1
|
Millette MA, Coutinho A, Prieto M, Salesse C. Role of the Palmitoyl Group and of the Amphipathic α Helix in the Membrane Binding of the C-Terminus of G-Protein Receptor Kinase 4α/β. Biochemistry 2025; 64:987-1005. [PMID: 39977231 DOI: 10.1021/acs.biochem.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Membrane binding of monotopic proteins can involve various post-translational modifications or a combination of some membrane-binding elements. For example, amphipathic α helices and palmitoylation could drive the membrane attachment of proteins. G-protein-coupled receptor kinases (GRKs) regulate the activity of G-protein-coupled receptors. Several members of the family of GRKs are acylated. Moreover, the C-terminus of GRK6 contains an amphipathic α helix and a palmitoyl group, which could also be the case for GRK4 isoforms. In our experiments, GRK4α/β-derived peptides of differing C-terminal lengths (Cter-GRK4α/β variants) were thus studied to discriminate the individual role of the palmitoyl group and amphipathic α helix of Cter-GRK4α/β in its membrane binding. The membrane binding of the Cter-GRK4α/β variants was studied by comparing their maximum insertion pressure (MIP) to lipid monolayers as well as their intrinsic fluorescence properties using large unilamellar vesicles. The MIP data show a higher level of binding of the palmitoylated longest GRK4α/β variant. Moreover, MIP measurements in the absence and presence of 15 mol % of the negatively charged phosphoserine demonstrated that the amphipathic α helix of Cter-GRK4α/β plays a major role in its membrane binding. Accordingly, partition studies of the Cter-GRK4α/β variants to membranes by fluorescence spectroscopy demonstrate the involvement of the palmitoyl group and the amphipathic α helix of the C-terminus of GRK4α/β in its membrane binding. Altogether, the data show that both the palmitoyl group and the amphipathic helix highly favor membrane binding of the C-terminus of GRK4α/β, which should facilitate the proper anchoring of GRK4α/β and phosphorylation of GPCRs.
Collapse
Affiliation(s)
- Marc-Antoine Millette
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Ana Coutinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
2
|
Mellouk A, Jaouen P, Ruel LJ, Lê M, Martini C, Moraes TF, El Bakkouri M, Lagüe P, Boisselier E, Calmettes C. POTRA domains of the TamA insertase interact with the outer membrane and modulate membrane properties. Proc Natl Acad Sci U S A 2024; 121:e2402543121. [PMID: 38959031 PMCID: PMC11252910 DOI: 10.1073/pnas.2402543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
The outer membrane (OM) of gram-negative bacteria serves as a vital organelle that is densely populated with OM proteins (OMPs) and plays pivotal roles in cellular functions and virulence. The assembly and insertion of these OMPs into the OM represent a fundamental process requiring specialized molecular chaperones. One example is the translocation and assembly module (TAM), which functions as a transenvelope chaperone promoting the folding of specific autotransporters, adhesins, and secretion systems. The catalytic unit of TAM, TamA, comprises a catalytic β-barrel domain anchored within the OM and three periplasmic polypeptide-transport-associated (POTRA) domains that recruit the TamB subunit. The latter acts as a periplasmic ladder that facilitates the transport of unfolded OMPs across the periplasm. In addition to their role in recruiting the auxiliary protein TamB, our data demonstrate that the POTRA domains mediate interactions with the inner surface of the OM, ultimately modulating the membrane properties. Through the integration of X-ray crystallography, molecular dynamic simulations, and biomolecular interaction methodologies, we located the membrane-binding site on the first and second POTRA domains. Our data highlight a binding preference for phosphatidylglycerol, a minor lipid constituent present in the OM, which has been previously reported to facilitate OMP assembly. In the context of the densely OMP-populated membrane, this association may serve as a mechanism to secure lipid accessibility for nascent OMPs through steric interactions with existing OMPs, in addition to creating favorable conditions for OMP biogenesis.
Collapse
Affiliation(s)
- Abdelkader Mellouk
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Paul Jaouen
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, centre hospitalier universitaire de Québec, Université Laval, Québec City, QCG1S 4L8, Canada
| | - Louis-Jacques Ruel
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec City, QCG1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Michel Lê
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Cyrielle Martini
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, ONM5G 1M1, Canada
| | - Majida El Bakkouri
- National Research Council Canada, Human Health Therapeutics, Montréal, QCH4P 2R2, Canada
| | - Patrick Lagüe
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec City, QCG1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Elodie Boisselier
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, centre hospitalier universitaire de Québec, Université Laval, Québec City, QCG1S 4L8, Canada
| | - Charles Calmettes
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| |
Collapse
|
3
|
Bacha K, Chemotti C, Monboisse JC, Robert A, Furlan AL, Smeralda W, Damblon C, Estager J, Brassart-Pasco S, Mbakidi JP, Pršić J, Bouquillon S, Deleu M. Encapsulation of Vitamin C by Glycerol-Derived Dendrimers, Their Interaction with Biomimetic Models of Stratum corneum and Their Cytotoxicity. Molecules 2022; 27:8022. [PMID: 36432124 PMCID: PMC9698622 DOI: 10.3390/molecules27228022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Vitamin C is one of the most sensitive cosmetic active ingredients. To avoid its degradation, its encapsulation into biobased carriers such as dendrimers is one alternative of interest. In this work, we wanted to evaluate the potential of two biobased glycerodendrimer families (GlyceroDendrimers-Poly(AmidoAmine) (GD-PAMAMs) or GlyceroDendrimers-Poly(Propylene Imine) (GD-PPIs)) as a vitamin C carrier for topical application. The higher encapsulation capacity of GD-PAMAM-3 compared to commercial PAMAM-3 and different GD-PPIs, and its absence of cytotoxicity towards dermal cells, make it a good candidate. Investigation of its mechanism of action was done by using two kinds of biomimetic models of stratum corneum (SC), lipid monolayers and liposomes. GD-PAMAM-3 and VitC@GD-PAMAM-3 (GD-PAMAM-3 with encapsulated vitamin C) can both interact with the lipid representatives of the SC lipid matrix, whichever pH is considered. However, only pH 5.0 is suggested to be favorable to release vitamin C into the SC matrix. Their binding to SC-biomimetic liposomes revealed only a slight effect on membrane permeability in accordance with the absence of cytotoxicity but an increase in membrane rigidity, suggesting a reinforcement of the SC barrier property. Globally, our results suggest that the dendrimer GD-PAMAM-3 could be an efficient carrier for cosmetic applications.
Collapse
Affiliation(s)
- Katia Bacha
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, F-51687 Reims, France
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Catherine Chemotti
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Jean-Claude Monboisse
- Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UMR CNRS/URCA 7369 (MEDyC), UFR Médecine, Reims Champagne Ardenne University, 51 Rue Cognacq Jay, F-51095 Reims, France
| | - Anthony Robert
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, F-51687 Reims, France
| | - Aurélien L. Furlan
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Willy Smeralda
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Christian Damblon
- Structural Biological Chemistry Laboratory, MolSys Research Unity, University of Liege, 11, Allée du six Août, 4000 Liège, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet, 45-Zone Industrielle C, B 7180 Seneffe, Belgium
| | - Sylvie Brassart-Pasco
- Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UMR CNRS/URCA 7369 (MEDyC), UFR Médecine, Reims Champagne Ardenne University, 51 Rue Cognacq Jay, F-51095 Reims, France
| | - Jean-Pierre Mbakidi
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, F-51687 Reims, France
| | - Jelena Pršić
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Sandrine Bouquillon
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, F-51687 Reims, France
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| |
Collapse
|
4
|
Unveiling the mono-rhamnolipid and di-rhamnolipid mechanisms of action upon plasma membrane models. J Colloid Interface Sci 2022; 624:579-592. [DOI: 10.1016/j.jcis.2022.05.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
|
5
|
Millette MA, Roy S, Salesse C. Farnesylation and lipid unsaturation are critical for the membrane binding of the C-terminal segment of G-Protein Receptor Kinase 1. Colloids Surf B Biointerfaces 2022; 211:112315. [PMID: 35026543 DOI: 10.1016/j.colsurfb.2021.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Many proteins are modified by the covalent addition of different types of lipids, such as myristoylation, palmitoylation and prenylation. Lipidation is expected to promote membrane association of proteins. Visual phototransduction involves many lipid-modified proteins. The G-Protein-coupled receptor of rod photoreceptors, rhodopsin, is inactivated by G-Protein-coupled Receptor Kinase 1 (GRK1). The C-terminus of GRK1 is farnesylated and its truncation has been shown to result in a very high decrease of its enzymatic activity, most likely because of the loss of its membrane localization. Little information is available on the membrane binding of GRK1 as well as of most prenylated proteins. Measurements of the membrane binding of the non-farnesylated and farnesylated C-terminal segment of GRK1 were thus performed using lipids typical of those found in rod outer segment disk membranes. Their random coil secondary structure was determined using circular dichroism and infrared spectroscopy. The non-farnesylated C-terminal segment of GRK1 has no surface activity. In contrast, the farnesylated C-terminal segment of GRK1 shows a particularly strong binding to lipid monolayers bearing at least one unsaturated fatty acyl chain. No binding is observed in the presence of monolayers of saturated phospholipids, in agreement with the low affinity of farnesylated Ras proteins for lipids in the liquid-ordered state. Altogether, these data demonstrate that the farnesyl group of the C-terminal segment of GRK1 is mandatory for its membrane binding, which is favored by particular lipids or lipid mixtures. This information will also be useful for the understanding of the membrane binding of other prenylated proteins.
Collapse
Affiliation(s)
- Marc-Antoine Millette
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Sarah Roy
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
6
|
Wang Y, Li H, Cao H, Zhang Q, Wang G, Yuan J, Lu J. Layer-by-Layer Assembly of Monolayer Films Precisely Controlled by LB Technology to Realize Low-Energy Consumption and High-Stability Ternary Data-Storage Devices. Chem Asian J 2021; 16:3951-3956. [PMID: 34599643 DOI: 10.1002/asia.202101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Indexed: 11/10/2022]
Abstract
Organic semiconductor devices with low energy consumption and excellent stability are highly desirable. Controlling the intermolecular alignment orientation by designing the molecular structure or optimization of the film preparation process is an alternative way to achieve this goal. In this paper, a new idea was proposed to realize the formation of an aligned monomolecular layer and multimolecular layer thin films on the electrode substrate by controlling the surface pressure of molecular layer on the liquid surface by LB technology. An amphiphilic π-conjugated D-A molecule was synthesized, and the influence of spin coating and LB technology on intermolecular ordered stacking in the film and the electrical memory performance were investigated. The results demonstrated that the film fabricated by LB technology has some advantages compared with that fabricated by spin-coating method, such as higher crystallinity, lower surface roughness and better-organized monomolecular and multimolecular layer, which significantly promoted the performance of the electrical memory device with lower power consumption and longer stability.
Collapse
Affiliation(s)
- Yuxiang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Huan Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qijian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Guan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Junwei Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
7
|
Hu R, Cui R, Tang Q, Lan D, Wang F, Wang Y. Enhancement of Phospholipid Binding and Catalytic Efficiency of Streptomyces klenkii Phospholipase D by Increasing Hydrophobicity of the Active Site Loop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11110-11120. [PMID: 34516129 DOI: 10.1021/acs.jafc.1c04078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mechanism of active site loops of Streptomyces phospholipase D (PLD) binding to the lipid-water interface for catalytic reactions still remains elusive. A flexible loop (residues 376-382) in the active site of Streptomyces klenkii PLD (SkPLD) is conserved within PLDs in most of the Streptomyces species. The residue Ser380 was found to be essential for the enzyme's adsorption to the interface and its substrate recognition. The S380V mutant showed a 4.8 times higher catalytic efficiency and nearly seven times higher adsorption equilibrium coefficient compared to the wild-type SkPLD. The monolayer film technique has confirmed that the substitution of Ser380 with valine in the loop exhibited positive interaction between the enzyme and PCs with different acyl chain lengths. The results of the interfacial binding properties indicated that the S380V mutant might display suitable phosphatidylserine synthesis activity. The present study will be helpful to explain the role of residue 380 in the active site loops of Streptomyces PLD.
Collapse
Affiliation(s)
- Rongkang Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| | - Ruiguo Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| | - Qingyun Tang
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| | - Fanghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| |
Collapse
|
8
|
Yan X, Kumar K, Miclette Lamarche R, Youssef H, Shaw GS, Marcotte I, DeWolf CE, Warschawski DE, Boisselier E. Interactions between the Cell Membrane Repair Protein S100A10 and Phospholipid Monolayers and Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9652-9663. [PMID: 34339205 DOI: 10.1021/acs.langmuir.1c00342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein S100A10 participates in different cellular mechanisms and has different functions, especially at the membrane. Among those, it forms a ternary complex with annexin A2 and the C-terminal of AHNAK and then joins the dysferlin membrane repair complex. Together, they act as a platform enabling membrane repair. Both AHNAK and annexin A2 have been shown to have membrane binding properties. However, the membrane binding abilities of S100A10 are not clear. In this paper, we aimed to study the membrane binding of S100A10 in order to better understand its role in the cell membrane repair process. S100A10 was overexpressed by E. coli and purified by affinity chromatography. Using a Langmuir monolayer as a model membrane, the binding parameters and ellipsometric angles of the purified S100A10 were measured using surface tensiometry and ellipsometry, respectively. Phosphorus-31 solid-state nuclear magnetic resonance spectroscopy was also used to study the interaction of S100A10 with lipid bilayers. In the presence of a lipid monolayer, S100A10 preferentially interacts with unsaturated phospholipids. In addition, its behavior in the presence of a bilayer model suggests that S100A10 interacts more with the negatively charged polar head groups than the zwitterionic ones. This work offers new insights on the binding of S100A10 to different phospholipids and advances our understanding of the parameters influencing its membrane behavior.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec City, QC, G1S 4L8 Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, CHU de Québec, Quebec City, QC, G1S 4L8 Canada
| | - Kiran Kumar
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
| | - Renaud Miclette Lamarche
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Hala Youssef
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Gary S Shaw
- Departement of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1 Canada
| | - Isabelle Marcotte
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
| | - Christine E DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Dror E Warschawski
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École Normale Supérieure, PSL University, Paris, 75 005 France
| | - Elodie Boisselier
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec City, QC, G1S 4L8 Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, CHU de Québec, Quebec City, QC, G1S 4L8 Canada
| |
Collapse
|
9
|
Pereira MS, Maximino MD, Martin CS, Aoki PHB, Oliveira ON, Alessio P. Lipid-matrix effects on tyrosinase immobilization in Langmuir and Langmuir-Blodgett films. AN ACAD BRAS CIENC 2021; 93:e20200019. [PMID: 33787687 DOI: 10.1590/0001-3765202120200019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022] Open
Abstract
The immobilization of the enzyme tyrosinase (Tyr) in lipid matrices can be explored to produce biosensors for detecting polyphenols, which is relevant for the food industry. Herein, we shall demonstrate the importance of the lipid composition to immobilize the enzyme tyrosinase in Langmuir-Blodgett (LB) films. Tyr could be incorporated into Langmuir monolayers of arachidic acid (AA), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG), having as the main effect an expansion in the monolayers. Results from polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) pointed to electrostatic interactions between the charged residues of Try and the lipid headgroups, in addition to changes in the order of lipid chains. The interaction between Tyr and DPPC in Langmuir monolayers can be correlated with the superior performance of DPPC/Tyr LB films used as biosensors to detect catechol by cyclic voltammetry. The molecular-level interactions assessed via PM-IRRAS are therefore believed to drive an immobilization process for Tyr in the lipid LB matrix and may serve as a general criterion to identify matrices that preserve enzyme activity.
Collapse
Affiliation(s)
- Matheus S Pereira
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| | - Mateus D Maximino
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| | - Cibely S Martin
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| | - Pedro H B Aoki
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Letras, Departamento de Biotecnologia, Av. Dom Antônio, 2100, Parque Universitário, Caixa Postal 65, 19806-900 Assis, SP, Brazil
| | - Osvaldo N Oliveira
- Universidade de São Paulo/USP, Instituto de Física de São Carlos, Av. Trabalhador São Carlense, 400, Parque Arnold Schimidt, Caixa Postal 369, 13566-590 São Carlos, SP, Brazil
| | - Priscila Alessio
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| |
Collapse
|
10
|
Bernier SC, Millette MA, Roy S, Cantin L, Coutinho A, Salesse C. Structural information and membrane binding of truncated RGS9-1 Anchor Protein and its C-terminal hydrophobic segment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183566. [PMID: 33453187 DOI: 10.1016/j.bbamem.2021.183566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 01/19/2023]
Abstract
Visual phototransduction takes place in photoreceptor cells. Light absorption by rhodopsin leads to the activation of transducin as a result of the exchange of its GDP for GTP. The GTP-bound ⍺-subunit of transducin then activates phosphodiesterase (PDE), which in turn hydrolyzes cGMP leading to photoreceptor hyperpolarization. Photoreceptors return to the dark state upon inactivation of these proteins. In particular, PDE is inactivated by the protein complex R9AP/RGS9-1/Gβ5. R9AP (RGS9-1 anchor protein) is responsible for the membrane anchoring of this protein complex to photoreceptor outer segment disk membranes most likely by the combined involvement of its C-terminal hydrophobic domain as well as other types of interactions. This study thus aimed to gather information on the structure and membrane binding of the C-terminal hydrophobic segment of R9AP as well as of truncated R9AP (without its C-terminal domain, R9AP∆TM). Circular dichroism and infrared spectroscopic measurements revealed that the secondary structure of R9AP∆TM mainly includes ⍺-helical structural elements. Moreover, intrinsic fluorescence measurements of native R9AP∆TM and individual mutants lacking one tryptophan demonstrated that W79 is more buried than W173 but that they are both located in a hydrophobic environment. This method also revealed that membrane binding of R9AP∆TM does not involve regions near its tryptophan residues, while infrared spectroscopy validated its binding to lipid vesicles. Additional fluorescence measurements showed that the C-terminal segment of R9AP is membrane embedded. Maximum insertion pressure and synergy data using Langmuir monolayers suggest that interactions with specific phospholipids could be involved in the membrane binding of R9AP∆TM.
Collapse
Affiliation(s)
- Sarah C Bernier
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de Médecine, and Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Marc-Antoine Millette
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de Médecine, and Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Sarah Roy
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de Médecine, and Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Line Cantin
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de Médecine, and Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Ana Coutinho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Chemistry and Biochemistry, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de Médecine, and Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
11
|
Krajewska M, Dopierała K, Wydro P, Broniatowski M, Prochaska K. Interfacial complex of α-lactalbumin with oleic acid: effect of protein concentration and PM-IRRAS study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
da Rocha Rodrigues R, da Silva RLCG, Caseli L, Péres LO. Conjugated polymers as Langmuir and Langmuir-Blodgett films: Challenges and applications in nanostructured devices. Adv Colloid Interface Sci 2020; 285:102277. [PMID: 32992077 DOI: 10.1016/j.cis.2020.102277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/01/2022]
Abstract
Initially developed for classic systems composed of fatty acids and phospholipids, the Langmuir and Langmuir-Blodgett (LB) techniques allow the fabrication of nanometer-scale devices at self-assembly interfaces with high control over the thickness and molecular architecture. Their application in the research and production of new plastic materials has grown considerably over the past few decades due to the efficiency of conjugated polymers (CPs) for the production of light-emitting diodes, flexible displays, solar cells, and other photoelectronic devices. The structuring of polymers at different interfaces is not trivial as this class of macromolecules can undergo through different processes of folding/unfolding, which hinders the formation of stable Langmuir monolayers and, consequently, the production of Langmuir-Blodgett films. With these ideas in mind, the present article aims to review a series of elements related to the formation of stable Langmuir and Langmuir-Blodgett films of CPs, especially those based on poly(phenylene vinylene)s, polyfluorenes, and polythiophenes. This review is divided into two parts where we first discuss the formation of neat CP films, and then the strategies for the formation of stable CP films based on the co-immobilization with fatty acids, other polymers, and enzymes as mixed films.
Collapse
Affiliation(s)
- Rebeca da Rocha Rodrigues
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | | | - Luciano Caseli
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo, Brazil.
| | - Laura Oliveira Péres
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
13
|
Yan X, Noël F, Marcotte I, DeWolf CE, Warschawski DE, Boisselier E. AHNAK C-Terminal Peptide Membrane Binding-Interactions between the Residues 5654-5673 of AHNAK and Phospholipid Monolayers and Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:362-369. [PMID: 31825630 DOI: 10.1021/acs.langmuir.9b02973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dysferlin membrane repair complex contains a small complex, S100A10-annexin A2, which initiates membrane repair by recruiting the protein AHNAK to the membrane, where it interacts via binding sites in the C-terminal region. However, no molecular data are available for the membrane binding of the various proteins involved in this complex. Therefore, the present study investigated the membrane binding of AHNAK to elucidate its role in the cell membrane repair process. A chemically synthesized peptide (pAHNAK), comprising the 20 amino acids in the C-terminal domain of AHNAK, was applied to Langmuir monolayer models, and the binding parameters and insertion angles were measured with surface tensiometry and ellipsometry. The interaction of pAHNAK with lipid bilayers was studied using 31P solid-state nuclear magnetic resonance. pAHNAK preferentially and strongly interacted with phospholipids that comprised negatively charged polar head groups with unsaturated lipids. This finding provides a better understanding of AHNAK membrane behavior and the parameters that influence its function in membrane repair.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Ophthalmology, Faculty of Medicine , Université Laval , Quebec City , QC G1V 0A6 , Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement , CHU de Québec , Quebec City , G1S 4L8 , Canada
| | - Francis Noël
- Department of Ophthalmology, Faculty of Medicine , Université Laval , Quebec City , QC G1V 0A6 , Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement , CHU de Québec , Quebec City , G1S 4L8 , Canada
| | - Isabelle Marcotte
- Department of Chemistry, Faculty of Sciences , Université du Québec à Montréal , Montreal , H2X 2J6 , Canada
| | - Christine E DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research , Concordia University , Montreal , H4B 1R6 , Canada
| | - Dror E Warschawski
- Department of Chemistry, Faculty of Sciences , Université du Québec à Montréal , Montreal , H2X 2J6 , Canada
- UMR 7099, CNRS-Université Paris Diderot, Institut de Biologie Physico-Chimique , Paris 75005 , France
| | - Elodie Boisselier
- Department of Ophthalmology, Faculty of Medicine , Université Laval , Quebec City , QC G1V 0A6 , Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement , CHU de Québec , Quebec City , G1S 4L8 , Canada
| |
Collapse
|
14
|
Krajewska M, Dopierała K, Prochaska K. Lipid-Protein Interactions in Langmuir Monolayers under Dynamically Varied Conditions. J Phys Chem B 2019; 124:302-311. [PMID: 31825621 DOI: 10.1021/acs.jpcb.9b10351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the Langmuir monolayer technique, a single layer of molecules is formed on a water subphase. This approach was used to mimic the antitumoricidal lipid-protein complex of oleic acid and bovine α-lactalbumin called the BAMLET complex. Our previous studies have shown that at the interface, the BAMLET complex is stabilized by the hydrophobic forces supported by the hydrogen bonds. This study provides an insight into the influence of calcium ions and the experimental conditions (temperature and subphase pH) on the stability of the complex at the interface. The Langmuir technique was expanded using a dosing pump to exchange the subphase and deliver additional substances to the system. We investigated the interactions between oleic acid monolayer and α-lactalbumin in the presence of Ca2+ in the bulk and the effect of varied experimental conditions on the complex stability. The role of calcium ions in this system is important because (in addition to low pH and relatively high temperature) it affects the conformational changes within the protein molecule and facilitates the transition of α-lactalbumin into the molten globule state. A partially unfolded state is required to form the BAMLET complex. We found that the mixed monolayer spread at the interface is stable despite drastic changes in the process conditions and remains stable even after the subphase exchange. This study of molecular interactions explored by the Langmuir technique with peristaltic pump enabled to understand the role of Ca2+ in BAMLET complex formation.
Collapse
Affiliation(s)
- Martyna Krajewska
- Institute of Chemical Technology and Engineering , Poznan University of Technology , Berdychowo 4 , 60-965 Poznań , Poland
| | - Katarzyna Dopierała
- Institute of Chemical Technology and Engineering , Poznan University of Technology , Berdychowo 4 , 60-965 Poznań , Poland
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering , Poznan University of Technology , Berdychowo 4 , 60-965 Poznań , Poland
| |
Collapse
|
15
|
Study of mucin interaction with model phospholipid membrane at the air–water interface. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Socrier L, Rosselin M, Gomez Giraldo AM, Chantemargue B, Di Meo F, Trouillas P, Durand G, Morandat S. Nitrone-Trolox conjugate as an inhibitor of lipid oxidation: Towards synergistic antioxidant effects. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1489-1501. [PMID: 31247162 DOI: 10.1016/j.bbamem.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
Abstract
Free radical scavengers like α-phenyl-N-tert-butylnitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) have been widely used as protective agents in various biomimetic and biological models. A series of three amphiphilic Trolox and PBN derivatives have been designed by adding to those molecules a perfluorinated chain as well as a sugar group in order to render them amphiphilic. In this work, we have studied the interactions between these derivatives and lipid membranes to understand how they influence their ability to prevent membrane lipid oxidation. We showed the derivatives better inhibited the AAPH-induced oxidation of 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC) small unilamellar vesicles (SUVs) than the parent compounds. One of the derivatives, bearing both PBN and Trolox moieties on the same fluorinated carrier, exhibited a synergistic antioxidant effect by delaying the oxidation process. We next investigated the ability of the derivatives to interact with DLiPC membranes in order to better understand the differences observed regarding the antioxidant properties. Surface tension and fluorescence spectroscopy experiments revealed the derivatives exhibited the ability to form monolayers at the air/water interface and spontaneously penetrated lipid membranes, underlying pronounced hydrophobic properties in comparison to the parent compounds. We observed a correlation between the hydrophobic properties, the depth of penetration and the antioxidant properties and showed that the location of these derivatives in the membrane is a key parameter to rationalize their antioxidant efficiency. Molecular dynamics (MD) simulations supported the understanding of the mechanism of action, highlighting various key physical-chemical descriptors.
Collapse
Affiliation(s)
- Larissa Socrier
- Sorbonne Universités, Université de technologie de Compiègne, CNRS, Génie Enzymatique et Cellulaire, FRE 3580, Centre de recherches Royallieu, CS 60319, 60203, Compiègne cedex, France.
| | - Marie Rosselin
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Avignon Cedex 9, France
| | - Ana Milena Gomez Giraldo
- Sorbonne Universités, Université de technologie de Compiègne, CNRS, Génie Enzymatique et Cellulaire, FRE 3580, Centre de recherches Royallieu, CS 60319, 60203, Compiègne cedex, France
| | - Benjamin Chantemargue
- INSERM, Univ. Limoges, IPPRITT, U1248, Faculty of Pharmacy, 2 rue du Dr Marcland, 87025 Limoges, France; RCPTM, Palacký University, Faculty of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Florent Di Meo
- INSERM, Univ. Limoges, IPPRITT, U1248, Faculty of Pharmacy, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Patrick Trouillas
- INSERM, Univ. Limoges, IPPRITT, U1248, Faculty of Pharmacy, 2 rue du Dr Marcland, 87025 Limoges, France; RCPTM, Palacký University, Faculty of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Avignon Cedex 9, France
| | - Sandrine Morandat
- Sorbonne Universités, Université de technologie de Compiègne, CNRS, Génie Enzymatique et Cellulaire, FRE 3580, Centre de recherches Royallieu, CS 60319, 60203, Compiègne cedex, France
| |
Collapse
|
17
|
Huang W, Lan D, Popowicz GM, Zak KM, Zhao Z, Yuan H, Yang B, Wang Y. Structure and characterization of
Aspergillus fumigatus
lipase B with a unique, oversized regulatory subdomain. FEBS J 2019; 286:2366-2380. [DOI: 10.1111/febs.14814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Weiqian Huang
- School of Bioscience and Bioengineering South China University of Technology Guangzhou China
| | - Dongming Lan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | | | - Krzysztof M. Zak
- Institute of Structural Biology Helmholtz Zentrum München Neuherberg Germany
| | - Zexin Zhao
- School of Bioscience and Bioengineering South China University of Technology Guangzhou China
| | - Hong Yuan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Bo Yang
- School of Bioscience and Bioengineering South China University of Technology Guangzhou China
| | - Yonghua Wang
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| |
Collapse
|
18
|
Hoareau E, Belley N, Klinker K, Desbat B, Boisselier É. Characterization of neurocalcin delta membrane binding by biophysical methods. Colloids Surf B Biointerfaces 2019; 174:291-299. [DOI: 10.1016/j.colsurfb.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 01/19/2023]
|
19
|
Dopierała K, Krajewska M, Prochaska K. Binding of α-lactalbumin to oleic acid monolayer and its relevance to formation of HAMLET-like complexes. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Alvares DS, Viegas TG, Ruggiero Neto J. The effect of pH on the lytic activity of a synthetic mastoparan-like peptide in anionic model membranes. Chem Phys Lipids 2018; 216:54-64. [PMID: 30253128 DOI: 10.1016/j.chemphyslip.2018.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022]
Abstract
Peptide sequences containing acidic and basic residues could potentially have their net charges modulated by bulk pH with a possible influence on their lytic activity in lipid vesicles. The present study reports on a biophysical investigation of these modulatory effects on the synthetic mastoparan-like peptide L1A (IDGLKAIWKKVADLLKNT-NH2). At pH 10.0 L1A was 6 times more efficient in lysing large anionic (1-palmitoyl-oleoyl-sn-glycero-3-phosphocholine (POPC):1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG)/(8:2)) unilamellar vesicles (LUVs) than at pH 4.0. Despite the reduction of 60% in the L1A net charge in basic pH its affinity for this vesicle was almost insensitive to pH. On the other hand, L1A insertion into monolayers was dramatically influenced by subphase condition, showing that, in the neutral and basic subphases, the peptide induced surface pressure changes that surpassed the membrane lateral pressure, being able to destabilize a bilayer structure. In addition, in the basic subphase, visualization of the compression isotherms of co-spread 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC):POPG (8:2) + 4.8 mol% L1A showed that the peptide induced significant changes in solid lipid domains, indicating its capability in perturbing lipid-packing. An insight into L1A lytic activity was also obtained in giant unilamellar vesicles (GUVs) using phase contrast microscopy. The suppression of L1A lytic activity at acidic pH is in keeping with its lower insertion capability and ability to disturb the lipid monolayer. The lytic activity observed under neutral and basic conditions showed a quick and stochastic leakage following a lag-time. The permeability and the leakage-time averaged over at least 14 single GUVs were dependent on the bulk condition. At basic pH, permeability is higher and quicker than in a neutral medium in good accordance with the lipid-packing perturbation.
Collapse
Affiliation(s)
- Dayane S Alvares
- UNESP - São Paulo State University, IBILCE, Department of Physics, São José do Rio Preto, SP, Brazil
| | - Taisa G Viegas
- UNESP - São Paulo State University, IBILCE, Department of Physics, São José do Rio Preto, SP, Brazil
| | - João Ruggiero Neto
- UNESP - São Paulo State University, IBILCE, Department of Physics, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
21
|
Function of C-terminal peptides on enzymatic and interfacial adsorption properties of lipase from Gibberella zeae. Biochim Biophys Acta Gen Subj 2018; 1862:2623-2631. [PMID: 30025859 DOI: 10.1016/j.bbagen.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND The crystal structure of lipase from Gibberella zeae (GZEL) indicates that its C-terminal extension is composed of a loop and a α-helix. This structure is unique, possibly providing novel evidence on lipase mechanisms. METHODS Two C-terminally truncated mutants (GZEL-Δ(α-helix) and GZEL-Δ(α-helix+loop)) were constructed. The role of these secondary structure segments on enzymatic activities and interfacial binding properties of GZEL was investigated by using conventional pH-stat method and monomolecular film techniques. In addition, inactive variants (Ser144Ala) of wild-type GZEL and two truncated mutants were constructed and produced specifically for interfacial binding experiments. RESULTS Compared to the wild-type GZEL, lipase and phospholipase activities were significantly decreased in the two mutants. Deletion of the α-helix had great influence on the lipase activity of GZEL, resulting in residual 7.3% activity; the additional deletion of the loop led to 8.1% lipase activity. As for the phospholipase function, residual activities of 63.0% and 35.4% were maintained for GZEL-Δ(α-helix) and GZEL-Δ(α-helix+loop), respectively. Findings obtained with monomolecular film experiments further indicated that the reduction in phospholipase activity occurred with the anionic phospholipid as substrate, but was not seen with zwitterionic phospholipid. Results of the maximum insertion pressure, synergy factor and binding kinetic parameters documented that the α-helix structure of GZEL strongly influence the binding and insertion of enzyme to the phospholipid monolayer. Moreover, the interfacial binding function of α-helix was partly conformed by connecting to the C-terminal of Aspergillus oryzae lipase. GENERAL SIGNIFICANCE Our results provide important information on the understanding of the structure-function relationship of GZEL.
Collapse
|
22
|
Kerr D, Tietjen GT, Gong Z, Tajkhorshid E, Adams EJ, Lee KYC. Sensitivity of peripheral membrane proteins to the membrane context: A case study of phosphatidylserine and the TIM proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2126-2133. [PMID: 29920237 DOI: 10.1016/j.bbamem.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022]
Abstract
There is a diverse class of peripheral membrane-binding proteins that specifically bind phosphatidylserine (PS), a lipid that signals apoptosis or cell fusion depending on the membrane context of its presentation. PS-receptors are specialized for particular PS-presenting pathways, indicating that they might be sensitive to the membrane context. In this review, we describe a combination of thermodynamic, structural, and computational techniques that can be used to investigate the mechanisms underlying this sensitivity. As an example, we focus on three PS-receptors of the T-cell Immunoglobulin and Mucin containing (TIM) protein family, which we have previously shown to differ in their sensitivity to PS surface density.
Collapse
Affiliation(s)
- Daniel Kerr
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America
| | - Gregory T Tietjen
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America
| | - Zhiliang Gong
- Department of Chemistry, The University of Chicago, Chicago, IL, United States of America
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology and Committee on Immunology, The University of Chicago, Chicago, IL, United States of America
| | - Ka Yee C Lee
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America; Department of Chemistry, The University of Chicago, Chicago, IL, United States of America; James Franck Institute, The University of Chicago, Chicago, IL, United States of America.
| |
Collapse
|
23
|
The hydrophobic region of the Leishmania peroxin 14: requirements for association with a glycosome mimetic membrane. Biochem J 2018; 475:511-529. [DOI: 10.1042/bcj20170746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Protein import into the Leishmania glycosome requires docking of the cargo-loaded peroxin 5 (PEX5) receptor to the peroxin 14 (PEX14) bound to the glycosome surface. To examine the LdPEX14–membrane interaction, we purified L. donovani promastigote glycosomes and determined the phospholipid and fatty acid composition. These membranes contained predominately phosphatidylethanolamine, phosphatidylcholine, and phosphatidylglycerol (PG) modified primarily with C18 and C22 unsaturated fatty acid. Using large unilamellar vesicles (LUVs) with a lipid composition mimicking the glycosomal membrane in combination with sucrose density centrifugation and fluorescence-activated cell sorting technique, we established that the LdPEX14 membrane-binding activity was dependent on a predicted transmembrane helix found within residues 149–179. Monolayer experiments showed that the incorporation of PG and phospholipids with unsaturated fatty acids, which increase membrane fluidity and favor a liquid expanded phase, facilitated the penetration of LdPEX14 into biological membranes. Moreover, we demonstrated that the binding of LdPEX5 receptor or LdPEX5–PTS1 receptor–cargo complex was contingent on the presence of LdPEX14 at the surface of LUVs.
Collapse
|
24
|
Rosilio V. How Can Artificial Lipid Models Mimic the Complexity of Molecule–Membrane Interactions? ACTA ACUST UNITED AC 2018. [DOI: 10.1016/bs.abl.2017.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Alvares DS, Viegas TG, Ruggiero Neto J. Lipid-packing perturbation of model membranes by pH-responsive antimicrobial peptides. Biophys Rev 2017; 9:669-682. [PMID: 28853007 PMCID: PMC5662038 DOI: 10.1007/s12551-017-0296-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
The indiscriminate use of conventional antibiotics is leading to an increase in the number of resistant bacterial strains, motivating the search for new compounds to overcome this challenging problem. Antimicrobial peptides, acting only in the lipid phase of membranes without requiring specific membrane receptors as do conventional antibiotics, have shown great potential as possible substituents of these drugs. These peptides are in general rich in basic and hydrophobic residues forming an amphipathic structure when in contact with membranes. The outer leaflet of the prokaryotic cell membrane is rich in anionic lipids, while the surface of the eukaryotic cell is zwitterionic. Due to their positive net charge, many of these peptides are selective to the prokaryotic membrane. Notwithstanding this preference for anionic membranes, some of them can also act on neutral ones, hampering their therapeutic use. In addition to the electrostatic interaction driving peptide adsorption by the membrane, the ability of the peptide to perturb lipid packing is of paramount importance in their capacity to induce cell lysis, which is strongly dependent on electrostatic and hydrophobic interactions. In the present research, we revised the adsorption of antimicrobial peptides by model membranes as well as the perturbation that they induce in lipid packing. In particular, we focused on some peptides that have simultaneously acidic and basic residues. The net charges of these peptides are modulated by pH changes and the lipid composition of model membranes. We discuss the experimental approaches used to explore these aspects of lipid membranes using lipid vesicles and lipid monolayer as model membranes.
Collapse
Affiliation(s)
- Dayane S Alvares
- Department of Physics, UNESP - São Paulo State University, IBILCE, R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil
| | - Taisa Giordano Viegas
- Department of Physics, UNESP - São Paulo State University, IBILCE, R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil
| | - João Ruggiero Neto
- Department of Physics, UNESP - São Paulo State University, IBILCE, R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil.
| |
Collapse
|