1
|
Mao H, Zhang J, Wen L, Tan L, Liu Y, Yang J, Qin Z, Zhang L, Zhai Y, Chen Y. Controlled Solution Flow via Patterned Meniscus Assist for Elongated Exciton Diffusion Length to Approaching 20% Efficiency in Pseudo-Planar Heterojunction Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2505266. [PMID: 40391636 DOI: 10.1002/adma.202505266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/29/2025] [Indexed: 05/22/2025]
Abstract
Precisely controlling the ideal vertical phase morphology of blade-coated pseudo-planar heterojunction (PPHJ) organic photovoltaics presents a key challenge due to Marangoni flow and coffee-ring effect, which further limits large-area film uniformity and shortens exciton diffusion length. Here, the patterned meniscus assist (PMA) strategy is used to stretch polymer chains and construct regular micropatterns to facilitate donor/acceptor inter-penetration, resulting in a high-performance printable PPHJ device with extended exciton diffusion length (from ≈45 to ≈56 nm). More importantly, micropatterns can mitigate Marangoni flow and promote film uniformity by enhancing solution flow. Consequently, the PPHJ device via PMA strategy exhibits one of the highest power conversion efficiencies (PCE) of 19.91% (certified as 19.63%) for the D18/BO-4Cl:L8-BO ternary system. Furthermore, the enlarged-area (1 and 16.94 cm2) devices show competitive PCEs of 18.90%/17.05% with one of the minimum PCE losses (5.07%/14.36%) during area expansion. This PMA strategy provides a feasible guiding avenue for realizing ideal active layer morphology to obtain large-scale, high-efficiency PPHJ devices.
Collapse
Affiliation(s)
- Houdong Mao
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jiayou Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Lin Wen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yuhan Liu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081, China
| | - Jihui Yang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081, China
| | - Zhao Qin
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lifu Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yaxin Zhai
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| |
Collapse
|
2
|
Zhao Y, Sheng Q, Ke S, Wu R, He L, Ren X, Peng B, Li H. Direct Solution Deposition of Large-Area Non-Solvated Fullerene Single-Crystal Films for High-Performance n-Type Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404770. [PMID: 39105335 DOI: 10.1002/smll.202404770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Indexed: 08/07/2024]
Abstract
Fullerene (C60) crystals have attracted considerable attention in the field of optoelectronic devices owing to their excellent performance as n-type semiconductor material. However, a challenge still remains unbeaten as to the continuous crystallization of non-solvated C60 single-crystal films with high coverage and uniform alignment using low-cost solution techniques. Here, a facile bar coating method is used to prepare ribbon-shaped non-solvated C60 crystals with a large area (up to centimeters) and high coverage (>95%) by precisely controlling the crystallization process from specific solvents. Benefiting from the non-solvated crystalline structure, well-distributed thickness, uniform morphological alignment, and crystallographic orientation, organic field-effect transistors fabricated from the C60 single-crystal films exhibit a high average electron mobility of 2.28 cm2 V-1s-1, along with the coefficient of variance (CV) as small as 13.6%. This efficient manufacturing method will lay a strong foundation for C60 single-crystal films to fit into the future high-performance integrated optoelectronic application.
Collapse
Affiliation(s)
- Yujie Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qiuyue Sheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shifeng Ke
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ruihan Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lihua He
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Xiaochen Ren
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Boyu Peng
- State Key Laboratory (SKL) of Biobased Transportation Fuel Technology, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
3
|
Gaurav KV, Rai H, Singh KRB, Sharma S, Ando Y, Pandey SS. Clarifying the Dominant Role of Crystallinity and Molecular Orientation in Differently Processed Thin Films of Regioregular Poly(3-hexylthiophene). MICROMACHINES 2024; 15:677. [PMID: 38930647 PMCID: PMC11205662 DOI: 10.3390/mi15060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Conjugated polymers (CPs) offer the potential for sustainable semiconductor devices due to their low cost and inherent molecular self-assembly. Enhanced crystallinity and molecular orientation in thin films of solution-processable CPs have significantly improved organic electronic device performance. In this work, three methods, namely spin coating, dip coating, and unidirectional floating-film transfer method (UFTM), were utilized with their parametric optimization for fabricating RR-P3HT films. These films were then utilized for their characterization via optical and microstructural analysis to elucidate dominant roles of molecular orientation and crystallinity in controlling charge transport in organic field-effect transistors (OFETs). OFETs fabricated by RR-P3HT thin films using spin coating and dip coating displayed field-effect mobility (μ) of 8.0 × 10-4 cm2V-1s-1 and 1.3 × 10-3 cm2V-1s-1, respectively. This two-time enhancement in µ for dip-coated films was attributed to its enhanced crystallinity. Interestingly, UFTM film-based OFETs demonstrated μ of 7.0 × 10-2 cm2V-1s-1, >100 times increment as compared to its spin-coated counterpart. This superior device performance is attributed to the synergistic influence of higher crystallinity and molecular orientation. Since the crystallinity of dip-coated and UFTM-thin films are similar, ~50 times improved µ of UFTM thin films, this suggests a dominant role of molecular orientation as compared to crystallinity in controlling the charge transport.
Collapse
Affiliation(s)
| | | | | | | | | | - Shyam S. Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Fukuoka, Japan; (K.V.G.); (H.R.); (K.R.S.); (S.S.); (Y.A.)
| |
Collapse
|
4
|
Sun W, Wang C, Tian C, Li X, Hu X, Liu S. Nanotechnology for brain tumor imaging and therapy based on π-conjugated materials: state-of-the-art advances and prospects. Front Chem 2023; 11:1301496. [PMID: 38025074 PMCID: PMC10663370 DOI: 10.3389/fchem.2023.1301496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In contemporary biomedical research, the development of nanotechnology has brought forth numerous possibilities for brain tumor imaging and therapy. Among these, π-conjugated materials have garnered significant attention as a special class of nanomaterials in brain tumor-related studies. With their excellent optical and electronic properties, π-conjugated materials can be tailored in structure and nature to facilitate applications in multimodal imaging, nano-drug delivery, photothermal therapy, and other related fields. This review focuses on presenting the cutting-edge advances and application prospects of π-conjugated materials in brain tumor imaging and therapeutic nanotechnology.
Collapse
Affiliation(s)
- Wenshe Sun
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Congxiao Wang
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuan Tian
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueda Li
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shifeng Liu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Ren C, Cao L, Wu T. Meniscus-Guided Deposition of Organic Semiconductor Thin Films: Materials, Mechanism, and Application in Organic Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300151. [PMID: 36869409 DOI: 10.1002/smll.202300151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Solution-processable organic semiconductors are one of the promising materials for the next generation of organic electronic products, which call for high-performance materials and mature processing technologies. Among many solution processing methods, meniscus-guided coating (MGC) techniques have the advantages of large-area, low-cost, adjustable film aggregation, and good compatibility with the roll-to-roll process, showing good research results in the preparation of high-performance organic field-effect transistors. In this review, the types of MGC techniques are first listed and the relevant mechanisms (wetting mechanism, fluid mechanism, and deposition mechanism) are introduced. The MGC processes are focused and the effect of the key coating parameters on the thin film morphology and performance with examples is illustrated. Then, the performance of transistors based on small molecule semiconductors and polymer semiconductor thin films prepared by various MGC techniques is summarized. In the third section, various recent thin film morphology control strategies combined with the MGCs are introduced. Finally, the advanced progress of large-area transistor arrays and the challenges for roll-to-roll processes are presented using MGCs. Nowadays, the application of MGCs is still in the exploration stage, its mechanism is still unclear, and the precise control of film deposition still needs experience accumulation.
Collapse
Affiliation(s)
- Chunxing Ren
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Long Cao
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| |
Collapse
|
6
|
Tran VV, Jeong G, Wi E, Lee D, Chang M. Design and Fabrication of Ultrathin Nanoporous Donor-Acceptor Copolymer-Based Organic Field-Effect Transistors for Enhanced VOC Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21270-21283. [PMID: 37092808 DOI: 10.1021/acsami.3c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The development of organic field-effect transistor (OFET) chemical sensors with high sensing performance and good air stability has remained a persistent challenge, thereby hindering their practical application. Herein, an OFET sensor based on a donor-acceptor copolymer is shown to provide high responsivity, sensitivity, and selectivity toward polar volatile organic compounds, as well as good air stability. In detail, a polymer blend of N-alkyl-diketopyrrolo-pyrrole-dithienylthieno[3,2-b]thiophene (DPP-DTT) and polystyrene is coated onto an FET substrate via shearing-assisted phase separation (SAPS) combined with selective solvent etching to fabricate the DPP-DTT-based OFET device having an ultrathin nanoporous structure suitable for gas sensing applications. This is achieved via optimization of the film morphology by varying the shear rate to adjust the dynamic balance between the shear and capillary forces to obtain an ultrathin thickness (∼8 nm) and nanopore size (80 nm) that are favorable for the efficient diffusion and interaction of analytes with the active layer. In particular, the sensor presents high responsivities toward methanol (∼70%), acetone (∼51.3%), ethanol (∼39%), and isopropyl alcohol (IPA) (∼29.8%), along with fast response and recovery times of ∼80 and 234 s, respectively. Moreover, the average sensitivity was determined to be 5.75%/ppm from the linear plot of the responsivity against the methanol concentration in the range of 1-100 ppm. Importantly, the device also exhibits excellent long-term (30-day) air and thermal storage stability, thereby demonstrating its high potential for practical applications.
Collapse
Affiliation(s)
- Vinh Van Tran
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam 13120, South Korea
| | - Ganghoon Jeong
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Eunsol Wi
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Daeho Lee
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam 13120, South Korea
| | - Mincheol Chang
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
7
|
Zhao Y, Wang W, He Z, Peng B, Di CA, Li H. High-performance and multifunctional organic field-effect transistors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Memon WA, Zhang Y, Zhang J, Yan Y, Wang Y, Wei Z. Alignment of organic conjugated molecules for high-performance device applications. Macromol Rapid Commun 2022; 43:e2100931. [PMID: 35338681 DOI: 10.1002/marc.202100931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Indexed: 11/11/2022]
Abstract
High-performance organic semiconductor materials as the electroactive components of optoelectronic devices have attracted much attention and made them ideal candidates for solution-processable, large-area, and low-cost flexible electronics. Especially, organic field-effect transistors (OFETs) based on conjugated semiconductor materials have experienced stunning progress in device performance. To make these materials economically viable, comprehensive knowledge of charge transport mechanisms is required. The alignment of organic conjugated molecules in the active layer is vital to charge transport properties of devices. The present review highlights the recent progress of processing-structure-transport correlations that allow the precise and uniform alignment of organic conjugated molecules over large areas for multiple electronic applications, including OFETs, organic thermoelectric devices (OTEs), and organic phototransistors (OPTs). Different strategies for regulating crystallinity and macroscopic orientation of conjugated molecules are introduced to correlate the molecular packing, the device performance and charge transport anisotropy in multiple organic electronic devices. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Waqar Ali Memon
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yangjun Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuheng Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
9
|
Zajaczkowska H, Veith L, Waliszewski W, Bartkiewicz MA, Borkowski M, Sleczkowski P, Ulanski J, Graczykowski B, Blom PWM, Pisula W, Marszalek T. Self-Aligned Bilayers for Flexible Free-Standing Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59012-59022. [PMID: 34866376 PMCID: PMC8678985 DOI: 10.1021/acsami.1c15208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Free-standing and flexible field-effect transistors based on 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene)/polystyrene bilayers are obtained by well-controlled phase separation of both components. The phase separation is induced by solvent vapor annealing of initially amorphous blend films, leading to crystallization of TIPS-pentacene as the top layer. The crystallinity and blend morphology strongly depend on the molecular weight of polystyrene, and under optimized conditions, distinct phase separation with a well-defined and trap-free interface between both fractions is achieved. Due to the distinct bilayer morphology, the resulting flexible field-effect transistors reveal similar charge carrier mobilities as rigid devices and additionally pronounced environmental and bias stress stabilities. The performance of the flexible transistors remains stable up to a strain of 1.8%, while above this deformation, a close relation between current and strain is observed that is required for applications in strain sensors.
Collapse
Affiliation(s)
- Hanna Zajaczkowska
- Department
of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Lothar Veith
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Witold Waliszewski
- Department
of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Malgorzata A. Bartkiewicz
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
| | - Michal Borkowski
- Department
of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Piotr Sleczkowski
- Department
of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Ulanski
- Department
of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Bartlomiej Graczykowski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
| | - Paul W. M. Blom
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Wojciech Pisula
- Department
of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tomasz Marszalek
- Department
of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
10
|
Chortos A. Extrusion
3D
printing of conjugated polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alex Chortos
- Department of Mechanical Engineering Purdue University West Lafayette Indiana USA
| |
Collapse
|
11
|
Rhee D, Deng S, Odom TW. Soft skin layers for reconfigurable and programmable nanowrinkles. NANOSCALE 2020; 12:23920-23928. [PMID: 33242039 DOI: 10.1039/d0nr07054h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wrinkling skin layers on pre-strained polymer sheets has drawn significant interest as a method to create reconfigurable surface patterns. Compared to widely studied metal or silica films, softer polymer skins are more tolerant to crack formation when the surface topography is tuned under applied strain. This Mini-review discusses recent progress in mechano-responsive wrinkles based on polymer skin materials. Control over the skin thickness with nanometer accuracy allows for tuning of the wrinkle wavelength and orientation over length scales from nanometer to micrometer regimes. Furthermore, soft skin layers enable texturing of two-dimensional electronic materials with programmable feature sizes and structural hierarchy because of the conformal adhesion to the substrates. Soft skin systems open prospects to tailor a range of surface properties via external stimuli important for applications such as smart windows, microfluidics, and nanoelectronics.
Collapse
Affiliation(s)
- Dongjoon Rhee
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
12
|
Parsekian AW, Harris TAL. Scalable, Alternating Narrow Stripes of Polyvinyl Alcohol Support and Unmodified PEDOT:PSS with Maintained Conductivity Using a Single-Step Slot Die Coating Approach. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3736-3745. [PMID: 31880906 DOI: 10.1021/acsami.9b18936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Slot die coating has been established as an economical approach for deposition of parallel narrow stripes, a constituent pattern feature in many printed device applications. However, the minimum feature size that can be achieved using this approach is constrained by wetting and liquid bridge phenomena at the deposition region. We hypothesize that pattern resolution and process control can be improved by co-depositing a support fluid to stabilize the pattern. Electrically conductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is slot die-coated in parallel stripes on flexible poly(ethylene terephthalate) substrate, without wettability-enhancing dopants or substrate pretreatment. A miscible liquid phase, polyvinyl alcohol, is used as the support material. Feature size performance and conductivity of PEDOT:PSS stripe regions are evaluated across a range of process conditions. Narrow PEDOT:PSS stripes produced using our technique range from 400 to 850 μm and exhibit conductivity approaching 1.5 S cm-1. This electrical performance falls within the upper range expected prior to standard conductivity-enhancing post-treatments. Significantly, dewetting effects normally present with undoped PEDOT:PSS on the plastic substrate are fully mitigated with our deposition technique. These results indicate high ease of processing and good feature size performance, with few inherent drawbacks to the functional properties of the patterned films.
Collapse
Affiliation(s)
- Ara W Parsekian
- George W. Woodruff School of Mechanical Engineering , Georgia Institute of Technology , 801 Ferst Drive , Atlanta , Georgia 30332 , United States
| | - Tequila A L Harris
- George W. Woodruff School of Mechanical Engineering , Georgia Institute of Technology , 801 Ferst Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|