1
|
Ghosh S. Thermodynamic insights into polyelectrolyte complexation: A theoretical framework. J Chem Phys 2025; 162:164904. [PMID: 40266278 DOI: 10.1063/5.0250546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
In this study, we propose a theoretical framework to explore the interactions between flexible polymer chains, specifically polyelectrolytes (PEs). Our analysis reaffirms that the thermodynamic drive for complex coacervation is influenced by key factors such as the number of ions bound to the polymer backbone and the entropy associated with free ions. By calculating the free energy of the system while considering position-dependent mutual interactions and chain conformations, we gain valuable insights into the local dielectricity as PEs overlap. Our findings indicate that global thermodynamic behavior is significantly shaped by local factors such as dielectric constant, providing an explanation for the discrepancies observed between experimental and computational studies. In addition, we found that entropy gain is inversely proportional to the local dielectric constant, provided that the electrostatic temperature remains constant. This relationship underscores the importance of polymer-specific parameters when examining the thermodynamic behavior of charged polymer complexation.
Collapse
Affiliation(s)
- Souradeep Ghosh
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India and Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63105, USA
| |
Collapse
|
2
|
Ramírez Marrero I, Kaiser N, von Vacano B, Konradi R, Crosby AJ, Perry SL. Brittle-to-Ductile Transitions of Polyelectrolyte Complexes: Humidity, Temperature, and Salt. Macromolecules 2025; 58:2925-2938. [PMID: 40160992 PMCID: PMC11949119 DOI: 10.1021/acs.macromol.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Polyelectrolyte complexation is an entropically driven, associative phase separation that results in a polymer-rich polyelectrolyte complex (PEC) and a polymer-poor supernatant. PECs show promise as a new class of sustainable materials since they can be processed using aqueous solutions rather than organic solvents. Previous reports have looked at the mechanical properties and glass transitions of PECs as a function of temperature, relative humidity (rH), and salt concentration (CS), but establishing a universal understanding of how these parameters affect PEC mechanics has yet to be achieved. We examined the effects of temperature, rH, and CS on the mechanical properties of PECs formed from poly(methacrylic acid) and poly(trimethyl aminoethyl methacrylate) with a goal of establishing design rules for their mechanical response. Relative humidity was shown to have the most dramatic effect on the mechanical properties, with temperature and salt concentration having far less of an impact. Furthermore, we observed that the glass transition of PECs is tied to both temperature and relative humidity, creating a glass transition rHg/T g line that can be modulated by added salt. Finally, we looked at the thermodynamics behind the glass transition of PECs, which yielded similar energies as the condensation of water. We propose the use of water and/or salt as a low energy and efficient method of processing PECs for various applications.
Collapse
Affiliation(s)
- Isaac
A. Ramírez Marrero
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nadine Kaiser
- BASF
SE, Group Research, Carl Bosch Str 38, 67056 Ludwigshafen, Germany
| | | | - Rupert Konradi
- BASF
SE, Group Research, Carl Bosch Str 38, 67056 Ludwigshafen, Germany
| | - Alfred J. Crosby
- Department
of Polymer Science and Engineering, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
Pegoraro C, Masiá Sanchis E, Đorđević S, Dolz-Pérez I, Huck-Iriart C, Herrera L, Esteban-Pérez S, Conejos-Sanchez I, Vicent MJ. Multifunctional Polypeptide-Based Nanoconjugates for Targeted Mitochondrial Delivery and Nonviral Gene Therapy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2025; 37:1457-1467. [PMID: 40026705 PMCID: PMC11866743 DOI: 10.1021/acs.chemmater.4c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 03/05/2025]
Abstract
Despite recent advances in nanomedicine, developing multifunctional nanocarriers capable of targeted subcellular delivery and efficient gene therapy remains a significant challenge. This study reports the design, synthesis, and evaluation of a novel multifunctional polypeptide-based nanoconjugate that addresses this gap using sequential delivery, combining mitochondrial targeting and nonviral gene therapy. We engineered a poly-l-ornithine-based, polyethylene glycol-modified carrier and introduced a novel custom-designed trivalent compound (TRV3) into the structure. TRV3, conjugated to the polypeptide carrier via a redox-sensitive disulfide linker, incorporates the well-described triphenylphosphonium moiety (TPP) for mitochondrial targeting and a Cy5 fluorophore as a model drug. The resulting nanoconjugate (C-TRV3-A) demonstrated efficient endosomal escape and mitochondrial localization. Leveraging the endosomolytic properties of C-TRV3-A, we explored its potential as a nonviral vector for gene therapy. After optimizing formulation stability using a VLC-3 anionic polypeptide coating, we developed plasmid DNA polyplexes that exhibited enhanced stability and transfection efficiency in basic and advanced triple-negative breast cancer cell culture models. This multifunctional polypeptide-based nanoconjugate represents a significant advance in the field, offering a chemically versatile platform for simultaneous subcellular targeting and gene delivery that may be used in targeted cancer treatments, among other pathologies.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Príncipe
Felipe Research Center, Polymer Therapeutics
Lab., Valencia 46012, Spain
| | - Esther Masiá Sanchis
- Príncipe
Felipe Research Center, Polymer Therapeutics
Lab., Valencia 46012, Spain
- Centro de
Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029,Spain
- Príncipe
Felipe Research Center, Screening Platform., Valencia 46012, Spain
| | - Snežana Đorđević
- Príncipe
Felipe Research Center, Polymer Therapeutics
Lab., Valencia 46012, Spain
- Centro de
Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029,Spain
| | - Irene Dolz-Pérez
- Curapath, Av. Benjamin Franklin 19, Paterna, Valencia 46980, Spain
| | - Cristián Huck-Iriart
- Experiments
Division, ALBA Synchrotron Light Source, Cerdanyola del Vallès 08209, Spain
| | - Lidia Herrera
- Curapath, Av. Benjamin Franklin 19, Paterna, Valencia 46980, Spain
| | | | - Inmaculada Conejos-Sanchez
- Príncipe
Felipe Research Center, Polymer Therapeutics
Lab., Valencia 46012, Spain
- Centro de
Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029,Spain
| | - María J. Vicent
- Príncipe
Felipe Research Center, Polymer Therapeutics
Lab., Valencia 46012, Spain
- Centro de
Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029,Spain
- Príncipe
Felipe Research Center, Screening Platform., Valencia 46012, Spain
| |
Collapse
|
4
|
Movellan J, Murgia X, Gracia R, Marradi M, Miranda JI, Aizpurua JM, Grande HJ, Dupin D, Loinaz I. Tobramycin nanoformulation for chronic pulmonary infections: From drug product definition to scale-up for preclinical evaluation. Int J Pharm 2025; 671:125241. [PMID: 39863028 DOI: 10.1016/j.ijpharm.2025.125241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Cystic fibrosis (CF) is characterized by abnormal mucus hydration due to a defective CF Transmembrane Regulator (CFTR) protein, leading to the production of difficult-to-clear mucus. This causes airflow obstruction, recurrent infections, and respiratory complications. Chronic lung infections are the leading cause of death for CF patients and inhaled tobramycin is the first-in-line antibiotic treatment against these infections, mainly caused by Pseudomonas aeruginosa in adult patients. KuDa-tob, a nanoformulation of tobramycin (tob) as the active ingredient and dextran single chain nanoparticles, a drug carrier platform (KuDa) as an excipient, has been developed. The neutralization of the positive charges of the drug by KuDa nanoparticles facilitates its diffusion through the mucus and biofilm, reaching the bacteria. The polar interactions existing between tobramycin and KuDa have been thoroughly characterized by electrophoresis (ζ-potential) and diffusion experiments (diffusion ordered spectroscopy and Taylor dispersion analysis) demonstrating that up to 40 wt% tobramycin could be loaded into the KuDa-tob nanoformulation. The drug product was developed following Quality by Design (QbD) principles. Critical quality attributes (CQAs), critical process parameters (CPPs) and critical material attributes (CMAs) have been defined to obtain a robust production process that was then scaled-up to 40 g, allowing the production of KuDa-tob for further preclinical evaluation. Finally, the final pharmaceutical form of KuDa-tob was defined based on stability studies, and nebulization assays showed that the aerosols generated by reconstituted KuDa-tob were in the ideal range size for lung deposition (Median Mass Aerodynamic Diameter - MMAD - 2.2 μm).
Collapse
Affiliation(s)
- Julie Movellan
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain.
| | - Xabier Murgia
- Kusudama Therapeutics SA, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Raquel Gracia
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Marco Marradi
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy
| | - José Ignacio Miranda
- Department of Organic Chemistry-I, UPV-EHU-University of the Basque Country, 20018 San Sebastian, Spain
| | - Jesús María Aizpurua
- Department of Organic Chemistry-I, UPV-EHU-University of the Basque Country, 20018 San Sebastian, Spain
| | - Hans-Jürgen Grande
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; University of the Basque Country (UPV/EHU), Advanced Polymers and Materials: Physics, Chemistry and Technology Department, Donostia-San Sebastian, Spain
| | - Damien Dupin
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Biogipuzkoa Health Research Institute, Group of Innovation, 20014 San Sebastian, Spain
| | - Iraida Loinaz
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Kusudama Therapeutics SA, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Biogipuzkoa Health Research Institute, Group of Innovation, 20014 San Sebastian, Spain
| |
Collapse
|
5
|
Pert EK, Hurst PJ, Waymouth RM, Rotskoff GM. Coacervation drives morphological diversity of mRNA encapsulating nanoparticles. J Chem Phys 2025; 162:074902. [PMID: 39968821 PMCID: PMC11972093 DOI: 10.1063/5.0235799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
The spatial arrangement of components within an mRNA encapsulating nanoparticle has consequences for its thermal stability, which is a key parameter for therapeutic utility. The mesostructure of mRNA nanoparticles formed with cationic polymers has several distinct putative structures: here, we develop a field theoretic simulation model to compute the phase diagram for amphiphilic block copolymers that balance coacervation and hydrophobicity as driving forces for assembly. We predict several distinct morphologies for the mesostructure of these nanoparticles, depending on salt conditions and hydrophobicity. We compare our predictions with cryogenic-electron microscopy images of mRNA encapsulated by charge altering releasable transporters. In addition, we provide a graphics processing unit-accelerated, open-source codebase for general purpose field theoretic simulations, which we anticipate will be a useful tool for the community.
Collapse
Affiliation(s)
- Emmit K. Pert
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Paul J. Hurst
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Grant M. Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
6
|
Yuan J, Tanaka H. Network-forming phase separation of oppositely charged polyelectrolytes forming coacervates in a solvent. Nat Commun 2025; 16:1517. [PMID: 39952921 PMCID: PMC11828884 DOI: 10.1038/s41467-025-56583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025] Open
Abstract
The formation of coacervates through phase separation of oppositely charged polyelectrolytes (PEs) is critical for understanding biological condensates and developing responsive materials. Traditionally, coacervates are viewed as spherical droplets with growth dynamics resembling liquid-liquid phase separation. However, our fluid particle dynamics simulations incorporating hydrodynamic and electrostatic interactions challenge this perspective. Here, we find that oppositely charged PEs form a percolated network even in semi-dilute solutions, coarsening with a unique growth law, ℓ ∝ t1/2. This self-similarity, absent for neutral polymers in poor solvents, arises because PEs in good solvents exhibit weaker, longer-range attractions due to spatial charge inhomogeneity under global charge neutrality. This results in a lower density of the PEs-rich phase and reduced interfacial tension. Increased charge asymmetry further slows network coarsening. Additionally, coacervate droplets initially display irregular shapes due to weak interfacial tension, transitioning slowly to spherical forms. Our research provides new insights into coacervate morphology and coarsening dynamics.
Collapse
Affiliation(s)
- Jiaxing Yuan
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha District, Guangzhou, 511453, China
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
7
|
Vengallur N, Giuntoli A. The role of model crowders in the salt resistance of complex coacervates. J Chem Phys 2025; 162:054903. [PMID: 39898481 DOI: 10.1063/5.0243282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Complex coacervation is the phase separation of oppositely charged polyelectrolytes, resulting in a polymer-dense coacervate phase and a polymer-depleted supernatant phase. Coacervation is crucial for many biological processes and novel synthetic materials, where the environment is often filled with other neutral molecules (crowders). Yet, the complex role of crowders in complex coacervation has not been studied systematically under controlled conditions. We performed coarse-grained molecular dynamics simulations of coacervation in the presence of polymeric crowders of varying concentrations and chain lengths. While short crowders do not have any significant effect on coacervation, larger crowders stabilize the coacervate against added salt, increasing its critical salt concentration. The change in critical salt concentration saturates for long crowders at a value determined by the crowder concentration. Rescaling all phase diagrams by their critical salt concentration leads to a collapse of the data, which demonstrates a universal phase behavior. Our simulation indicates that the inability of crowder chains to mix with the polyelectrolytes is the driving force behind crowding effects. These testable predictions provide a first step toward a comprehensive understanding of crowding effects in complex coacervation.
Collapse
Affiliation(s)
- Nayan Vengallur
- Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, The Netherlands
| | - Andrea Giuntoli
- Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
8
|
Vogelaar TD, Torjusen H, Lund R. Size-controlled antimicrobial peptide drug delivery vehicles through complex coacervation. SOFT MATTER 2025; 21:903-913. [PMID: 39801473 DOI: 10.1039/d4sm01157k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms). We present long-term stable kinetically controlled colistin-C3Ms that can be prepared from several block lengths of PEO-b-PMAA polymers, where the polymerisation degree governs the overall micellar size. To achieve precise control over size and polydispersity, which are crucial for drug delivery applications, we investigate the hybridisation of PEO-b-PMAA polymers with varying chain lengths or PMAA homopolymers in ternary complex coacervation systems with colistin. This results in size-tunable colistin-C3Ms, ranging, depending on the mixing ratios, from micellar sizes of 26 nm to 100 nm. With size tunability at rather narrow size distributions and high stability, ternary colistin-C3Ms offer potential advancements in C3M drug delivery, paving the way for more effective and targeted treatments for bacterial infections in precision medicine.
Collapse
Affiliation(s)
- Thomas Daniel Vogelaar
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
| | - Henrik Torjusen
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
| | - Reidar Lund
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, NO-0315 Oslo, Norway
| |
Collapse
|
9
|
Smokers IB, Spruijt E. Quantification of Biomolecular Condensate Volume Reveals Network Swelling and Dissolution Regimes during Phase Transition. Biomacromolecules 2025; 26:363-373. [PMID: 39620362 PMCID: PMC11733949 DOI: 10.1021/acs.biomac.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/14/2025]
Abstract
Accurate determination of biomolecular condensate volume reveals that destabilization of condensates can lead to either swelling or shrinking of condensates, giving fundamental insights into the regulation of the volume of cellular condensates. Determination of the volume of biomolecular condensates and coacervate protocells is essential to investigate their precise composition and impact on (bio)chemical reactions that are localized inside the condensates. It is not a straightforward task, as condensates have tiny volumes, are highly viscous, and are prone to wetting. Here, we examine different strategies to determine condensate volume and introduce two new methods, with which condensate volumes of 1 μL or less (volume fraction 0.4%) can be determined with a standard deviation of 0.03 μL. Using these methods, we show that the swelling or shrinking of condensates depends on the degree of physical cross-linking. These observations are supported by Flory-Huggins theory and can have profound effects on condensates in cell biology.
Collapse
Affiliation(s)
- Iris B.
A. Smokers
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands
| | - Evan Spruijt
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands
| |
Collapse
|
10
|
Shin J, Shin H, Lee SH, Jang JD, Kim HJ. Influence of Solvent Dielectric Constant on the Complex Coacervation Phase Behavior of Polymerized Ionic Liquids. ACS Macro Lett 2024; 13:1678-1685. [PMID: 39570941 DOI: 10.1021/acsmacrolett.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Complex coacervation is an associative phase separation process of oppositely charged polyelectrolyte solutions, resulting in a coacervate phase enriched with charged polymers and a polymer-lean phase. To date, studies on the phase behavior of complex coacervation have been largely restricted to aqueous systems with relatively high dielectric constants due to the limited solubility of most polyelectrolytes, hindering the exploration of the effects of electrostatic interactions from differences in solvent permittivity. Herein, we prepare two symmetric but oppositely charged polymerized ionic liquids (PILs), consisting of poly[1-[2-acryloyloxyethyl]-3-butylimidazolium bis(trifluoromethane)sulfonimide] (PAT) and poly[1-ethyl-3-methylimidazolium 3-[[[(trifluoromethyl)sulfonyl]amino]sulfonyl]propyl acrylate] (PEA). Due to the delocalized ionic charges and their chemical structure similarity, both PAT and PEA are soluble in various organic solvents with a wide range of dielectric constants, ranging from 16.7 (hexafluoro-2-propanol (HFIP)) to 66.1 (propylene carbonate (PC)). Notably, no significant correlation is observed between the solvent dielectric constant and the phase diagram of the complex coacervation of PILs. Most organic solvents lead to similar phase diagrams and salt resistances regardless of their dielectric constants, except two protic solvents (HFIP and 2,2,2-trifluoroethanol (TFE)) showing significantly low salt resistances compared to the others. The low salt resistance in these protic solvents primarily arises from strong hydrogen bonding between PILs and solvents as evidenced by 1H NMR and small-angle neutron scattering (SANS) experiments. Our finding suggests that for the coacervation of PILs, particularly those with delocalized and weak charge interactions, entropy from the counterion release and polymer-solvent interaction χ parameter play a more important role than the electrostatic interactions of charged molecules, rendered by the dielectric constant of the solvent medium.
Collapse
Affiliation(s)
- Jowon Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Heewoon Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Sang-Ho Lee
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea
| | - Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea
| | - Hyeong Jun Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| |
Collapse
|
11
|
Guo L, Zheng GG, Li RY, Fu CY, Chen J, Meng YC, Pan Y, Hu P. Saloplastics based on protein-peptides complexes immobilizing organic molecules in gastrointestinal drug delivery for ulcerative colitis treatment. Int J Biol Macromol 2024; 281:136077. [PMID: 39357707 DOI: 10.1016/j.ijbiomac.2024.136077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Ulcerative colitis (UC) stands as a chronic inflammatory intestinal disease. This study aimed to explore a sustained-release strategy to alleviate DSS-induced colitis in mice using polyelectrolyte complexes (PECs) encapsulating an alkaloid, isoliensinine (ISO). The drug delivery platform, termed "Saloplastics (SAL)", was prepared by fabrication of PECs through the solid-liquid phase separation of sodium caseinate (SC) and ε-polylysine (EPL), followed by centrifugation to yield compact structures. Coarse-grained molecular dynamics simulations demonstrated that SAL had a nanorod-like structure formation between EPL and SC, which implied that the self-assembly of SAL is driven by hydrophobic aggregation and strong electrostatic attractions. A comprehensive evaluation of SAL was conducted, including characterizations of its physicochemical and biological properties. The results showed SAL had thermal plasticization properties and excellent swelling capacity as well as susceptibility to hydrolysis by pH and proteinase in simulated gastric fluid. Moreover, SAL displayed a porous morphology with high surface area for immobilizing organic molecules. ISO@SAL, formulated by ISO encapsulated in SAL, not only demonstrated high potency in alleviating DSS-induced colitis in mice, but also increased the dosing intervals from one day to three days. In conclusion, SAL is a biocompatible sustained-release oral drug delivery platform for gastrointestinal applications.
Collapse
Affiliation(s)
- Liang Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Ge-Ge Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Rong-Yi Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Cheng-Yu Fu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, No. 18 Xuezheng Street, Qiantang District, Hangzhou, 310018, China
| | - Yue-Cheng Meng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, No. 18 Xuezheng Street, Qiantang District, Hangzhou, 310018, China.
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
12
|
Magalhães S, Paciência D, Rodrigues JMM, Lindman B, Alves L, Medronho B, Rasteiro MDG. Insights on Microplastic Contamination from Municipal and Textile Industry Effluents and Their Removal Using a Cellulose-Based Approach. Polymers (Basel) 2024; 16:2803. [PMID: 39408517 PMCID: PMC11478531 DOI: 10.3390/polym16192803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
The rampant use of plastics, with the potential to degrade into insidious microplastics (MPs), poses a significant threat by contaminating aquatic environments. In the present study, we delved into the analysis of effluents from textile industries, a recognized major source of MPs contamination. Data were further discussed and compared with a municipal wastewater treatment plant (WWTP) effluent. All effluent samples were collected at the final stage of treatment in their respective WWTP. Laser diffraction spectroscopy was used to evaluate MP dimensions, while optical and fluorescence microscopies were used for morphology analysis and the identification of predominant plastic types, respectively. Electrophoresis was employed to unravel the prevalence of negative surface charge on these plastic microparticles. The analysis revealed that polyethylene terephthalate (PET) and polyamide were the dominant compounds in textile effluents, with PET being predominant in municipal WWTP effluents. Surprisingly, despite the municipal WWTP exhibiting higher efficiency in MP removal (ca. 71% compared to ca. 55% in textile industries), it contributed more to overall pollution. A novel bio-based flocculant, a cationic cellulose derivative derived from wood wastes, was developed as a proof-of-concept for MP flocculation. The novel derivatives were found to efficiently flocculate PET MPs, thus allowing their facile removal from aqueous media, and reducing the threat of MP contamination from effluents discharged from WWTPs.
Collapse
Affiliation(s)
- Solange Magalhães
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; (S.M.); (D.P.)
| | - Daniel Paciência
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; (S.M.); (D.P.)
| | - João M. M. Rodrigues
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Björn Lindman
- Physical Chemistry, University of Lund, P.O. Box 124, SE-221 00 Lund, Sweden;
- Coimbra Chemistry Center (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Luís Alves
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; (S.M.); (D.P.)
| | - Bruno Medronho
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal;
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, Holmgatan 10, SE-851 70 Sundsvall, Sweden
| | - Maria da Graça Rasteiro
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; (S.M.); (D.P.)
| |
Collapse
|
13
|
Jia L, Gao S, Qiao Y. Optical Control over Liquid–Liquid Phase Separation. SMALL METHODS 2024; 8:e2301724. [PMID: 38530063 DOI: 10.1002/smtd.202301724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the emergence of intracellular membrane-less organelles and the development of coacervate protocells. Benefitting from the advantages of simplicity, precision, programmability, and noninvasiveness, light has become an effective tool to regulate the assembly dynamics of LLPS, and mediate various biochemical processes associated with LLPS. In this review, recent advances in optically controlling membrane-less organelles within living organisms are summarized, thereby modulating a series of biological processes including irreversible protein aggregation pathologies, transcription activation, metabolic flux, genomic rearrangements, and enzymatic reactions. Among these, the intracellular systems (i.e., optoDroplet, Corelet, PixELL, CasDrop, and other optogenetic systems) that enable the photo-mediated control over biomolecular condensation are highlighted. The design of photoactive complex coacervate protocells in laboratory settings by utilizing photochromic molecules such as azobenzene and diarylethene is further discussed. This review is expected to provide in-depth insights into phase separation-associated biochemical processes, bio-metabolism, and diseases.
Collapse
Affiliation(s)
- Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Gao
- Department of Orthopedic, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Ma Y, Ivancic RJS, Obrzut J, Audus DJ, Prabhu VM. Effect of cosolvents on the phase separation of polyelectrolyte complexes. SOFT MATTER 2024; 20:7512-7520. [PMID: 39268689 DOI: 10.1039/d4sm00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Evidence is shown that cosolvent mixtures control the coacervation of mixtures of oppositely charged polyelectrolytes. Binary and ternary solvent mixtures lead to non-monotonic solubility as a function of the average dielectric constants of the solvent mixtures. These data are rationalized by considering both electrostatic-driven phase separation and solvophobic-driven phase separation using group contribution effects on solubility parameters. These estimates are introduced into an effective Flory-Huggins interaction parameter within the framework of Voorn-Overbeek theory with variable dielectric constants and temperature dependences. Despite its simplicity, the model recovers salient experimental observations not only on their coacervate stabilities, but also on their lower critical solution temperature behaviors. These observations highlight the importance of weak van der Waals interactions in determining the phase behaviors of polyelectrolyte complexes relative to electrostatic correlations.
Collapse
Affiliation(s)
- Yuanchi Ma
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China.
| | - Robert J S Ivancic
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, USA.
| | - Jan Obrzut
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, USA.
| | - Debra J Audus
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, USA.
| | - Vivek M Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, USA.
| |
Collapse
|
15
|
Hoover SC, Margossian KO, Muthukumar M. Theory and quantitative assessment of pH-responsive polyzwitterion-polyelectrolyte complexation. SOFT MATTER 2024; 20:7199-7213. [PMID: 39222025 DOI: 10.1039/d4sm00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We introduce a theoretical framework to describe the pH-sensitive phase behavior of polyzwitterion-polyelectrolyte complex coacervates that reasonably captures the phenomenon from recent experimental observations. The polyzwitterion is described by a combinatorial sequence of the four states in which each zwitterionic monomer can occupy: dipolar, quasi-cationic, quasi-anionic, and fully neutralized. We explore the effects of various modifiable chemical and physical properties of the polymers-such as, pKa of the pH-active charged group on the zwitterion, equilibrium constant of salt condensation on the permanently charged group on the zwitterion, degrees of polymerization, hydrophobicity (via the Flory-Huggins interaction parameter), and dipole lengths-on the window of complexation across many stoichiometric mixing ratios of polyzwitterion and polyelectrolyte. The properties that determine the net charge of the polyzwitterion have the strongest effect on the pH range in which polyzwitterion-polyelectrolyte complexation occurs. We finish with general guidance for those interested in molecular design of polyzwitterion-polyelectrolyte complex coacervates and opportunities for future investigation.
Collapse
Affiliation(s)
- Samuel C Hoover
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Khatcher O Margossian
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
- Rush University Medical Center and John H. Stroger Hospital of Cook County, both in Chicago, IL 60612, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
16
|
Xiao K, Yang Y, Xu X, Szymanowski JES, Zhou Y, Sigmon GE, Burns PC, Liu T. Coacervate Formation in Dilute Aqueous Solutions of Inorganic Molecular Clusters with Simple Divalent Countercations. Inorg Chem 2024; 63:15331-15339. [PMID: 39106045 DOI: 10.1021/acs.inorgchem.4c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We report a complex coacervate formed by a 2.5 nm-diameter, rigid uranyl peroxide molecular cluster (Li68K12(OH)20)[UO2(O2)OH]60, U6060-) and SrCl2 salt in dilute aqueous solutions, including its location in the phase diagram, composition, rheological features, and critical conditions for phase transitions. In this coacervate, the Sr2+ cations are a major building component, and the coacervate phase covers a substantial region of the phase diagram. This coacervate demonstrates features that differ from traditional coacervates formed by oppositely charged long-chain polyelectrolytes, especially in its formation mechanism, dehydration, enhancement of mechanical strength with increasing ionic strength, and the change of salt partition preference into the coacervate and supernatant phases with ionic strength.
Collapse
Affiliation(s)
- Kexing Xiao
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yuqing Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiaohan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | | | - Yifan Zhou
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | | | | | - Tianbo Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
17
|
Castelletto V, Seitsonen J, Pollitt A, Hamley IW. Minimal Peptide Sequences That Undergo Liquid-Liquid Phase Separation via Self-Coacervation or Complex Coacervation with ATP. Biomacromolecules 2024; 25:5321-5331. [PMID: 39066731 PMCID: PMC11323023 DOI: 10.1021/acs.biomac.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The simple (self-)coacervation of the minimal tryptophan/arginine peptide sequences W2R2 and W3R3 was observed in salt-free aqueous solution. The phase diagrams were mapped using turbidimetry and optical microscopy, and the coacervate droplets were imaged using confocal microscopy complemented by cryo-TEM to image smaller droplets. The droplet size distribution and stability were probed using dynamic light scattering, and the droplet surface potential was obtained from zeta potential measurements. SAXS was used to elucidate the structure within the coacervate droplets, and circular dichroism spectroscopy was used to probe the conformation of the peptides, a characteristic signature for cation-π interactions being present under conditions of coacervation. These observations were rationalized using a simple model for the Rayleigh stability of charged coacervate droplets, along with atomistic molecular dynamics simulations which provide insight into stabilizing π-π stacking interactions of tryptophan as well as arginine-tryptophan cation-π interactions (which modulate the charge of the tryptophan π-electron system). Remarkably, the dipeptide WR did not show simple coacervation under the conditions examined, but complex coacervation was observed in mixtures with ATP (adenosine triphosphate). The electrostatically stabilized coacervation in this case provides a minimal model for peptide/nucleotide membraneless organelle formation. These are among the simplest model peptide systems observed to date able to undergo either simple or complex coacervation and are of future interest as protocell systems.
Collapse
Affiliation(s)
- Valeria Castelletto
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, Espoo 02150, Finland
| | - Alice Pollitt
- Institute
for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6AS, U.K.
| | - Ian W. Hamley
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
18
|
Cho J. Two Methods Based on Integral Equation Approaches in Analyzing Polyelectrolyte Solutions: Macrophase Separation. Polymers (Basel) 2024; 16:2255. [PMID: 39204475 PMCID: PMC11360440 DOI: 10.3390/polym16162255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
To understand the phase behaviors of polyelectrolyte solutions, we provide two analytical methods to formulate a molecular equation of state for a system of fully charged polyanions (PAs) and polycations (PCs) in a monomeric neutral component, based on integral equation theories. The mixture is treated in a primitive and restricted manner. The first method utilizes Blum's approach to charged hard spheres, incorporating the chain connectivity contribution by charged spheres via Stell's cavity function method. The second method employs Wertheim's multi-density Ornstein-Zernike treatment of charged hard spheres with Baxter's adhesive potential. The pressures derived from these methods are compared to available molecular dynamics simulations data for a solution of PAs and monomeric counterions as a limiting case. Two-phase equilibrium for the system is calculated using both methods to evaluate the relative strength of phase segregation that leads to complex coacervation. Additionally, the scaling exponents for a selected solution near its critical point are examined.
Collapse
Affiliation(s)
- Junhan Cho
- Department of Polymer Science & Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin 16890, Gyeonggi-do, Republic of Korea
| |
Collapse
|
19
|
Martin P, Zussman E. Charge transport in electrospinning of polyelectrolyte solutions. SOFT MATTER 2024; 20:5572-5582. [PMID: 38966871 DOI: 10.1039/d4sm00605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
This study elucidates the electrical charge transport during electrospinning of weak polyelectrolyte (poly(acrylic acid) (PAA)) solutions by employing current emission measurements. With pH variation, the PAA ionization degree could be controlled from uncharged at low pH to weakly charged at intermediate solution pH. Electrospinning neutral poly(vinylpyrrolidone) (PVP) as a reference polymer solution confirmed established current-flow rate scaling relationships as shown by De La Mora and Loscertales (1994), I ∼ (γKQ)ν, independent of the applied electric field polarity, where ν = 0.5, K is the conductivity, γ is the surface tension, Q is the flow rate, and I is the current. Similarly, the uncharged PAA did not display any polarity dependence, yet ν ≈ 0.8. Negatively charged PAA, however, showed a marked deviation in the current-flow rate behavior, which was affected by the applied electric field polarity. In the case of negative polarity, ν = 0.99, whereas for a positive polarity ν = 0.68. Similarly, the voltage required for stable cone-jet electrospinning of charged PAA was significantly higher in the negative polarity configuration for all tested flow rates (300-1600 μL h-1). As opposed to merely surface charges typically considered when electrospinning leaky dielectric fluids, as suggested by Melcher and Taylor (1969), our results suggest that the measured current is also affected by volumetric charges from charged PAA in the bulk of the jet. The proposed additional charge transport might affect the orientational order within PE-based nanofibers and their diameter.
Collapse
Affiliation(s)
- Patrick Martin
- NanoEngineering Group, Faculty of Mechanical Engineering Technion - Israel Institute of Technology, Haifa, Israel.
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
20
|
Holkar A, Gao S, Villaseñor K, Lake M, Srivastava S. Quantitative turbidimetric characterization of stabilized complex coacervate dispersions. SOFT MATTER 2024; 20:5060-5070. [PMID: 38743276 DOI: 10.1039/d3sm01761c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stabilizing complex coacervate microdroplets is desirable due to their various applications, such as bioreactors, drug delivery vehicles, and encapsulants. Here, we present quantitative characterization of complex coacervate dispersion stability inferred by turbidimetry measurements. The stability of the dispersions is shown to be modulated by the concentrations of comb polyelectrolyte (cPE) stabilizers and salt. We demonstrate cPEs as effective stabilizers for complex coacervate dispersions independent of the chemistry or length of the constituent polyelectrolytes, salts, or preparation routes. By monitoring the temporal evolution of dispersion turbidity, we show that cPEs suppress microdroplet coalescence with minimal change in microdroplet sizes over 48 hours, even at salt concentrations up to 300 mM. The number density and average microdroplet size are shown to be controlled by varying the cPE and salt concentrations. Lastly, turbidity maps, akin to binodal phase maps, depict an expansion of the turbid two-phase region and an increase in the salt resistance of the coacervates upon the introduction of cPEs. The coacervate salt resistance is shown to increase by >3×, and this increase is maintained for up to 15 days, demonstrating that cPEs impart higher salt resistance over extended durations.
Collapse
Affiliation(s)
- Advait Holkar
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Shang Gao
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Kathleen Villaseñor
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michael Lake
- NSF BioPACIFIC MIP, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samanvaya Srivastava
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- NSF BioPACIFIC MIP, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Abstract
Biomolecular condensates are highly versatile membraneless organelles involved in a plethora of cellular processes. Recent years have witnessed growing evidence of the interaction of these droplets with membrane-bound cellular structures. Condensates' adhesion to membranes can cause their mutual molding and regulation, and their interaction is of fundamental relevance to intracellular organization and communication, organelle remodeling, embryogenesis, and phagocytosis. In this article, we review advances in the understanding of membrane-condensate interactions, with a focus on in vitro models. These minimal systems allow the precise characterization and tuning of the material properties of both membranes and condensates and provide a workbench for visualizing the resulting morphologies and quantifying the interactions. These interactions can give rise to diverse biologically relevant phenomena, such as molecular-level restructuring of the membrane, nano- to microscale ruffling of the condensate-membrane interface, and coupling of the protein and lipid phases.
Collapse
Affiliation(s)
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany;
| |
Collapse
|
22
|
Keshavarzi B, Reising G, Mahmoudvand M, Koynov K, Butt HJ, Javadi A, Schwarzenberger K, Heitkam S, Dolgos M, Kantzas A, Eckert K. Pressure Changes Across a Membrane Formed by Coacervation of Oppositely Charged Polymer-Surfactant Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9934-9944. [PMID: 38690991 DOI: 10.1021/acs.langmuir.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
We investigate the mass transfer and membrane growth processes during capsule formation by the interaction of the biopolymer xanthan gum with CnTAB surfactants. When a drop of xanthan gum polymer solution is added to the surfactant solution, a membrane is formed by coacervation. It encapsulates the polymer drop in the surfactant solution. The underlying mechanisms and dynamic processes during capsule formation are not yet understood in detail. Therefore, we characterized the polymer-surfactant complex formation during coacervation by measuring the surface tension and surface elasticity at the solution-air interface for different surfactant chain lengths and concentrations. The adsorption behavior of the mixed polymer-surfactant system at the solution-air interface supports the understanding of observed trends during the capsule formation. We further measured the change in capsule pressure over time and simultaneously imaged the membrane growth via confocal microscopy. The cross-linking and shrinkage during the membrane formation by coacervation leads to an increasing tensile stress in the elastic membrane, resulting in a rapid pressure rise. Afterward, the pressure gradually decreases and the capsule shrinks as water diffuses out. This is not only due to the initial capsule overpressure but also due to osmosis caused by the higher ionic strength of the surfactant solution outside the capsule compared to the polymer solution inside the capsule. The influence of polymer concentration and surfactant type and concentration on the pressure changes and the membrane structure are studied in this work, providing detailed insights into the dynamic membrane formation process by coacervation. This knowledge can be used to produce capsules with tailored membrane properties and to develop a suitable encapsulation protocol in technological applications. The obtained insights into the mass transfer of water across the capsule membrane are important for future usage in separation techniques and the food industry and allow us to better predict the capsule time stability.
Collapse
Affiliation(s)
- Behnam Keshavarzi
- Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Georg Reising
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Mohsen Mahmoudvand
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Aliyar Javadi
- Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Karin Schwarzenberger
- Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Sascha Heitkam
- Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Michelle Dolgos
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Apostolos Kantzas
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kerstin Eckert
- Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
23
|
Lipowsky R. Multiscale remodeling of biomembranes and vesicles. Methods Enzymol 2024; 701:175-236. [PMID: 39025572 DOI: 10.1016/bs.mie.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Biomembranes and vesicles cover a wide range of length scales. Indeed, small nanovesicles have a diameter of a few tens of nanometers whereas giant vesicles can have diameters up to hundreds of micrometers. The remodeling of giant vesicles on the micron scale can be observed by light microscopy and understood by the theory of curvature elasticity, which represents a top-down approach. The theory predicts the formation of multispherical shapes as recently observed experimentally. On the nanometer scale, much insight has been obtained via coarse-grained molecular dynamics simulations of nanovesicles, which provides a bottom-up approach based on the lipid numbers assembled in the two bilayer leaflets and the resulting leaflet tensions. The remodeling processes discussed here include the shape transformations of vesicles, their morphological responses to the adhesion of condensate droplets, the instabilities of lipid bilayers and nanovesicles, as well as the topological transformations of vesicles by membrane fission and fusion. The latter processes determine the complex topology of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany.
| |
Collapse
|
24
|
Galland P, Iqbal MH, Favier D, Legros M, Schaaf P, Boulmedais F, Vahdati M. Tuning the underwater adhesiveness of antibacterial polysaccharides complex coacervates. J Colloid Interface Sci 2024; 661:196-206. [PMID: 38301458 DOI: 10.1016/j.jcis.2024.01.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
HYPOTHESIS Adjusting the water content and mechanical properties of polyelectrolyte coacervates for optimal underwater adhesion requires simultaneous control of the macromolecular design and the type and concentration of the salt used. Using synthetic or bio-inspired polymers to make coacervates often involves complicated chemistries and large variations in salt concentration. The underwater adhesiveness of simple, bio-sourced coacervates can be tuned with relatively small variations in salt concentration. Bio-sourced polymers can also impart beneficial biological activities to the final material. EXPERIMENTS We made complex coacervates from charged chitosan (CHI) and hyaluronic acid (HA) with NaCl as the salt. Their water content and viscoelastic properties were investigated to identify the formulation with optimal underwater adhesion in physiological conditions. The coacervates were also studied in antibacterial and cytotoxicity experiments. FINDINGS As predicted by linear rheology, the CHI-HA coacervates at 0.1 and 0.2 M NaCl had the highest pull-off adhesion strengths of 44.4 and 40.3 kPa in their respective supernatants. In-situ physical hardening of the 0.2 M coacervate upon a salt switch in 0.1 M NaCl resulted in a pull-off adhesion strength of 62.9 kPa. This material maintained its adhesive properties in physiological conditions. Finally, the optimal adhesive was found to be non-cytotoxic and inherently antimicrobial through a chitosan release-killing mechanism.
Collapse
Affiliation(s)
- Perrine Galland
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67200, Strasbourg, France
| | - Muhammad Haseeb Iqbal
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67200, Strasbourg, France
| | - Damien Favier
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67200, Strasbourg, France
| | - Mélanie Legros
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67200, Strasbourg, France
| | - Pierre Schaaf
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67200, Strasbourg, France; Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, Biomatériaux et Bioingénierie, 67000, Strasbourg, France; Université de Strasbourg, Faculty of Dental Surgery, 67000, Strasbourg, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67200, Strasbourg, France.
| | - Mehdi Vahdati
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67200, Strasbourg, France.
| |
Collapse
|
25
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
26
|
Eneh C, Nixon K, Lalwani SM, Sammalkorpi M, Batys P, Lutkenhaus JL. Solid-Liquid-Solution Phases in Poly(diallyldimethylammonium)/Poly(acrylic acid) Polyelectrolyte Complexes at Varying Temperatures. Macromolecules 2024; 57:2363-2375. [PMID: 38495383 PMCID: PMC10938883 DOI: 10.1021/acs.macromol.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
The coacervation and complexation of oppositely charged polyelectrolytes are dependent on numerous environmental and preparatory factors, but temperature is often overlooked. Temperature effects remain unclear because the temperature dependence of both the dielectric constant and polymer-solvent interaction parameter can yield lower and/or upper critical solution phase behaviors for PECs. Further, secondary interactions, such as hydrogen bonding, can affect the temperature response of a PEC. That is, mixtures of oppositely charged polyelectrolytes can exhibit phase separation upon lowering and/or increasing the mixture's temperature. Here, the phase behavior of poly(diallylmethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes under varying KBr ionic strengths, mixing ratios, and temperatures at a fixed pH (in which PAA hydrogen bonding can occur) is examined. At room temperature, the PDADMA/PAA PECs exhibit four different phase states: precipitate, coexisting precipitate and coacervate, solid-like gel, and coacervate. Variable-temperature optical microscopy reveals the upper critical solution temperature (UCST) at which each phase transitioned to a solution state. Interestingly, the UCST value is highly dependent on the original phase of the PEC, in which solid-like precipitates exhibit higher UCST values. Large-scale all-atom molecular dynamics (MD) simulations support that precipitates exhibit kinetic trapping, which may contribute to the higher UCST values observed in the experiment. Taken together, this study highlights the significance of temperature on the phase behavior of PECs, which may play a larger role in stimuli-responsive materials, membraneless organelles, and separations applications.
Collapse
Affiliation(s)
- Chikaodinaka
I. Eneh
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kevin Nixon
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Suvesh Manoj Lalwani
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, Aalto 00076, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto 00076, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, Aalto 00076, Finland
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow 30-239, Poland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
27
|
Wang H, Lv J, Zhu M, Wang K, Huan S, Liu Y, Li Z, Liu S, Bai L. Assembly of porous filaments by interfacial complexation of nanochitin-based Pickering emulsion and seaweed alginate. Carbohydr Polym 2024; 326:121595. [PMID: 38142070 DOI: 10.1016/j.carbpol.2023.121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
Interfacial polyelectrolyte complexation spinning is an all-water, easy-to-operate method for production of composite filaments. Herein, this concept is extended to interfacial polyelectrolyte-emulsion complexation (IPEC) that better encodes structural and functional attributes of biomass substances into the filaments. This allows for formation of composite filaments by drawing contacting oppositely-charged chitin nanofiber-stabilized Pickering emulsion and seaweed alginate solution. The parameters affecting spinnability of the system including water-to-oil ratio, alginate concentration, and pH are comprehensively elucidated to support the design and application of IPEC. The composite filaments exhibit varied diameters and diverse porous structures that are adjustable by properties of Pickering droplets. The droplet diameter of precursor emulsion and pore size in the filaments are well correlated, revealing controllability of the IPEC spinning. The filaments are mechanically robust in dry condition and show stable performance even in wet condition. The release rate of filaments that is pre-loaded with hydrophilic drug is regulated by the internal pore size, showing capability on sustained release. This study offers a new perspective toward dry spinning via interfacial complexation of complicated nanochitin-based structural building blocks, aiming at developing high-performance fiber materials for advanced applications.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jiayi Lv
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Mengqi Zhu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Kaiyue Wang
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Siqi Huan
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yang Liu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhiguo Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Long Bai
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
28
|
Staňo R, van Lente J, Lindhoud S, Košovan P. Sequestration of Small Ions and Weak Acids and Bases by a Polyelectrolyte Complex Studied by Simulation and Experiment. Macromolecules 2024; 57:1383-1398. [PMID: 38370910 PMCID: PMC10867894 DOI: 10.1021/acs.macromol.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024]
Abstract
Mixing of oppositely charged polyelectrolytes can result in phase separation into a polymer-poor supernatant and a polymer-rich polyelectrolyte complex (PEC). We present a new coarse-grained model for the Grand-reaction method that enables us to determine the composition of the coexisting phases in a broad range of pH and salt concentrations. We validate the model by comparing it to recent simulations and experimental studies, as well as our own experiments on poly(acrylic acid)/poly(allylamine hydrochloride) complexes. The simulations using our model predict that monovalent ions partition approximately equally between both phases, whereas divalent ones accumulate in the PEC phase. On a semiquantitative level, these results agree with our own experiments, as well as with other experiments and simulations in the literature. In the sequel, we use the model to study the partitioning of a weak diprotic acid at various pH values of the supernatant. Our results show that the ionization of the acid is enhanced in the PEC phase, resulting in its preferential accumulation in this phase, which monotonically increases with the pH. Currently, this effect is still waiting to be confirmed experimentally. We explore how the model parameters (particle size, charge density, permittivity, and solvent quality) affect the measured partition coefficients, showing that fine-tuning of these parameters can make the agreement with the experiments almost quantitative. Nevertheless, our results show that charge regulation in multivalent solutes can potentially be exploited in engineering the partitioning of charged molecules in PEC-based systems at various pH values.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse
5, 1090 Vienna, Austria
| | - Jéré
J. van Lente
- Department
of Molecules & Materials, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Saskia Lindhoud
- Department
of Molecules & Materials, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Peter Košovan
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
29
|
Joshi P, Decker C, Zeng X, Sathyavageeswaran A, Perry SL, Heldt CL. Design Rules for the Sequestration of Viruses into Polypeptide Complex Coacervates. Biomacromolecules 2024; 25:741-753. [PMID: 38103178 PMCID: PMC10866146 DOI: 10.1021/acs.biomac.3c00938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Encapsulation is a strategy that has been used to facilitate the delivery and increase the stability of proteins and viruses. Here, we investigate the encapsulation of viruses via complex coacervation, which is a liquid-liquid phase separation resulting from the complexation of oppositely charged polymers. In particular, we utilized polypeptide-based coacervates and explored the effects of peptide chemistry, chain length, charge patterning, and hydrophobicity to better understand the effects of the coacervating polypeptides on virus incorporation. Our study utilized two nonenveloped viruses, porcine parvovirus (PPV) and human rhinovirus (HRV). PPV has a higher charge density than HRV, and they both appear to be relatively hydrophobic. These viruses were compared to characterize how the charge, hydrophobicity, and patterning of chemistry on the surface of the virus capsid affects encapsulation. Consistent with the electrostatic nature of complex coacervation, our results suggest that electrostatic effects associated with the net charge of both the virus and polypeptide dominated the potential for incorporating the virus into a coacervate, with clustering of charges also playing a significant role. Additionally, the hydrophobicity of a virus appears to determine the degree to which increasing the hydrophobicity of the coacervating peptides can enhance virus uptake. Nonintuitive trends in uptake were observed with regard to both charge patterning and polypeptide chain length, with these parameters having a significant effect on the range of coacervate compositions over which virus incorporation was observed. These results provide insights into biophysical mechanisms, where sequence effects can control the uptake of proteins or viruses into biological condensates and provide insights for use in formulation strategies.
Collapse
Affiliation(s)
- Pratik
U. Joshi
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Claire Decker
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Xianci Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Arvind Sathyavageeswaran
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Institute
for Applied Life Sciences, University of
Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Caryn L. Heldt
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| |
Collapse
|
30
|
Yamaguchi T, Chong SH, Yoshida N. Coexistence of two coacervate phases of polyglycine in water suggested by polymer reference interaction site model theory. J Chem Phys 2023; 159:245101. [PMID: 38131487 DOI: 10.1063/5.0185157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Mixing Gibbs energy and phase equilibria of aqueous solutions of polyglycine were studied theoretically by means of polymer reference interaction site model integral equation theory combined with the Gibbs-Duhem method. In addition to the ordinary liquid-liquid phase separation between dilute and concentrated solutions, the theoretical calculation predicted the coexistence of two coacervate phases, namely, the lower- and higher-density coacervates. The relative thermodynamic stabilities of these two phases change with the polymerization degree of polyglycine. The higher-density coacervate phase was rapidly stabilized by increasing the polymer length, and the lower-density phase became metastable at large polymers. The hydrogen bonds between the peptide chains were strengthened, and water was thermodynamically destabilized in the higher-density coacervate. A possible relation with the formation of amyloid fibril within a liquid droplet is also discussed.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Song-Ho Chong
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Oe-honmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan
| | - Norio Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
31
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
32
|
Celora GL, Blossey R, Münch A, Wagner B. Counterion-controlled phase equilibria in a charge-regulated polymer solution. J Chem Phys 2023; 159:184902. [PMID: 37942872 DOI: 10.1063/5.0169610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
We study phase equilibria in a minimal model of charge-regulated polymer solutions. Our model consists of a single polymer species whose charge state arises from protonation-deprotonation processes in the presence of a dissolved acid, whose anions serve as screening counterions. We explicitly account for variability in the polymers' charge states. Homogeneous equilibria in this model system are characterised by the total concentration of polymers, the concentration of counter-ions and the charge distributions of polymers which can be computed with the help of analytical approximations. We use these analytical results to characterise how parameter values and solution acidity influence equilibrium charge distributions and identify for which regimes uni-modal and multi-modal charge distributions arise. We then study the interplay between charge regulation, solution acidity and phase separation. We find that charge regulation has a significant impact on polymer solubility and allows for non-linear responses to the solution acidity: Re-entrant phase behaviour is possible in response to increasing solution acidity. Moreover, we show that phase separation can yield to the coexistence of local environments characterised by different charge distributions.
Collapse
Affiliation(s)
- Giulia L Celora
- Department of Mathematics, University College London, 25 Gordon Street, London WC1H 0AY, United Kingdom
| | - Ralf Blossey
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Andreas Münch
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Barbara Wagner
- Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany
| |
Collapse
|
33
|
Debais G, Missoni LL, Perez Sirkin YA, Tagliazucchi M. Theoretical treatment of complex coacervate core micelles: structure and pH-induced disassembly. SOFT MATTER 2023; 19:7602-7612. [PMID: 37756111 DOI: 10.1039/d3sm01047c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Complex coacervate core micelles (C3Ms) are supramolecular soft nanostructures formed by the assembly of a block copolymer and an oppositely charged homopolymer. The coacervation of the charged segments in both macromolecules drives the formation of the core of the C3M, while the neutral block of the copolymer forms the corona. This work introduces a molecular theory (MOLT) that predicts the internal structure and stimuli-responsive properties of C3Ms and explicitly considers the chemical architecture of the polyelectrolytes, their acid-based equilibria and electrostatic and non-electrostatic interactions. In order to accurately predict complex coacervation, the correlations between charged species are incorporated into MOLT as ion-pairing processes, which are modeled using a coupled chemical equilibrium formalism. Very good agreement was observed between the experimental results in the literature and MOLT predictions for the scaling relationships that relate the dimensions of the micelle (aggregation number and sizes of the micelle and the core) to the lengths of the different blocks. MOLT was used to study the disassembly of the micelles when the solution pH is driven away from the value that guarantees the charge stoichiometry of the core. This study reveals that very sharp disassembly transitions can be obtained by tuning the length or architecture of the copolymer component, thereby suggesting potential routes to design C3Ms capable of releasing their components at very precise pH values.
Collapse
Affiliation(s)
- Gabriel Debais
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428, Argentina.
| | - Leandro L Missoni
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428, Argentina.
| | - Yamila A Perez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428, Argentina.
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428, Argentina.
| |
Collapse
|
34
|
Chowdhury A, Borgia A, Ghosh S, Sottini A, Mitra S, Eapen RS, Borgia MB, Yang T, Galvanetto N, Ivanović MT, Łukijańczuk P, Zhu R, Nettels D, Kundagrami A, Schuler B. Driving forces of the complex formation between highly charged disordered proteins. Proc Natl Acad Sci U S A 2023; 120:e2304036120. [PMID: 37796987 PMCID: PMC10576128 DOI: 10.1073/pnas.2304036120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
Highly disordered complexes between oppositely charged intrinsically disordered proteins present a new paradigm of biomolecular interactions. Here, we investigate the driving forces of such interactions for the example of the highly positively charged linker histone H1 and its highly negatively charged chaperone, prothymosin α (ProTα). Temperature-dependent single-molecule Förster resonance energy transfer (FRET) experiments and isothermal titration calorimetry reveal ProTα-H1 binding to be enthalpically unfavorable, and salt-dependent affinity measurements suggest counterion release entropy to be an important thermodynamic driving force. Using single-molecule FRET, we also identify ternary complexes between ProTα and H1 in addition to the heterodimer at equilibrium and show how they contribute to the thermodynamics observed in ensemble experiments. Finally, we explain the observed thermodynamics quantitatively with a mean-field polyelectrolyte theory that treats counterion release explicitly. ProTα-H1 complex formation resembles the interactions between synthetic polyelectrolytes, and the underlying principles are likely to be of broad relevance for interactions between charged biomolecules in general.
Collapse
Affiliation(s)
- Aritra Chowdhury
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Alessandro Borgia
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Souradeep Ghosh
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Soumik Mitra
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Rohan S. Eapen
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | | | - Tianjin Yang
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Nicola Galvanetto
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
- Department of Physics, University of Zurich, Zurich8057, Switzerland
| | - Miloš T. Ivanović
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Paweł Łukijańczuk
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Ruijing Zhu
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Arindam Kundagrami
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
- Department of Physics, University of Zurich, Zurich8057, Switzerland
| |
Collapse
|
35
|
Jedlinska ZM, Riggleman RA. The effect of monomer polarizability on the stability and salt partitioning in model coacervates. SOFT MATTER 2023; 19:7000-7010. [PMID: 37668019 DOI: 10.1039/d3sm00706e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Coacervation of charged polymer chains has been a topic of major interest in both polymer and biological sciences, as it is a subset of a phenomenon called liquid-liquid phase separation (LLPS). In this process the polymer-rich phase separates from the polymer-lean supernatant while still maintaining its liquid-like properties. LLPS has been shown to play a crucial role in cellular homeostasis by driving the formation of membraneless organelles. It also has the potential to be harnessed to aid in novel therapeutical applications. Recent studies have demonstrated that there is no one simple mechanism which drives LLPS, which is instead a result of the combined effect of electrostatic, dipolar, hydrophobic, and other weak interactions. Using coarse-grained polymer simulations we investigate the relatively unexplored effects of monomer polarizability and spatially varying dielectric constant on LLPS propensity, and these factors affect the properties of the resulting condensates. In order to produce spatial variations in the dielectric constant, all our simulations include explicit solvent and counterions. We demonstrate that polarizability has only a minor effect on the bulk behaviour of the condensates but plays a major role when ion partitioning and microstructure are considered. We observe that the major contribution comes from the nature of the neutral blocks as endowing them with an induced dipole changes their character from hydrophobic to hydrophilic. We hypothesize that the results of this work can aid in guiding future studies concerned with LLPS by providing a general framework and by highlighting important factors which influence LLPS.
Collapse
Affiliation(s)
- Zuzanna M Jedlinska
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| | - Robert A Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
36
|
Muthukumar M. Fluctuations, structure, and size inside coacervates. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:79. [PMID: 37682368 DOI: 10.1140/epje/s10189-023-00335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Aqueous solutions of oppositely charged macromolecules exhibit the ubiquitous phenomenon of coacervation. This subject is of considerable current interest due to numerous biotechnological applications of coacervates and the general premise of biomolecular condensates. Towards a theoretical foundation of structural features of coacervates, we present a field-theoretic treatment of coacervates formed by uniformly charged flexible polycations and polyanions in an electrolyte solution. We delineate different regimes of polymer concentration fluctuations and structural features of coacervates based on the concentrations of polycation and polyanion, salt concentration, and experimentally observable length scales. We present closed-form formulas for correlation length of polymer concentration fluctuations, scattering structure factor, and radius of gyration of a labelled polyelectrolyte chain inside a concentrated coacervate. Using random phase approximation suitable for concentrated polymer systems, we show that the inter-monomer electrostatic interaction is screened by interpenetration of all charged polymer chains and that the screening length depends on the individual concentrations of the polycation and the polyanion, as well as the salt concentration. Our calculations show that the scattering intensity decreases monotonically with scattering wave vector at higher salt concentrations, while it exhibits a peak at intermediate scattering wave vector at lower salt concentrations. Furthermore, we predict that the dependence of the radius of gyration of a labelled chain on its degree of polymerization generally obeys the Gaussian chain statistics. However, the chain is modestly swollen, the extent of which depending on polyelectrolyte composition, salt concentration, and the electrostatic features of the polycation and polyanion such as the degree of ionization.
Collapse
Affiliation(s)
- Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
37
|
Coria-Oriundo LL, Debais G, Apuzzo E, Herrera SE, Ceolín M, Azzaroni O, Battaglini F, Tagliazucchi M. Phase Behavior and Electrochemical Properties of Highly Asymmetric Redox Coacervates. J Phys Chem B 2023; 127:7636-7647. [PMID: 37639479 DOI: 10.1021/acs.jpcb.3c03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
This work reports the phase behavior and electrochemical properties of liquid coacervates made of ferricyanide and poly(ethylenimine). In contrast to the typical polyanion/polycation pairs used in liquid coacervates, the ferricyanide/poly(ethylenimine) system is highly asymmetric because poly(ethylenimine) has approximately 170 charges per molecule, while ferricyanide has only 3. Two types of phase diagrams were measured and fitted with a theoretical model. In the first type of diagram, the stability of the coacervate was studied in the plane given by the concentration of poly(ethylenimine) versus the concentration of ferricyanide for a fixed concentration of added monovalent salt (NaCl). The second type of diagram involved the plane given by the concentration of poly(ethylenimine) vs the concentration of the added monovalent salt for a fixed poly(ethyleneimine)/ferricyanide ratio. Interestingly, these phase diagrams displayed qualitative similarities to those of symmetric polyanion/polycation systems, suggesting that coacervates formed by a polyelectrolyte and a small multivalent ion can be treated as a specific case of polyelectrolyte coacervate. The characterization of the electrochemical properties of the coacervate revealed that the addition of monovalent salt greatly enhances charge transport, presumably by breaking ion pairs between ferricyanide and poly(ethylenimine). This finding highlights the significant influence of added salt on the transport properties of coacervates. This study provides the first comprehensive characterization of the phase behavior and transport properties of asymmetric coacervates and places these results within the broader context of the better-known symmetric polyelectrolyte coacervates.
Collapse
Affiliation(s)
- Lucy L Coria-Oriundo
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Debais
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 64 y Diag. 113, 1900 La Plata, Argentina
| | - Santiago E Herrera
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 64 y Diag. 113, 1900 La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 64 y Diag. 113, 1900 La Plata, Argentina
| | - Fernando Battaglini
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Mario Tagliazucchi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
38
|
Viola G, Floriani F, Barracchia CG, Munari F, D'Onofrio M, Assfalg M. Ultrasmall Gold Nanoparticles as Clients of Biomolecular Condensates. Chemistry 2023; 29:e202301274. [PMID: 37293933 DOI: 10.1002/chem.202301274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Liquid-liquid phase separation (LLPS) of biopolymers to form condensates is a widespread phenomenon in living cells. Agents that target or alter condensation can help uncover elusive physiological and pathological mechanisms. Owing to their unique material properties and modes of interaction with biomolecules, nanoparticles represent attractive condensate-targeting agents. Our work focused on elucidating the interaction between ultrasmall gold nanoparticles (usGNPs) and diverse types of condensates of tau, a representative phase-separating protein associated with neurodegenerative disorders. usGNPs attract considerable interest in the biomedical community due to unique features, including emergent optical properties and good cell penetration. We explored the interaction of usGNPs with reconstituted self-condensates of tau, two-component tau/polyanion and three-component tau/RNA/alpha-synuclein coacervates. The usGNPs were found to concentrate into condensed liquid droplets, consistent with the formation of dynamic client (nanoparticle) - scaffold (tau) interactions, and were observable thanks to their intrinsic luminescence. Furthermore, usGNPs were capable to promote LLPS of a protein domain which is unable to phase separate on its own. Our study demonstrates the ability of usGNPs to interact with and illuminate protein condensates. We anticipate that nanoparticles will have broad applicability as nanotracers to interrogate phase separation, and as nanoactuators controlling the formation and dissolution of condensates.
Collapse
Affiliation(s)
- Giovanna Viola
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - Fulvio Floriani
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | | | - Francesca Munari
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | | | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| |
Collapse
|
39
|
Alston JJ, Soranno A. Condensation Goes Viral: A Polymer Physics Perspective. J Mol Biol 2023; 435:167988. [PMID: 36709795 PMCID: PMC10368797 DOI: 10.1016/j.jmb.2023.167988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The past decade has seen a revolution in our understanding of how the cellular environment is organized, where an incredible body of work has provided new insights into the role played by membraneless organelles. These rapid advancements have been made possible by an increasing awareness of the peculiar physical properties that give rise to such bodies and the complex biology that enables their function. Viral infections are not extraneous to this. Indeed, in host cells, viruses can harness existing membraneless compartments or, even, induce the formation of new ones. By hijacking the cellular machinery, these intracellular bodies can assist in the replication, assembly, and packaging of the viral genome as well as in the escape of the cellular immune response. Here, we provide a perspective on the fundamental polymer physics concepts that may help connect and interpret the different observed phenomena, ranging from the condensation of viral genomes to the phase separation of multicomponent solutions. We complement the discussion of the physical basis with a description of biophysical methods that can provide quantitative insights for testing and developing theoretical and computational models.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA.
| |
Collapse
|
40
|
Sinha NJ, Cunha KC, Murphy R, Hawker CJ, Shea JE, Helgeson ME. Competition between β-Sheet and Coacervate Domains Yields Diverse Morphologies in Mixtures of Oppositely Charged Homochiral Polypeptides. Biomacromolecules 2023; 24:3580-3588. [PMID: 37486022 DOI: 10.1021/acs.biomac.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Biomolecular assembly processes involving competition between specific intermolecular interactions and thermodynamic phase instability have been implicated in a number of pathological states and technological applications of biomaterials. As a model for such processes, aqueous mixtures of oppositely charged homochiral polypeptides such as poly-l-lysine and poly-l-glutamic acid have been reported to form either β-sheet-rich solid-like precipitates or liquid-like coacervate droplets depending on competing hydrogen bonding interactions. Herein, we report studies of polypeptide mixtures that reveal unexpectedly diverse morphologies ranging from partially coalescing and aggregated droplets to bulk precipitates, as well as a previously unreported re-entrant liquid-liquid phase separation at high polypeptide concentration and ionic strength. Combining our experimental results with all-atom molecular dynamics simulations of folded polypeptide complexes reveals a concentration dependence of β-sheet-rich secondary structure, whose relative composition correlates with the observed macroscale morphologies of the mixtures. These results elucidate a crucial balance of interactions that are important for controlling morphology during coacervation in these and potentially similar biologically relevant systems.
Collapse
Affiliation(s)
- Nairiti J Sinha
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Keila Cristina Cunha
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Robert Murphy
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Craig J Hawker
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
41
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
42
|
Lipowsky R, Ghosh R, Satarifard V, Sreekumari A, Zamaletdinov M, Różycki B, Miettinen M, Grafmüller A. Leaflet Tensions Control the Spatio-Temporal Remodeling of Lipid Bilayers and Nanovesicles. Biomolecules 2023; 13:926. [PMID: 37371505 PMCID: PMC10296112 DOI: 10.3390/biom13060926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Biological and biomimetic membranes are based on lipid bilayers, which consist of two monolayers or leaflets. To avoid bilayer edges, which form when the hydrophobic core of such a bilayer is exposed to the surrounding aqueous solution, a single bilayer closes up into a unilamellar vesicle, thereby separating an interior from an exterior aqueous compartment. Synthetic nanovesicles with a size below 100 nanometers, traditionally called small unilamellar vesicles, have emerged as potent platforms for the delivery of drugs and vaccines. Cellular nanovesicles of a similar size are released from almost every type of living cell. The nanovesicle morphology has been studied by electron microscopy methods but these methods are limited to a single snapshot of each vesicle. Here, we review recent results of molecular dynamics simulations, by which one can monitor and elucidate the spatio-temporal remodeling of individual bilayers and nanovesicles. We emphasize the new concept of leaflet tensions, which control the bilayers' stability and instability, the transition rates of lipid flip-flops between the two leaflets, the shape transformations of nanovesicles, the engulfment and endocytosis of condensate droplets and rigid nanoparticles, as well as nanovesicle adhesion and fusion. To actually compute the leaflet tensions, one has to determine the bilayer's midsurface, which represents the average position of the interface between the two leaflets. Two particularly useful methods to determine this midsurface are based on the density profile of the hydrophobic lipid chains and on the molecular volumes.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Rikhia Ghosh
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Icahn School of Medicine Mount Sinai, New York, NY 10029, USA
| | - Vahid Satarifard
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Yale Institute for Network Science, Yale University, New Haven, CT 06520, USA
| | - Aparna Sreekumari
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 678 623, India
| | - Miftakh Zamaletdinov
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Bartosz Różycki
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Markus Miettinen
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
43
|
Valdes-Garcia G, Gamage K, Smith C, Martirosova K, Feig M, Lapidus LJ. The effect of polymer length in liquid-liquid phase separation. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101415. [PMID: 37325682 PMCID: PMC10270681 DOI: 10.1016/j.xcrp.2023.101415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding the thermodynamics that drive liquid-liquid phase separation (LLPS) is quite important given the number of diverse biomolecular systems undergoing this phenomenon. Many studies have focused on condensates of long polymers, but very few systems of short-polymer condensates have been observed and studied. Here, we study a short-polymer system of various lengths of poly-adenine RNA and peptides formed by the RGRGG sequence repeats to understand the underlying thermodynamics of LLPS. Using the recently developed COCOMO coarse-grained (CG) model, we predicted condensates for lengths as short as 5-10 residues, which was then confirmed by experiment, making this one of the smallest LLPS systems yet observed. A free-energy model reveals that the length dependence of condensation is driven primarily by entropy of confinement. The simplicity of this system will provide the basis for understanding more biologically realistic systems.
Collapse
Affiliation(s)
- Gilberto Valdes-Garcia
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- These authors contributed equally
| | - Kasun Gamage
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
- These authors contributed equally
| | - Casey Smith
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - Karina Martirosova
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lisa J. Lapidus
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
- Lead contact
| |
Collapse
|
44
|
Liu L, Li Y, Huang G, Geng X, Guo L, Li X, Xiao J, Dong X. Characterization and stability evaluation of Ca 2+ cross-linked soybean protein isolate/chitosan/sodium alginate ternary complex coacervate phase. Int J Biol Macromol 2023; 242:124729. [PMID: 37148942 DOI: 10.1016/j.ijbiomac.2023.124729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
To improve the stability of the soybean protein isolate/chitosan/sodium alginate ternary complex coacervate phase against environmental pH and ionic strength, the complex ternary phase cross-linked by Ca2+ was characterized and evaluated. The viscoelastic properties, thermal properties, microstructure, and texture profile were characterized using rheology, differentia scanning calorimetry as well as thermmogravimetric analysis, scanning electron microscopy as well as transmission electron microscopy, and texture profile analysis, respectively. Compared with the uncross-linked ternary complex coacervate, the complex in situ cross-linked with 1.0 % Ca2+ for 1 h still retains its typical solid characteristics, and has a more compact network structure and better stability. Our research results also showed that prolonging the cross-linking time (from 3 h to 5 h) and increasing the concentration of the cross-linking agent (from 1.5 % to 2.0 %) did not further improve the rheological, thermodynamic and textural properties of the complex coacervate. The ternary complex coacervate phase cross-linked in situ under 1.5 % concentration of Ca2+ for 3 h showed significantly improved stability at low pH 1.5-3.0, which indicats that the ternary complex coacervate phase cross-linked in situ by Ca2+ can be used as a potential delivery platform for the effective delivery of biomolecules under physiological conditions.
Collapse
Affiliation(s)
- Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Yanlong Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Guoqing Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Xin Geng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Liping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Xuyan Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China.
| |
Collapse
|
45
|
Anop H, Buitenhuis J. Polyelectrolyte Complexes from Oppositely Charged Filamentous Viruses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4545-4556. [PMID: 36947868 PMCID: PMC10077591 DOI: 10.1021/acs.langmuir.2c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Here, we present an explorative study on a new type of polyelectrolyte complex made from chemically modified filamentous fd viruses. The fd virus is a semiflexible rod-shaped bacteriophage with a length of 880 nm and a diameter of 6.6 nm, which has been widely used as a well-defined model system of colloidal rods to investigate phase, flow, and other behavior. Here, chemically modified viruses have been prepared to obtain two types with opposite electrical charges in addition to a steric stabilization layer by poly(ethylene glycol) (PEG) grafting. The complex formation of stoichiometric mixtures of these oppositely charged viruses is studied as a function of virus and salt concentration. Furthermore, static light scattering measurements show a varying, strong increase in scattering intensity in some samples without visual macroscopic complex formation. Finally, the results of the complex formation are rationalized by comparing to model calculations on the pair interaction potential between oppositely charged viruses.
Collapse
Affiliation(s)
- Hanna Anop
- Forschungszentrum
Jülich, IBI-4, Biomacromolecular Systems and Processes, 52425 Jülich, Germany
- Cordouan
Technologies, Cité
de la Photonique, 11 Avenue Canteranne, 33600 Pessac, France
| | - Johan Buitenhuis
- Forschungszentrum
Jülich, IBI-4, Biomacromolecular Systems and Processes, 52425 Jülich, Germany
| |
Collapse
|
46
|
Herrera SE, Agazzi ML, Apuzzo E, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Polyelectrolyte-multivalent molecule complexes: physicochemical properties and applications. SOFT MATTER 2023; 19:2013-2041. [PMID: 36811333 DOI: 10.1039/d2sm01507b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The complexation of polyelectrolytes with other oppositely charged structures gives rise to a great variety of functional materials with potential applications in a wide spectrum of technological fields. Depending on the assembly conditions, polyelectrolyte complexes can acquire different macroscopic configurations such as dense precipitates, nanosized colloids and liquid coacervates. In the past 50 years, much progress has been achieved to understand the principles behind the phase separation induced by the interaction of two oppositely charged polyelectrolytes in aqueous solutions, especially for symmetric systems (systems in which both polyions have similar molecular weight and concentration). However, in recent years, the complexation of polyelectrolytes with alternative building blocks such as small charged molecules (multivalent inorganic species, oligopeptides, and oligoamines, among others) has gained attention in different areas. In this review, we discuss the physicochemical characteristics of the complexes formed by polyelectrolytes and multivalent small molecules, putting a special emphasis on their similarities with the well-known polycation-polyanion complexes. In addition, we analyze the potential of these complexes to act as versatile functional platforms in various technological fields, such as biomedicine and advanced materials engineering.
Collapse
Affiliation(s)
- Santiago E Herrera
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Maximiliano L Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), (UNRC, CONICET), Ruta Nacional 36 KM 601, 5800 Río Cuarto, Argentina.
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| |
Collapse
|
47
|
Pramanik S, Venkatraman S, Vaidyanathan VK. Development of engineered probiotics with tailored functional properties and their application in food science. Food Sci Biotechnol 2023; 32:453-470. [PMID: 36911322 PMCID: PMC9992677 DOI: 10.1007/s10068-023-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/27/2023] Open
Abstract
The potential health benefits of probiotics may not be cognized because of the substantial curtailment in their viability during food storage and passage through the gastrointestinal system. Intestinal flora composition, and resistance against pathogens are among the health benefits associated with probiotic consumption. In the gastric environment, pH 2.0, probiotics dramatically lose their viability during the transit through the gastrointestinal system. The challenge remains to maintain cell viability until it reaches the large intestine. In extreme conditions, such as a decrease in pH or an increase in temperature, encapsulation technology can enhance the viability of probiotics. Probiotic bacterial strains can be encapsulated in a variety of ways. The methods are broadly systematized into two categories, liquid and solid delivery systems. This review emphasizes the technology used in the research and commercial sectors to encapsulate probiotic cells while keeping them alive and the food matrix used to deliver these cells to consumers. Graphical abstract
Collapse
Affiliation(s)
- Shreyasi Pramanik
- Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India
| | - Swethaa Venkatraman
- Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India
| |
Collapse
|
48
|
Lipowsky R. Remodeling of Biomembranes and Vesicles by Adhesion of Condensate Droplets. MEMBRANES 2023; 13:223. [PMID: 36837726 PMCID: PMC9965763 DOI: 10.3390/membranes13020223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Condensate droplets are formed in aqueous solutions of macromolecules that undergo phase separation into two liquid phases. A well-studied example are solutions of the two polymers PEG and dextran which have been used for a long time in biochemical analysis and biotechnology. More recently, phase separation has also been observed in living cells where it leads to membrane-less or droplet-like organelles. In the latter case, the condensate droplets are enriched in certain types of proteins. Generic features of condensate droplets can be studied in simple binary mixtures, using molecular dynamics simulations. In this review, I address the interactions of condensate droplets with biomimetic and biological membranes. When a condensate droplet adheres to such a membrane, the membrane forms a contact line with the droplet and acquires a very high curvature close to this line. The contact angles along the contact line can be observed via light microscopy, lead to a classification of the possible adhesion morphologies, and determine the affinity contrast between the two coexisting liquid phases and the membrane. The remodeling processes generated by condensate droplets include wetting transitions, formation of membrane nanotubes as well as complete engulfment and endocytosis of the droplets by the membranes.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
49
|
Mitra S, Kundagrami A. Polyelectrolyte complexation of two oppositely charged symmetric polymers: A minimal theory. J Chem Phys 2023; 158:014904. [PMID: 36610965 DOI: 10.1063/5.0128904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interplay of Coulomb interaction energy, free ion entropy, and conformational elasticity is a fascinating aspect in polyelectrolytes (PEs). We develop a theory for complexation of two oppositely charged PEs, a process known to be the precursor to the formation of complex coacervates in PE solutions, to explore the underlying thermodynamics of complex formation, at low salts. The theory considers general degrees of solvent polarity and dielectricity within an implicit solvent model, incorporating a varying Coulomb strength. Explicit calculation of the free energy of complexation and its components indicates that the entropy of free counterions and salt ions and the Coulomb enthalpy of bound ion-pairs dictate the equilibrium of PE complexation. This helps decouple the self-consistent dependency of charge and size of the uncomplexed parts of the polyions, derive an analytical expression for charge, and evaluate the free energy components as functions of chain overlap. Complexation is observed to be driven by enthalpy gain at low Coulomb strengths, driven by entropy gain of released counterions but opposed by enthalpy loss due to reduction of ion-pairs at moderate Coulomb strengths, and progressively less favorable due to enthalpy loss at even higher Coulomb strengths. The total free energy of the system is found to decrease linearly with an overlap of chains. Thermodynamic predictions from our model are in good quantitative agreement with simulations in literature.
Collapse
Affiliation(s)
- Soumik Mitra
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Arindam Kundagrami
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
50
|
Lin YH, Wessén J, Pal T, Das S, Chan HS. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins. Methods Mol Biol 2023; 2563:51-94. [PMID: 36227468 DOI: 10.1007/978-1-0716-2663-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biomolecular condensates, physically underpinned to a significant extent by liquid-liquid phase separation (LLPS), are now widely recognized by numerous experimental studies to be of fundamental biological, biomedical, and biophysical importance. In the face of experimental discoveries, analytical formulations emerged as a powerful yet tractable tool in recent theoretical investigations of the role of LLPS in the assembly and dissociation of these condensates. The pertinent LLPS often involves, though not exclusively, intrinsically disordered proteins engaging in multivalent interactions that are governed by their amino acid sequences. For researchers interested in applying these theoretical methods, here we provide a practical guide to a set of computational techniques devised for extracting sequence-dependent LLPS properties from analytical formulations. The numerical procedures covered include those for the determination of spinodal and binodal phase boundaries from a general free energy function with examples based on the random phase approximation in polymer theory, construction of tie lines for multiple-component LLPS, and field-theoretic simulation of multiple-chain heteropolymeric systems using complex Langevin dynamics. Since a more accurate physical picture often requires comparing analytical theory against explicit-chain model predictions, a commonly utilized methodology for coarse-grained molecular dynamics simulations of sequence-specific LLPS is also briefly outlined.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Jonas Wessén
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tanmoy Pal
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|