1
|
Ji G, Wang J, Wang Z, Zhang S, Fang Z, Wang Y, Gao Z. Transient paper-based electrochemical biosensor Fabricated by superadditive Cu-TCPP(Fe)/Mxene for Multipathway non-invasive, highly sensitive detection of Bodily metabolites. Biosens Bioelectron 2024; 261:116509. [PMID: 38914028 DOI: 10.1016/j.bios.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Current advances in non-invasive fluid diagnostics highlight unique benefits for monitoring metabolic diseases. However, the low concentrations and complex compositions of biomarkers in fluids such as sweat, urine, and saliva impose stringent demands on the sensitivity and stability of detection technologies. Here, we developed a high-sensitivity, low-cost instantaneous electrochemical sensor based on the superadditive effect mechanism of Cu-TCPP(Fe)/Mxene (MMs Paper-ECL Sensor), which has been successfully applied for the simultaneous real-time detection of glucose and uric acid. Strong interfacial interactions between Mxene and Cu-TCPP(Fe) were revealed through precise simulation calculations and multi-dimensional characterization analysis, significantly enhancing the sensor's electrocatalytic performance and reaction kinetics. Experimentally, this exceptional electrocatalytic activity was demonstrated in its unprecedented high sensitivity and wide linear detection range for glucose and uric acid, with a non-invasive linear range from 0.001 nM to 5 mM, 0.025 nM-5 mM, detection limits as low as 1.88 aM and 5.80 pM, and stability extending up to 100 days. This represents not only a breakthrough in sensitivity and stability but also provides an effective, low-cost solution that overcomes the limitations of existing electronic devices, enabling multi-channel simultaneous detection. The universality of this sensor holds vast potential for application in the field of non-invasive fluid diagnostics.
Collapse
Affiliation(s)
- Guangna Ji
- Military Medical Sciences Academy, Tianjin, 300050, PR China; Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, 300070, PR China
| | - Jingyi Wang
- Military Medical Sciences Academy, Tianjin, 300050, PR China
| | - Zixi Wang
- Military Medical Sciences Academy, Tianjin, 300050, PR China
| | - Shengli Zhang
- Military Medical Sciences Academy, Tianjin, 300050, PR China
| | - Zhongze Fang
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, 300070, PR China
| | - Yu Wang
- Military Medical Sciences Academy, Tianjin, 300050, PR China.
| | - Zhixian Gao
- Military Medical Sciences Academy, Tianjin, 300050, PR China.
| |
Collapse
|
2
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
3
|
Nazhipkyzy M, Kurmanbayeva G, Seitkazinova A, Varol EA, Li W, Dinistanova B, Issanbekova A, Mashan T. Activated Carbon Derived from Cucumber Peel for Use as a Supercapacitor Electrode Material. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:686. [PMID: 38668179 PMCID: PMC11053890 DOI: 10.3390/nano14080686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Biowaste conversion into activated carbon is a sustainable and inexpensive approach that relieves the pressure on its disposal. Here, we prepared micro-mesoporous activated carbons (ACs) from cucumber peels through carbonization at 600 °C followed by thermal activation at different temperatures. The ACs were tested as supercapacitors for the first time. The carbon activated at 800 °C (ACP-800) showed a high specific capacitance value of 300 F/g at a scan rate of 5 mV/s in the cyclic voltammetry and 331 F/g at the current density of 0.1 A/g in the galvanostatic charge-discharge analysis. At the current density of 1 A/g, the specific discharge capacitance was 286 F/g and retained 100% capacity after 2000 cycles. Their properties were analyzed by scanning electron microscopy, energy-dispersive X-ray analysis, porosity, thermal analysis, and Fourier-transform infrared spectroscopy. The specific surface area of this sample was calculated to be 2333 m2 g-1 using the Brunauer-Emmett-Teller method. The excellent performance of ACP-800 is mainly attributed to its hierarchical porosity, as the mesopores provide connectivity between the micropores and improve the capacitive performance. These electrochemical properties enable this carbon material prepared from cucumber peels to be a potential source for supercapacitor materials.
Collapse
Affiliation(s)
- Meruyert Nazhipkyzy
- Department of Chemical Physics and Material Science, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050038, Kazakhstan (A.S.)
- Institute of Combustion Problems, Bogenbai Batyr Street 172, Almaty 050012, Kazakhstan (A.I.)
- Department of Materials Science, Nanotechnology and Engineering Physics, Satbayev University, Satpaev St. 22, Almaty 050000, Kazakhstan
| | - Gulim Kurmanbayeva
- Institute of Combustion Problems, Bogenbai Batyr Street 172, Almaty 050012, Kazakhstan (A.I.)
| | - Aigerim Seitkazinova
- Department of Chemical Physics and Material Science, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050038, Kazakhstan (A.S.)
- Institute of Combustion Problems, Bogenbai Batyr Street 172, Almaty 050012, Kazakhstan (A.I.)
| | - Esin Apaydın Varol
- Department of Chemical Engineering, Eskisehir Technical University, Eskişehir 26555, Turkey;
| | - Wanlu Li
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Ave., Montclair, NJ 07043, USA
| | - Balaussa Dinistanova
- Department of Chemical Physics and Material Science, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050038, Kazakhstan (A.S.)
| | - Almagul Issanbekova
- Institute of Combustion Problems, Bogenbai Batyr Street 172, Almaty 050012, Kazakhstan (A.I.)
- UNESCO Chair in Sustainable Development, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050038, Kazakhstan
| | - Togzhan Mashan
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Kazhymukan Str. 11, Astana 010000, Kazakhstan;
| |
Collapse
|
4
|
Escudero-Curiel S, Giráldez A, Pazos M, Sanromán Á. From Waste to Resource: Valorization of Lignocellulosic Agri-Food Residues through Engineered Hydrochar and Biochar for Environmental and Clean Energy Applications-A Comprehensive Review. Foods 2023; 12:3646. [PMID: 37835298 PMCID: PMC10572264 DOI: 10.3390/foods12193646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Agri-food residues or by-products have increased their contribution to the global tally of unsustainably generated waste. These residues, characterized by their inherent physicochemical properties and rich in lignocellulosic composition, are progressively being recognized as valuable products that align with the principles of zero waste and circular economy advocated for by different government entities. Consequently, they are utilized as raw materials in other industrial sectors, such as the notable case of environmental remediation. This review highlights the substantial potential of thermochemical valorized agri-food residues, transformed into biochar and hydrochar, as versatile adsorbents in wastewater treatment and as promising alternatives in various environmental and energy-related applications. These materials, with their enhanced properties achieved through tailored engineering techniques, offer competent solutions with cost-effective and satisfactory results in applications in various environmental contexts such as removing pollutants from wastewater or green energy generation. This sustainable approach not only addresses environmental concerns but also paves the way for a more eco-friendly and resource-efficient future, making it an exciting prospect for diverse applications.
Collapse
Affiliation(s)
| | | | | | - Ángeles Sanromán
- CINTECX, Department of Chemical Engineering, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain; (S.E.-C.); (A.G.); (M.P.)
| |
Collapse
|
5
|
Liang X, Zhao Y, Liu J, Yang Z, Yang Q. Highly efficient activation of peroxymonosulfate by cobalt ferrite anchored in P-doped activated carbon for degradation of 2,4-D: adsorption and electron transfer mechanism. J Colloid Interface Sci 2023; 642:757-770. [PMID: 37043936 DOI: 10.1016/j.jcis.2023.03.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
The dispersing effect of carbon materials on nanoparticles can enhance the full exposure of their active sites. Herein, phosphorus (P)-doped activated carbon-supported trace cobalt ferrite composites (P-CoFe@BCX) were achieved by two-step pyrolysis for efficient peroxymonosulfate (PMS) activation and water pollution remediation. The removal efficiency of 2,4-dichlorophenoxyacetic acid (2,4-D) was optimized by adjusting the coupling ratio of carbon substrate and cobalt ferrite. P-CoFe@BC5/PMS oxidation system (0.10 g L-1, 0.50 mM) eliminated 98.3% of 2,4-D (20.0 mg L-1) within 60 min at unadjusted pH. The constructed adsorption enrichment and oxidative degradation pathways are highly efficient in utilizing reactive oxygen species (ROS), and the dual tracks of free and non-free radicals achieve the rapid degradation of 2,4-D. P-doped activated carbon acts as an electron shuttle to accelerate electron transfer between active sites and enhances the adsorption efficiency of 2,4-D and PMS onto the composites. In addition, the P-CoFe@BC5/PMS oxidation system still exhibited strong 2,4-D removal performance at a wide pH range of 2.0-10.0. The inhibitory effect of environmental components was related to their concentration, such as chloride, bicarbonate, sulfate and humic acid. Density functional theory calculations show that ROS tends to attack the CO bond on the 2,4-D branch chain, and the degradation products show lower biological toxicity. Hence, the constructed cobalt ferrite anchored P-doped activated carbon activated PMS system has great potential in treating organic wastewater.
Collapse
|
6
|
Parsapour F, Moradi M, Bahadoran A. Metal-organic frameworks-derived layered double hydroxides: From controllable synthesis to various electrochemical energy storage/conversion applications. Adv Colloid Interface Sci 2023; 313:102865. [PMID: 36868169 DOI: 10.1016/j.cis.2023.102865] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Over the past years, metal-organic frameworks (MOF) have been directly used as electrodes or as a precursor for MOF-derived materials in energy storage and conversion systems. In the wide range of existing MOF derivatives, MOF-derived layered double hydroxides (LDHs) are determined to be promising materials due to their unique structure and features. However, MOF-derived LDHs (MDL) materials can suffer from insufficient intrinsic conductivity and agglomeration during formation. Various techniques and approaches were designed and applied to tackle these problems, such as using ternary LDHs, ion-doping, sulphurization, phosphorylation, selenization, direct growth, and conductive substrates. All the mentioned enhancement techniques aim to create the ideal electrode materials with maximum performance. In this review, we gathered and discussed the most recent progressive advances, different synthesis methodologies, unsolved challenges, applications, and electrochemical and electrocatalytic performance of MDL materials. We hope this work will be a reliable source for future progress and synthesis of these materials.
Collapse
Affiliation(s)
- Fateme Parsapour
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Morteza Moradi
- Department of Semiconductors, Materials and Energy Research Center (MERC), P.O. Box 31787-316, Tehran, Iran.
| | - Ashkan Bahadoran
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
7
|
Ismail IS, Othman MFH, Rashidi NA, Yusup S. Recent progress on production technologies of food waste-based biochar and its fabrication method as electrode materials in energy storage application. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:1-17. [PMID: 36683845 PMCID: PMC9842499 DOI: 10.1007/s13399-023-03763-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The abundance of food waste across the globe has called for the mitigation and reduction of these discarded wastes. Herein, the potential of biochar derived from food waste is unquestionable as it provides a sustainable way of utilizing the abundance of available biomass, as well as an effective way of preserving the ecosystem through the reduction of concerning environmental issues. This review focuses on the food waste-based biochar as advanced electrode materials in the energy storage devices. Efforts have been made to present and discuss the current exploration of the food waste utilization, along with the biochar production technologies through thermochemical conversion, including combustion, gasification, and pyrolysis method. Finding its limitation in literatures, discussion on the food waste-based biochar fabrication method as the electrode materials is elaborated, alongside the current food waste-based biochar that has been explored in the energy application thus far. Towards the end, the outlook and perspective on the further development of food waste-based biochar have been outlined.
Collapse
Affiliation(s)
- Intan Syafiqah Ismail
- Chemical Engineering Department, Higher Institution of Center of Excellence (HICoE): Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Muhamad Farhan Haqeem Othman
- Chemical Engineering Department, Higher Institution of Center of Excellence (HICoE): Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Nor Adilla Rashidi
- Chemical Engineering Department, Higher Institution of Center of Excellence (HICoE): Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Suzana Yusup
- Generation Unit (Fuel & Combustion), TNB Research Sdn. Bhd., No 1, Kawasan Institusi Penyelidikan, Jalan Ayer Hitam, 43000 Kajang, Malaysia
| |
Collapse
|
8
|
Lauric Acid Treatments to Oxidized and Control Biochars and Their Effects on Rubber Composite Tensile Properties. Mol Vis 2022. [DOI: 10.3390/c8040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biochar is a renewable source of carbon that can partially replace carbon black as filler in rubber composites. Since the carbon content of biochar is less pure than carbon black, improvements and modifications must be made to biochar to make it a viable co-filler. In this work, two methods to change the surface chemistry of biochar were employed: (1) gas treatment at 300 °C with either air or carbon dioxide, and (2) coating with lauric acid. Both methods are amenable to the current rubber processing industry. After biochar was treated with these methods, it was used as co-filler in rubber composite samples. Gas treatment with either air or carbon dioxide was found to increase stiffness in the final composites. Although lauric acid coating of biochar by itself did not have a significant effect on tensile properties, biochar that was first treated with carbon dioxide and then coated with lauric acid showed a 19% increase in tensile strength and a 48% increase in toughness. Gas treatment and lauric acid coating of biochar provide relatively simple processing techniques to improve the stiffness and tensile strength of biochar as rubber composite filler.
Collapse
|
9
|
Li R, Wang B, Niu A, Cheng N, Chen M, Zhang X, Yu Z, Wang S. Application of biochar immobilized microorganisms for pollutants removal from wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155563. [PMID: 35504384 DOI: 10.1016/j.scitotenv.2022.155563] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Microbial immobilization technology (MIT) has been rapidly developed and used to remove pollutants from water/wastewater in recent years, owing to its high stability, rapid reaction rate, and high activity. Microbial immobilization carrier with low cost and high removal efficiency is the key of MIT. Biochar is considered to be an efficient carrier for microbial immobilization because of its high porosity and good adsorption effect, which can provide a habitat for microorganisms. The use of biochar immobilized microorganisms to treat different pollutants in wastewater is a promising treatment method. Compared with the other biological treatment technology, biochar immobilized microorganisms can improve microbial abundance, repeated utilization ratio, microbial metabolic capacity, etc. However, current research on this method is still in its infancy. Little attention has been paid to the interaction mechanisms between biochar and microorganisms, and many studies are only carried out in the laboratory. There are still problems such as difficult recovery after use and secondary pollution caused by residual pollutants after biochar adsorption, which need further clarification. To have comprehensive digestion and an in-depth understanding of biochar immobilized microorganisms technology in wastewater treatment, the wastewater treatment methods based on biochar are firstly summarized in this review. Then the mechanisms of immobilized microorganisms were explored, and the applications of biochar immobilized microorganisms in wastewater were systematically reviewed. Finally, suggestions and perspectives for future research and practical application are put forward.
Collapse
Affiliation(s)
- Rui Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Aping Niu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ning Cheng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Zebin Yu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment & Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
10
|
Parsimehr H, Ehsani A. Stimuli-Responsive Electrochemical Energy Storage Devices. CHEM REC 2022; 22:e202200075. [PMID: 35832003 DOI: 10.1002/tcr.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/24/2022] [Indexed: 11/11/2022]
Abstract
Electrochemical energy storage (EES) devices have been swiftly developed in recent years. Stimuli-responsive EES devices that respond to different external stimuli are considered the most advanced EES devices. The stimuli-responsive EES devices enhanced the performance and applications of the EES devices. The capability of the EES devices to respond to the various external stimuli due to produced advanced EES devices that distinguished the best performance and interactions in different situations. The stimuli-responsive EES devices have responsive behavior to different external stimuli including chemical compounds, electricity, photons, mechanical tensions, and temperature. All of these advanced responsiveness behaviors have originated from the functionality and specific structure of the EES devices. The multi-responsive EES devices have been recognized as the next generation of stimuli-responsive EES devices. There are two main steps in developing stimuli-responsive EES devices in the future. The first step is the combination of the economical, environmental, electrochemical, and multi-responsiveness priorities in an EES device. The second step is obtaining some advanced properties such as biocompatibility, flexibility, stretchability, transparency, and wearability in novel stimuli-responsive EES devices. Future studies on stimuli-responsive EES devices will be allocated to merging these significant two steps to improve the performance of the stimuli-responsive EES devices to challenge complicated situations.
Collapse
Affiliation(s)
- Hamidreza Parsimehr
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
11
|
Liu H, Qin S, Sirohi R, Ahluwalia V, Zhou Y, Sindhu R, Binod P, Rani Singhnia R, Kumar Patel A, Juneja A, Kumar D, Zhang Z, Kumar J, Taherzadeh MJ, Kumar Awasthi M. Sustainable blueberry waste recycling towards biorefinery strategy and circular bioeconomy: A review. BIORESOURCE TECHNOLOGY 2021; 332:125181. [PMID: 33888357 DOI: 10.1016/j.biortech.2021.125181] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Waste valorization using biological methods for value addition as well as environmental management is becoming popular approach for sustainable development. The present review addresses the availability of blueberry crop residues (BCR), applications of this feedstock in bioprocess for obtaining range of value-added products, to offer economic viability, business development and market potential, challenges and future perspectives. To the best of our knowledge, this is the first article addressing the blueberry waste valorization for a sustainable circular bioeconomy. Furthermore, it covers the information on the alternative BCR valorization methods and production of biochar for environmental management through removal or mitigation of organic and inorganic pollutants from contaminated sites. The review also discusses the ample opportunities of strategic utilization of BCR to offer solutions for environmental sustenance, covers the emerging trends to produce multi-products and techno-economic prospective for sustainable agronomy.
Collapse
Affiliation(s)
- Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Vivek Ahluwalia
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Reeta Rani Singhnia
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden.
| |
Collapse
|
12
|
Parsimehr H, Ehsani A, Goharshenas Moghadam S, Arachchige Dumith Madushanka Jayathilaka W, Ramakrishna S. Energy Harvesting/Storage and Environmental Remediation via Hot Drinks Wastes. CHEM REC 2021; 21:1098-1118. [PMID: 33913239 DOI: 10.1002/tcr.202100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Indexed: 11/10/2022]
Abstract
Providing energy and materials are considered one most important issue in the world. Produce and storage energy and also, prepare chemical substances from disposable biomass materials have been widely developed in recent decades to decrease environmental pollutions and production costs. The waste of hot drinks including coffee wastes and tea wastes have considerable potentials to provide energy and different chemical substances. Also, hazardous materials (especially aqueous ions) can be absorbed via hot drinks wastes to protect the environment against perilous pollutants. The low-cost and benign hot drinks wastes including tea wastes and coffee grounds and also the pyrolyzed of them as the hot drinks waste biochar materials have been widely used to produce and store green energies and also, absorb hazardous materials. Production and storage energy and environmental remediation in these sustainable procedures not only reduce the cost of energy but also protect the environment.
Collapse
Affiliation(s)
- Hamidreza Parsimehr
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.,Color and Surface Coatings Group, Polymer Processing Department, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Saba Goharshenas Moghadam
- Color and Surface Coatings Group, Polymer Processing Department, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | | | - Seeram Ramakrishna
- Centre of Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
| |
Collapse
|