1
|
Lesiak A, Wagnon B, Chateau D, Abécassis B, Parola S. Room temperature synthesis of CdSe/CdS triangular nanoemitters and their stabilization in colloidal state and sol-gel glass. RSC Adv 2023; 13:28407-28415. [PMID: 37771921 PMCID: PMC10523092 DOI: 10.1039/d3ra04992b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Heterostructured cadmium-based core-shell nanoparticles (NPs) are the subject of research because of not only fundamental scientific advances but also a range of technological applications. To increase the range of applications of nanoparticles, it is possible to immobilise them in sol-gel glass that can be easily manufactured and shaped, keeping the properties of the dispersed particles. This allows the creation of new bulk optical materials with tailored properties, opening up opportunities for various technological applications such as lighting or sensing. Herein we report the synthesis of core-shell CdSe/CdS triangular-shaped nanoparticles under an atmosphere of oxygen and at room temperature. A detailed characterisation of the obtained NPs was carried out. The interesting effect of the gelling agent (tetra-n-butylammonium fluoride) on the triangular nanoparticles in solution and the stability of the emission properties over time was investigated. Sol-gel glasses with entrapped triangular NPs were prepared, and their photoluminescence properties were compared with those obtained in colloidal solutions.
Collapse
Affiliation(s)
- Anna Lesiak
- Wrocław University of Science and Technology, Faculty of Chemistry Wrocław Poland
- École Normale Supérieure de Lyon, Chemistry Laboratory, CNRS, University Lyon 1, UMR 5182 Lyon France
| | - Benoit Wagnon
- École Normale Supérieure de Lyon, Chemistry Laboratory, CNRS, University Lyon 1, UMR 5182 Lyon France
| | - Denis Chateau
- École Normale Supérieure de Lyon, Chemistry Laboratory, CNRS, University Lyon 1, UMR 5182 Lyon France
| | - Benjamin Abécassis
- École Normale Supérieure de Lyon, Chemistry Laboratory, CNRS, University Lyon 1, UMR 5182 Lyon France
| | - Stephane Parola
- École Normale Supérieure de Lyon, Chemistry Laboratory, CNRS, University Lyon 1, UMR 5182 Lyon France
| |
Collapse
|
2
|
Zhong H, Lu C, Sun XL, Luo Y, Qian Q, Xue H, Yang MQ. Visible-Light-Driven Photocatalytic Dehydrogenation of Alcohols on TiO 2 via Ligand-to-Metal Charge Transfer for Coproduction of H 2 and Aldehydes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37486250 DOI: 10.1021/acsami.3c06701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Developing visible-light-driven photocatalysts for the catalytic dehydrogenation of organics is of great significance for sustainable solar energy utilization. Here, we first report that aromatic alcohols could be efficiently split into H2 and aldehydes over TiO2 under visible-light irradiation through a ligand-to-metal charge transfer (LMCT) mechanism. A series of TiO2 catalysts with different surface contents of the hydroxyl group (-OH) have been synthesized by controlling the hydrothermal and calcination synthesis methods. An optimal H2 production rate of 18.6 μmol h-1 is obtained on TiO2 synthesized from the hydrothermal method with a high content of surface -OH. Experimental characterizations and comparison studies reveal that the surface -OH markedly influences the formation of LMCT complexes and thus changes the visible-light-driven photocatalytic performance. This work is anticipated to inspire further research endeavors in the design and fabrication of visible-light-driven photocatalyst systems based on the LMCT mechanism to realize the simultaneous synthesis of clean fuel and fine chemicals.
Collapse
Affiliation(s)
- Huiling Zhong
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Chengjing Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Xiao-Li Sun
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Yongjin Luo
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hun Xue
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Min-Quan Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
3
|
Wang Y, Rong Y, Ma T, Li L, Li X, Zhu P, Zhou S, Yu J, Zhang Y. Photoelectrochemical sensors based on paper and their emerging applications in point-of-care testing. Biosens Bioelectron 2023; 236:115400. [PMID: 37271095 DOI: 10.1016/j.bios.2023.115400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
Point-of-care testing (POCT) technology is urgently required owing to the prevalence of the Internet of Things and portable electronics. In light of the attractive properties of low background and high sensitivity caused by the complete separation of excitation source and detection signal, the paper-based photoelectrochemical (PEC) sensors, featured with fast in analysis, disposable and environmental-friendly have become one of the most promising strategies in POCT. Therefore, in this review, the latest advances and principal issues in the design and fabrication of portable paper-based PEC sensors for POCT are systematically discussed. Primarily, the flexible electronic devices that can be constructed by paper and the reasons why they can be used in PEC sensors are expounded. Afterwards, the photosensitive materials involved in paper-based PEC sensor and the signal amplification strategies are emphatically introduced. Subsequently, the application of paper-based PEC sensors in medical diagnosis, environmental monitoring and food safety are further discussed. Finally, the main opportunities and challenges of paper-based PEC sensing platforms for POCT are briefly summarized. It provides a distinct perspective for researchers to construct paper-based PEC sensors with portable and cost-effective, hoping to enlighten the fast development of POCT soon after, as well as benefit human society.
Collapse
Affiliation(s)
- Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yumeng Rong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuang Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
4
|
Zhao W, Xu X, Wu N, Zhao X, Gong J. Dandelion-Like CuCo 2O 4@ NiMn LDH Core/Shell Nanoflowers for Excellent Battery-Type Supercapacitor. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:730. [PMID: 36839098 PMCID: PMC9967973 DOI: 10.3390/nano13040730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Dandelion-like CuCo2O4 nanoflowers (CCO NFs) with ultrathin NiMn layered double hydroxide (LDH) shells were fabricated via a two-step hydrothermal method. The prepared CuCo2O4@NiMn LDH core/shell nanoflowers (CCO@NM LDH NFs) possessed a high specific surface area (~181 m2·g-1) with an average pore size of ~256 nm. Herein, the CCO@NM LDH NFs exhibited the typical battery-type electrode material with a specific capacity of 2156.53 F·g-1 at a current density of 1 A·g-1. With the increase in current density, the rate capability retention was 68.3% at a current density of 10 A·g-1. In particular, the 94.6% capacity of CCO@NM LDH NFs remains after 2500 cycles at 5 A·g-1. An asymmetric supercapacitor (ASC) with CCO@NM LDH NFs//activated carbon (AC) demonstrates a remarkable capacitance of 303.11 F·g-1 at 1 A·g-1 with excellent cycling stability. The coupling and synergistic effects of multi-valence transition metals provide a convenient channel for the electrochemical process, which is beneficial to spread widely within the realm of electrochemical energy storage.
Collapse
Affiliation(s)
- Wenhua Zhao
- Department of Applied Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Xingliang Xu
- Department of Applied Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Niandu Wu
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Xiaodie Zhao
- Department of Applied Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiangfeng Gong
- College of Science, Hohai University, Nanjing 211199, China
| |
Collapse
|
5
|
Yang H, Wan Y, Cheng Q, Zhou H, Pan Z. Enhanced photocatalytic performance over PANI/NH 2-MIL-101(Fe) with tight interfacial contact. Dalton Trans 2022; 51:15080-15088. [PMID: 36124616 DOI: 10.1039/d2dt01680j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Constructing a suitable heterojunction structure while maintaining a tight interface to promote the separation of photogenerated electrons is of great significance for improving the photocatalytic activity. In this paper, a new PANI/NH2-MIL-101(Fe) II-scheme heterojunction was prepared by a hydrothermal method. PANI with a porous structure was firstly obtained by the template method, and then PANI fragments were loaded on the surface of NH2-MIL-101(Fe) crystals under hydrothermal conditions to obtain a PANI/NH2-MIL-101(Fe) photocatalyst. The photocatalytic degradation of TC under simulated sunlight can reach 90% within an hour, and the maximum hydrogen evolution rate is 7040 μmol g-1 h-1 under visible light. The enhanced catalytic performance of PANI/NH2-MIL-101(Fe) was attributed to the appropriate matching of the VB and CB of PANI and NH2-MIL-101(Fe), and secondly, the coordination bonds formed between PANI and NH2-MIL-101(Fe) provided a channel for charge separation and transfer. Finally, a possible mechanism of the photocatalytic system was proposed through a free radical capture experiment and characterization analysis. More importantly, the experiment proved that the heterojunction formed by PANI and NH2-MIL-101(Fe) can achieve the effect of complementing each other, which provides a feasible idea and method for the design of efficient heterojunction photocatalysts.
Collapse
Affiliation(s)
- Huaizhi Yang
- Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Yuqi Wan
- Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Qingrong Cheng
- Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Hong Zhou
- Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Zhiquan Pan
- Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| |
Collapse
|
6
|
Luo B, Xiao C, Liu Y, Li L, Peng L, Zeng Q, Luo S. Activation of cadmium under simulated solar illumination and its impact on the mobility of Cd in flooded soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52367-52377. [PMID: 35257350 DOI: 10.1007/s11356-022-19567-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
In waterlogged paddy soils, cadmium (Cd) can be precipitated as cadmium sulfide (CdS) under reductive environment, thereby limiting the absorption of Cd by plants. Multiple environmental factors (such as water, pH, and Eh) played a role in the control of Cd mobility and bioavailability. In this study, we investigated the influence of the solar irradiation on the photodissolution of synthetic CdS-montmorillonite composites (CdS-M) in solution and the stability of Cd in natural soil. The release kinetic of Cd2+ showed that after the irradiation of simulated sunlight, CdS-M composites became less stable compared to the dark control. The solar irradiation seemed to enhance the release of Cd2+ from CdS significantly and continuously. Electron paramagnetic resonance (EPR) and quenching experiments confirmed that the photogenerated holes, •O2- and •OH, were possibly involved in the photo-induced release of Cd2+, while the holes was primarily responsible for the reaction. Irradiation under alkaline solution or the presence of DOM, PO43-, CO32-, and urea markedly inhibited the photodissolution process of CdS. The photo-mediated activation of Cd was further confirmed in paddy soil under natural sunlight, with a nearly threefold increase in concentration of extractable Cd during the 15 days of irradiation. This study highlights the importance of photochemical transformation of Cd in the environmental water and soil.
Collapse
Affiliation(s)
- Bihao Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Chenfeng Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Yuling Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Li Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Liang Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| |
Collapse
|
7
|
Adhikari S, Murmu M, Kim DH. Core-Shell Engineered WO 3 Architectures: Recent Advances from Design to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202654. [PMID: 35771096 DOI: 10.1002/smll.202202654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Ongoing efforts to design novel materials with efficient structure-property-performance relations prove challenging. Core-shell structures have emerged as novel materials with controlled production routes and highly tailorable properties that offer extensive advantages in advanced oxidation processing, particularly in photocatalysis and photoelectrochemical applications. WO3 , which is an optoelectronically active semiconductor material, is a popular material in current studies in the field of photo(electro)catalysis. Considerable progress has been made using core-shell WO3 architectures, which warrants an evaluation in terms of processing and preparedness for their use in versatile catalytic and energy storage applications. This paper presents an in-depth assessment of core-shell WO3 architectures by highlighting the design challenges and protocols in powder and thin-film chemical processing. The development of specific core-shell designs for use in targeted applications, such as H2 production, CO2 reduction, wastewater treatment, batteries, supercapacitors, and sensing, is analyzed. The fundamental role of WO3 in core-shell structures to enhance efficiency is also discussed, along with the limitations and improvement strategies. Further, the prospects of core-shell WO3 architectures in energy conversion and environmental applications are suggested.
Collapse
Affiliation(s)
- Sangeeta Adhikari
- Catalyst Research Institute, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Manasi Murmu
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| |
Collapse
|
8
|
Li W, Wang Q, Cui F, Jiang G. Covalent organic framework with sulfonic acid functional groups for visible light-driven CO 2 reduction. RSC Adv 2022; 12:17984-17989. [PMID: 35765318 PMCID: PMC9204709 DOI: 10.1039/d2ra02660k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a covalent organic framework (TpPa-SO3H) photocatalyst with sulfonic acid function groups was synthesized using a solvothermal method. The morphologies and structural properties of the as-prepared composites were characterized by X-ray diffraction, infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, N2 adsorption-desorption measurements, and field emission scanning electron microscopy. An electrochemical workstation was used to test the photoelectric performance of the materials. The results show that TpPa-SO3H has -SO3H functional groups and high photocatalytic performance for CO2 reduction. After 4 h of visible-light irradiation, the amount of CO produced is 416.61 μmol g-1. In addition, the TpPa-SO3H photocatalyst exhibited chemical stability and reusability. After two testing cycles under visible light irradiation, the amount of CO produced decreased slightly to 415.23 and 409.15 μmol g-1. The XRD spectra of TpPa-SO3H were consistent before and after the cycles. Therefore, TpPa-SO3H exhibited good photocatalytic activity. This is because the introduction of -SO3H narrows the bandgap of TpPa-SO3H, which enhances the visible light response range and greatly promotes the separation of photogenerated electrons.
Collapse
Affiliation(s)
- Wanrong Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| | - Qian Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| | - Fuzhi Cui
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| | - Guofang Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
9
|
Biomimetic nitrogen-rich photocatalyst based on cadmium sulfide for photocatalytic hydrogen evolution. J Colloid Interface Sci 2022; 608:954-962. [PMID: 34785470 DOI: 10.1016/j.jcis.2021.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022]
Abstract
A novel N-rich sugarcane-like photocatalyst CdS/C3N5 (CCN) was prepared by a thermal polymerization method and tested for generating H2 and realizing antiphotocorrosive performance. The best photocatalytic H2 evolution is obtained for a CdS to C3N5 mass ratio of 1:1 (CCN3), which is nearly 33 and 3 times higher than that of pure C3N5 and CdS, respectively. CCN3 can be used to effectively reduce CdS photocorrosion and increase stability because of its N-rich performance and sugarcane-like structure, which can affect electron transport and enhance the internal binding force, respectively. CCN3 can maintain a high H2 evolution ability after 5 cycles, while still maintaining the original sugarcane-like shape, which has an anti-photocorrosive ability.
Collapse
|
10
|
Chen A, Zhang J, Zhou Y, Tang H. Preparation of a zinc-based metal–organic framework (MOF-5)/BiOBr heterojunction for photodegradation of Rhodamine B. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02107-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Yang ZZ, Zhang C, Zeng GM, Tan XF, Huang DL, Zhou JW, Fang QZ, Yang KH, Wang H, Wei J, Nie K. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Yang W, Zhou Z, Wu H, Liu C, Shen B, Ding S, Zhou Y. Multi-function PtCo nanozymes/CdS nanocrystals@graphene oxide luminophores and K 2S 2O 8/H 2O 2 coreactants-based dual amplified electrochemiluminescence immunosensor for ultrasensitive detection of anti-myeloperoxidase antibody. J Nanobiotechnology 2021; 19:225. [PMID: 34325706 PMCID: PMC8323290 DOI: 10.1186/s12951-021-00968-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Anti-myeloperoxidase antibody (anti-MPO) is an important biomarker for anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitides (AAVs). However, the complicated operation procedures and insufficient sensitivity of conventional anti-MPO detection methods limit their application in monitoring efficacy of AAVs in clinical diagnosis. Herein, a dual amplified electrochemiluminescence (ECL) immunosensor based on multi-function PtCo nanozymes/CdS nanocrystals@graphene oxide (PtCo/CdS@GO) luminophores and K2S2O8/H2O2 coreactants has been fabricated for ultrasensitive detection of anti-MPO. Results PtCo/CdS@GO luminophores as novel signal amplification labels and nanocarriers to load rabbit anti-mouse IgG were synthesized by co-doping with Pt and Co nanozymes simultaneously with several considerable advantages, including astonishing peroxidase-like catalytic activity, high-efficiency luminescence performance and superior stability in aqueous solutions. Meanwhile, upon the K2S2O8/H2O2 coreactants system, benefiting from the efficient peroxidase-like activity of the PtCo/CdS@GO toward H2O2, massive of transient reactive intermediates could react with K2S2O8, thus obtaining higher ECL emission. Therefore, the developed ECL immunosensor for anti-MPO detection displayed good analytical performance with good concentration linearity in the range of 0.02 to 1000 pg/mL and low detection limit down to 7.39 fg/mL. Conclusions The introduction of multi-function PtCo/CdS@GO luminophores into the established ECL immunoassay not only was successfully applied for specific detection of anti-MPO in clinical serum samples, but also provided a completely new concept to design other high-performance luminophores. Meaningfully, the ECL immunoassay strategy held wide potential for biomarkers detection in clinical diagnosis. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00968-4.
Collapse
Affiliation(s)
- Wei Yang
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Zhou
- Department of Clinical Laboratory, Chongqing University Three Gorges Hospital, Chongqing, 404000, China.,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Changjin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bo Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Yonglie Zhou
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
13
|
Li Z, Huang W, Liu J, Lv K, Li Q. Embedding CdS@Au into Ultrathin Ti3–xC2Ty to Build Dual Schottky Barriers for Photocatalytic H2 Production. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02018] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhipeng Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Weixin Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiaxing Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Kangle Lv
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Qin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
14
|
Modak A, Ghosh A, Bhaumik A, Chowdhury B. CO 2 hydrogenation over functional nanoporous polymers and metal-organic frameworks. Adv Colloid Interface Sci 2021; 290:102349. [PMID: 33780826 DOI: 10.1016/j.cis.2020.102349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
CO2 is one of the major environmental pollutants and its mitigation is attracting huge attention over the years due to continuous increase in this greenhouse gas emission in the atmosphere. Being environmentally hazardous and plentiful presence in nature, CO2 utilization as C1 resource into fuels and feedstock is very demanding from the green chemistry perspectives. To accomplish this CO2 utilization issue, functional organic materials like porous organic polymers (POPs), covalent organic frameworks (COFs) as well as organic-inorganic hybrid materials like metal-organic frameworks (MOFs), having characteristics of large surface area, high thermal stability and tunability in the porous nanostructures play significant role in designing the suitable catalyst for the CO2 hydrogenation reactions. Although CO2 hydrogenation is a widely studied and emerging area of research, till date review exclusively focused on designing POPs, COFs and MOFs bearing reactive functional groups is very limited. A thorough literature review on this matter will enrich our knowledge over the CO2 hydrogenation processes and the catalytic sites responsible for carrying out these chemical transformations. We emphasize recent state-of-the art developments in POPs/COFs/MOFs having unique functionalities and topologies in stabilizing metallic NPs and molecular complexes for the CO2 reduction reactions. The major differences between MOFs and porous organics are critically summarized in the outlook section with the aim of the future benefit in mitigating CO2 emission from ambient air.
Collapse
|
15
|
Potapenko KO, Kurenkova AY, Bukhtiyarov AV, Gerasimov EY, Cherepanova SV, Kozlova EA. Comparative Study of the Photocatalytic Hydrogen Evolution over Cd 1-xMn xS and CdS-β-Mn 3O 4-MnOOH Photocatalysts under Visible Light. NANOMATERIALS 2021; 11:nano11020355. [PMID: 33535500 PMCID: PMC7912750 DOI: 10.3390/nano11020355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
A series of solid solutions of cadmium and manganese sulfides, Cd1−xMnxS (x = 0–0.35), and composite photocatalysts, CdS-β-Mn3O4-MnOOH, were synthesized by precipitation with sodium sulfide from soluble cadmium and manganese salts with further hydrothermal treatment at 120 °C. The obtained photocatalysts were studied by the X-ray diffraction method (XRD), UV-vis diffuse reflectance spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and N2 low temperature adsorption. The photocatalysts were tested in hydrogen production using a Na2S/Na2SO3 aqueous solution under visible light (λ = 450 nm). It was shown for the first time that both kinds of photocatalysts possess high activity in hydrogen evolution under visible light. The solid solution Cd0.65Mn0.35S has an enhanced photocatalytic activity due to its valence and conduction band position tuning, whereas the CdS-β-Mn3O4-MnOOH (40–60 at% Mn) samples were active due to ternary heterojunction formation. Further, the composite CdS-β-Mn3O4-MnOOH photocatalyst had much higher stability in comparison to the Cd0.65Mn0.35S solid solution. The highest activity was 600 mmol g−1 h−1, and apparent quantum efficiency of 2.9% (λ = 450 nm) was possessed by the sample of CdS-β-Mn3O4-MnOOH (40 at% Mn).
Collapse
|
16
|
Mendhe AC, Majumder S, Nair N, Sankapal BR. Core-shell cadmium sulphide @ silver sulphide nanowires surface architecture: Design towards photoelectrochemical solar cells. J Colloid Interface Sci 2020; 587:715-726. [PMID: 33248697 DOI: 10.1016/j.jcis.2020.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/27/2020] [Accepted: 11/08/2020] [Indexed: 11/27/2022]
Abstract
Design and development of cadmium sulphide core with silver sulphide shell assembly in nanowire (NWs) surface architecture has been explored through room temperature, simple chemical route towards photoelectrochemical solar cell application. Incorporation of low band gap Ag2S nanoparticles over the outer surface of the chemical bath deposited CdS NWs has been achieved by simple cation exchange route based on negative free energy of formation. Shell optimization has been performed by investigating structure, surface morphologies and optical analyses and correlated with the photovoltaic parameters. Interestingly, core-shell CdS NWs/ Ag2S exhibits 1.5 better performance in terms of linear voltammetry, photocurrent transient response and the photo stability than bare CdS. Furthermore, three-fold enhancement in photoelectrochemical conversion efficiency have been observed for optimized FTO/ CdS NWs/Ag2S compared to bare FTO/CdS NWs due to the augmented light harvesting and condensed charge recombination. External quantum efficiency exhibits 24% for the optimized CdS NWs/ Ag2S core shell structure. Mott-Schottky and electrochemical impedance spectroscopy measurements have been used for better understanding the impact of gradual growth of Ag2S over CdS NWs which directly influences the overall photocurrent density of the devices.
Collapse
Affiliation(s)
- Avinash C Mendhe
- Nanomaterials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010, (M.S.), India
| | - Sutripto Majumder
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nikila Nair
- Nanomaterials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010, (M.S.), India
| | - Babasaheb R Sankapal
- Nanomaterials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010, (M.S.), India.
| |
Collapse
|