIR) analysis indicates a higher level of polarizability of water molecules in the membrane phase around the phosphate groups both below and above Tm. This reorganization of water promotes a different response in compressibility and dipole moment of the interphase, which is related to different H bonding of water molecules with phosphates (PO) and carbonyl (CO) groups.
Collapse
Affiliation(s)
- H A Pérez
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofisica Aplicada y Alimentos, CIBAAL), National University of Santiago del Estero and CONICET, RN 9, Km 1125, 4206 Santiago del Estero, Argentina
| | - J P Cejas
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofisica Aplicada y Alimentos, CIBAAL), National University of Santiago del Estero and CONICET, RN 9, Km 1125, 4206 Santiago del Estero, Argentina
| | - A S Rosa
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofisica Aplicada y Alimentos, CIBAAL), National University of Santiago del Estero and CONICET, RN 9, Km 1125, 4206 Santiago del Estero, Argentina
| | - R E Giménez
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofisica Aplicada y Alimentos, CIBAAL), National University of Santiago del Estero and CONICET, RN 9, Km 1125, 4206 Santiago del Estero, Argentina
| | - E A Disalvo
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofisica Aplicada y Alimentos, CIBAAL), National University of Santiago del Estero and CONICET, RN 9, Km 1125, 4206 Santiago del Estero, Argentina
| | - M A Frías
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofisica Aplicada y Alimentos, CIBAAL), National University of Santiago del Estero and CONICET, RN 9, Km 1125, 4206 Santiago del Estero, Argentina
| |
Collapse
|
7
|
Neves MC, Filipe HAL, Reis RL, Prates Ramalho JP, Coreta-Gomes F, Moreno MJ, Loura LMS. Interaction of Bile Salts With Lipid Bilayers: An Atomistic Molecular Dynamics Study. Front Physiol 2019; 10:393. [PMID: 31024345 PMCID: PMC6465969 DOI: 10.3389/fphys.2019.00393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/21/2019] [Indexed: 01/10/2023] Open
Abstract
Bile salts (BS) are biosurfactants crucial for emulsification and intestinal absorption of cholesterol and other hydrophobic compounds such as vitamins and fatty acids. Interaction of BS with lipid bilayers is important for understanding their effects on membranes properties. The latter have relevance in passive diffusion processes through intestinal epithelium such as reabsorption of BS, as well as their degree of toxicity to intestinal flora and their potential applications in drug delivery. In this work, we used molecular dynamics simulations to address at the atomic scale the interactions of cholate, deoxycholate, and chenodeoxycholate, as well as their glycine conjugates with POPC bilayers. In this set of BS, variation of three structural aspects was addressed, namely conjugation with glycine, number and position of hydroxyl substituents, and ionization state. From atomistic simulations, the location and orientation of BS inside the bilayer, and their specific interactions with water and host lipid, such as hydrogen bonding and ion-pair formation, were studied in detail. Membrane properties were also investigated to obtain information on the degree of perturbation induced by the different BS. The results are described and related to a recent experimental study (Coreta-Gomes et al., 2015). Differences in macroscopic membrane partition thermodynamics and translocation kinetics are rationalized in terms of the distinct structures and atomic-scale behavior of the bile salt species. In particular, the faster translocation of cholate is explained by its higher degree of local membrane perturbation. On the other hand, the relatively high partition of the polar glycine conjugates is related to the longer and more flexible side chain, which allows simultaneous efficient solvation of the ionized carboxylate and deep insertion of the ring system.
Collapse
Affiliation(s)
- Maria C Neves
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.,Centro de Química de Coimbra, Coimbra, Portugal
| | - Hugo A L Filipe
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.,Centro de Química de Coimbra, Coimbra, Portugal.,Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Rita Leones Reis
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.,Centro de Química de Coimbra, Coimbra, Portugal
| | - João P Prates Ramalho
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal.,Centro de Química de Évora e Centro Hercules, Universidade de Évora, Évora, Portugal
| | - Filipe Coreta-Gomes
- Centro de Química de Coimbra, Coimbra, Portugal.,QOPNA and LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Maria J Moreno
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.,Centro de Química de Coimbra, Coimbra, Portugal.,Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Luis M S Loura
- Centro de Química de Coimbra, Coimbra, Portugal.,Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal.,Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Functional Hydration Behavior: Interrelation between Hydration and Molecular Properties at Lipid Membrane Interfaces. J CHEM-NY 2019. [DOI: 10.1155/2019/4867327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Water is an abundant commodity and has various important functions. It stabilizes the structure of biological macromolecules, controls biochemical activities, and regulates interfacial/intermolecular interactions. Common aspects of interfacial water can be obtained by overviewing fundamental functions and properties at different temporal and spatial scales. It is important to understand the hydrogen bonding and structural properties of water and to evaluate the individual molecular species having different hydration properties. Water molecules form hydrogen bonds with biomolecules and contribute to the adjustment of their properties, such as surface charge, hydrophilicity, and structural flexibility. In this review, the fundamental properties of water molecules and the methods used for the analyses of water dynamics are summarized. In particular, the interrelation between the hydration properties, determined by molecules, and the properties of molecules, determined by their hydration properties, are discussed using the lipid membrane as an example. Accordingly, interesting water functions are introduced that provide beneficial information in the fields of biochemistry, medicine, and food chemistry.
Collapse
|
9
|
Cutro AC, Disalvo EA, Frías MA. Effects of Phenylalanine on the Liquid-Expanded and Liquid-Condensed States of Phosphatidylcholine Monolayers. Lipid Insights 2019; 12:1178635318820923. [PMID: 30643419 PMCID: PMC6322106 DOI: 10.1177/1178635318820923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
Background: Phenylalanine (Phe) is involved in physiological and pathological processes in cell membranes in which expanded and condensed states coexist. In this direction, it was reported that surface hydration is important for the binding affinity of the amino acid which significantly perturbs 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer structure and morphology. A deeper insight showed that Phe inserts in DPPC monolayer defects as a monomer at pH 5 and forms aggregates that adsorb to the membrane surface generating a reconfiguration of the lipid arrangement in areas of higher packing. This new arrangement in the monolayer causes the reorientation of dipoles of lipid and water molecules which is congruent with the dehydration and surface tension changes reported above. With this background, this article studies the affinity of Phe in liquid-expanded 1,2-dimyristoyl-sn-glycero-3 phosphocholine (LE DMPC) and liquid-condensed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (LC DPPC) monolayers and their effects on membrane properties. Results: The adsorption of Phe can be described by a cooperative process in non-independent sites suggesting that Phe/lipid systems reorganize to form new structures at a high degree of coverage. Compressibility modulus and Brewster angle microscopy (BAM) images allow to propose that Phe causes a new phase in 1,2-dimyristoyl-sn-glycero-3 phosphocholine (DMPC) and DPPC. Conclusions: Phe imposes new arrangements in the lipid phase to form new structures with different compressibility behavior than lipid binary mixtures of DMPC and DPPC. Phe interaction with the LC and LE phases gives place to a process in which a synergistic effect between non-independent sites can be produced. These features of Phe/lipid interaction would be of great importance to understand the multiple effects of Phe on cell membranes.
Collapse
Affiliation(s)
- Andrea C Cutro
- Applied Biophysics and Food Research Center, Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), National University of Santiago del Estero and CONICET, Santiago del Estero, Argentina
| | - E Anibal Disalvo
- Applied Biophysics and Food Research Center, Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), National University of Santiago del Estero and CONICET, Santiago del Estero, Argentina
| | - María A Frías
- Applied Biophysics and Food Research Center, Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), National University of Santiago del Estero and CONICET, Santiago del Estero, Argentina
| |
Collapse
|
10
|
Rodríguez-Arco L, Poma A, Ruiz-Pérez L, Scarpa E, Ngamkham K, Battaglia G. Molecular bionics - engineering biomaterials at the molecular level using biological principles. Biomaterials 2018; 192:26-50. [PMID: 30419394 DOI: 10.1016/j.biomaterials.2018.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/06/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022]
Abstract
Life and biological units are the result of the supramolecular arrangement of many different types of molecules, all of them combined with exquisite precision to achieve specific functions. Taking inspiration from the design principles of nature allows engineering more efficient and compatible biomaterials. Indeed, bionic (from bion-, unit of life and -ic, like) materials have gained increasing attention in the last decades due to their ability to mimic some of the characteristics of nature systems, such as dynamism, selectivity, or signalling. However, there are still many challenges when it comes to their interaction with the human body, which hinder their further clinical development. Here we review some of the recent progress in the field of molecular bionics with the final aim of providing with design rules to ensure their stability in biological media as well as to engineer novel functionalities which enable navigating the human body.
Collapse
Affiliation(s)
- Laura Rodríguez-Arco
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK.
| | - Alessandro Poma
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Kamolchanok Ngamkham
- Faculty of Engineering, King Mongkut's University of Technology Thonbury, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Giuseppe Battaglia
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
11
|
Choi TS, Han JY, Heo CE, Lee SW, Kim HI. Electrostatic and hydrophobic interactions of lipid-associated α-synuclein: The role of a water-limited interfaces in amyloid fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1854-1862. [DOI: 10.1016/j.bbamem.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
|
12
|
Interaction of semiochemicals with model lipid membranes: A biophysical approach. Colloids Surf B Biointerfaces 2018; 161:413-419. [PMID: 29121614 DOI: 10.1016/j.colsurfb.2017.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022]
Abstract
Unravelling the chemical language of insects has been the subject of intense research in the field of chemical ecology for the past five decades. Insect communication is mainly based on chemosensation due to the small body size of insects, which limits their ability to produce or perceive auditory and visual signals, especially over large distances. Chemicals involved in insect communication are called semiochemicals. These volatiles and semivolatiles compounds allow to Insects to find a mate, besides the oviposition site in reproduction and food sources. Actually, insect olfaction mechanism is subject to study, but systematic analyses of the role of neural membranes are scarce. In the present work we evaluated the interactions of α-pinene, benzaldehyde, eugenol, and grandlure, among others, with a lipid membrane model using surface pressure experiments and Monte Carlo computational analysis. This allowed us to propose a plausible membranotropic mechanism of interaction between semiochemicals and insect neural membrane.
Collapse
|
13
|
Pasenkiewicz-Gierula M, Baczynski K, Markiewicz M, Murzyn K. Computer modelling studies of the bilayer/water interface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2305-2321. [PMID: 26825705 DOI: 10.1016/j.bbamem.2016.01.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 01/24/2023]
Abstract
This review summarises high resolution studies on the interface of lamellar lipid bilayers composed of the most typical lipid molecules which constitute the lipid matrix of biomembranes. The presented results were obtained predominantly by computer modelling methods. Whenever possible, the results were compared with experimental results obtained for similar systems. The first and main section of the review is concerned with the bilayer-water interface and is divided into four subsections. The first describes the simplest case, where the interface consists only of lipid head groups and water molecules and focuses on interactions between the lipid heads and water molecules; the second describes the interface containing also mono- and divalent ions and concentrates on lipid-ion interactions; the third describes direct inter-lipid interactions. These three subsections are followed by a discussion on the network of direct and indirect inter-lipid interactions at the bilayer interface. The second section summarises recent computer simulation studies on the interactions of antibacterial membrane active compounds with various models of the bacterial outer membrane. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Krzysztof Baczynski
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Markiewicz
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Miguel V, Defonsi Lestard ME, Tuttolomondo ME, Díaz SB, Altabef AB, Puiatti M, Pierini AB. Molecular view of the interaction of S-methyl methanethiosulfonate with DPPC bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:38-46. [PMID: 26476106 DOI: 10.1016/j.bbamem.2015.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 12/27/2022]
Abstract
We present molecular dynamics (MD) simulation studies of the interaction of a chemo preventive and protective agent, S-methyl methanethiosulfonate (MMTS), with a model bilayer of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). We analyzed and compared its diffusion mechanisms with the related molecule dimethyl sulfoxide (DMSO). We obtained spatially resolved free energy profiles of MMTS partition into a DPPC bilayer in the liquid-crystalline phase through potential of mean force (PMF) calculations using an umbrella sampling technique. These profiles showed a minimum for MMTS close to the carbonyl region of DPPC. The location of MMTS molecules in the DPPC bilayer observed in the MD was confirmed by previous SERS studies. We decomposed PMF profiles into entropic and enthalpic contributions. These results showed that the driving force for the partitioning of MMTS into the upper region of DPPC is driven by a favorable entropy change while partitioning into the acyl chains is driven by enthalpy. On the other hand, the partition of DMSO into the membrane is not favored, and is driven by entropy instead of enthalpy. Free diffusion MD simulations using all atom and coarse grained (CG) models of DPPC in presence of MMTS were used to analyze the effect of DPPC-MMTS interaction. Density profiles showed that MMTS locates preferentially in the carbonyl region, as expected according to the PMF profile and the experimental evidence. MMTS presented two differential effects over the packing of DPPC hydrocarbonate chains at low or at high molar ratios. An ordering effect was observed when a CG MMTS model was used. Finally, free diffusion MD and PMF decomposition for DMSO were used for comparison.
Collapse
Affiliation(s)
- Virginia Miguel
- INFIQC-CONICET, Instituto de Investigaciones en Físico-Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Maria E Defonsi Lestard
- INQUINOA-CONICET, Cátedra de Fisicoquímica I, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN S. M. de Tucumán, Argentina
| | - María E Tuttolomondo
- INQUINOA-CONICET, Cátedra de Fisicoquímica I, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN S. M. de Tucumán, Argentina
| | - Sonia B Díaz
- INQUINOA-CONICET, Cátedra de Fisicoquímica I, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN S. M. de Tucumán, Argentina
| | - Aida Ben Altabef
- INQUINOA-CONICET, Cátedra de Fisicoquímica I, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN S. M. de Tucumán, Argentina
| | - Marcelo Puiatti
- INFIQC-CONICET, Instituto de Investigaciones en Físico-Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | - Adriana B Pierini
- INFIQC-CONICET, Instituto de Investigaciones en Físico-Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
15
|
Damodaran S. Beyond the hydrophobic effect: Critical function of water at biological phase boundaries--A hypothesis. Adv Colloid Interface Sci 2015; 221:22-33. [PMID: 25888225 DOI: 10.1016/j.cis.2015.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
Many life-sustaining processes in living cells occur at the membrane-water interface. The pertinent questions that need to be asked are what is the evolutionary reason for biology to choose the membrane-water interface as the site for performing and/or controlling crucial biological reactions and what is the key physical principle that is singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this review, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes and receptor activated processes via manipulating the thermodynamic activity of water at the membrane-water interfacial region. In support of this hypothesis, first we establish that the surface pressure of a lipid monolayer is a direct measure of a reduction in the thermodynamic activity of interfacial water. Second, we show that the surface pressure-dependent activation/inactivation of interfacial enzymes is fundamentally related to their dependence on interfacial water activity. We extend this argument to infer that cells might manipulate activities of membrane-associated biological processes via manipulating the activity of interfacial water via localized compression or expansion of the interface. In this paper, we critically analyze literature data on mechano-activation of large pore ion channels in Escherichia coli spheroplasts and G-proteins in reconstituted lipid vesicles, and show that these pressure-induced activation processes are fundamentally and quantitatively related to changes in the thermodynamic state of interfacial water, caused by mechanical stretching of the bilayer.
Collapse
Affiliation(s)
- Srinivasan Damodaran
- University of Wisconsin-Madison, Department of Food Science, 1605 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
16
|
Disalvo EA, Hollmann A, Martini MF. Hydration in Lipid Monolayers: Correlation of Water Activity and Surface Pressure. Subcell Biochem 2015; 71:213-231. [PMID: 26438267 DOI: 10.1007/978-3-319-19060-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In order to give a physical meaning to each region of the membrane we define the interphase as the region in a lipid membrane corresponding to the polar head groups imbibed in water with net different properties than the hydrocarbon region and the water phase. The interphase region is analyzed under the scope of thermodynamics of surface and solutions based on the definition of Defay-Prigogine of an interphase and the derivation that it has in the understanding of membrane processeses in the context of biological response. In the view of this approach, the complete monolayer is considered as the lipid layer one molecule thick plus the bidimensional solution of the polar head groups inherent to it (the interphase region). Surface water activity appears as a common factor for the interaction of several aqueous soluble and surface active proteins with lipid membranes of different composition. Protein perturbation can be measured by changes in the surface pressure of lipid monolayers at different initial water surface activities. As predicted by solution chemistry, the increase of surface pressure is independent of the particle nature that dissolves. Therefore, membranes give a similar response in terms of the determined surface states given by water activity independent of the protein or peptide.
Collapse
Affiliation(s)
- E Anibal Disalvo
- Laboratorio de Biointerfases y Sistemas Biomimeticos, Centro de Investigacion y Transferencia de Santiago del Estero, Universidad Nacional de Santiago del Estero-Consejo Nacional de Investigaciones Científicas y Técnicas, 4200, Santiago del Estero, Argentina.
| | - Axel Hollmann
- Laboratorio de Biointerfases y Sistemas Biomimeticos, Centro de Investigacion y Transferencia de Santiago del Estero, Universidad Nacional de Santiago del Estero-Consejo Nacional de Investigaciones Científicas y Técnicas, 4200, Santiago del Estero, Argentina
| | - M Florencia Martini
- Instituto de Química y Metabolismo del Fármaco, IQUIMEFA UBA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 PP (1113), Buenos Aires, Argentina.
| |
Collapse
|