1
|
Chen G, Zhang Y, Zhang K, Lv W, Lv Z, Gao X, Huang Y. Photothermal Superhydrophobic Zinc Oxide Cotton Fabric Based on an Impregnation Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9857-9868. [PMID: 40198214 DOI: 10.1021/acs.langmuir.5c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Superhydrophobic materials have applications such as oil-water separation, antifouling, and antibacterial properties. At present, most of the manufacturing process of superhydrophobic coatings not only is costly but also causes pollution to the environment, which is not in line with the concept of green and sustainable development. In this work, we have prepared a superhydrophobic coating using green and environmentally friendly chitosan, nanozinc oxide, γ-aminopropyl triethoxysilane (KH550), and stearic acid. The prepared cotton fabric showed remarkable superhydrophobic properties. Under simulated sunlight, the surface temperature of the superhydrophobic cotton fabric can increase to 50 °C. The superhydrophobic surface sustained its superhydrophobic property after at least 80 tape peeling tests, 50 occurrences of sandpaper friction, 3.5 h of washing, and 24 h of high-temperature heat treatment. Besides, the coating can be utilized for oil-water separation and is reusable. The oil-water separation effectiveness of the coating reaches more than 95%. Therefore, this inexpensive and ecofriendly nanozinc oxide/chitosan-based superhydrophobic coating has remarkable application potential.
Collapse
Affiliation(s)
- Guangli Chen
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yuxuan Zhang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Kangwei Zhang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Wenjun Lv
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zaosheng Lv
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xiaofang Gao
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yanfen Huang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
2
|
Tu S, Zhang L, Zhang W, Feng J. Waterborne Recoatable Transparent Superhydrophobic Coatings with Excellent Self-Cleaning and Anti-Dust Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410171. [PMID: 39828594 DOI: 10.1002/smll.202410171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Superhydrophobic surfaces have attracted tremendous attention due to their intriguing lotus-leaf-like water-repelling phenomenon and wide applications, however, most superhydrophobic coatings are prepared with environmentally unfriendly organic solvents and suffer from poor mechanical strength. To solve these issues, waterborne recoatable superhydrophobic (WRSH) coatings are developed based on a novel self-synthesized water-soluble fluorinated acrylic polymer and hydrophobic modified silica nanoparticles. The trade-off between waterborne and superhydrophobicity is well mediated by protonation and deprotonation of the fluorinated acrylic polymer. When the coating is damaged, it can be easily repaired and recoated using WRSH coatings without the need to remove the damaged superhydrophobic layer, providing a sustainable and environmentally friendly solution for maintaining a superhydrophobic surface. The coating exhibits good mechanical properties with the WRSH coating maintaining mechanical stability even after abrasion with 2000 mesh sandpaper for 20 m or impact from 100 g of sand. Additionally, the visible light transmittance of WRSH coating glass reaches as high as ≈94.0%, which is superior to the bare glass of ≈91.7%. Moreover, the WRSH coatings exhibit excellent self-cleaning performance and anti-dust performance when applied on solar panels.
Collapse
Affiliation(s)
- Shuhua Tu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lele Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Weizhen Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
3
|
Wang J, Wang G, Zhu Z, Zhang W. Study on the Superhydrophobic Properties of Micro/Nano Hole Structure on the Surface of Glass Fiber Reinforced Plastics Based on Femtosecond Laser Etching. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:287. [PMID: 39997851 PMCID: PMC11857850 DOI: 10.3390/nano15040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
A method of femtosecond laser multi-pulse grid-like point etching (MP-GPE) was used to prepare glass fiber reinforced plastics with superhydrophobic properties. This article investigates the influence trend of single-pulse energy (5-35 μJ) and etching pulse number (20-100) on the morphology of surface concave holes, including depth and width. Different combinations of process parameters have a modulating effect on the size of the concave hole structure and the ablation of the reinforced plastics. At a single-pulse energy of 25 μJ and 60 pulse numbers, the depth of the concave holes increases to the maximum of approximately 63 μm, and the width of the upper surface of the concave holes is approximately 33 μm. Under these conditions, the maximum water contact angle of 160.6° is obtained, which is consistent with the theoretical calculation results of 161.6°. This is very promising for the power industry to use this material in low-temperature, drag-reducing environments.
Collapse
Affiliation(s)
- Ji Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (G.W.); (W.Z.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guolong Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (G.W.); (W.Z.)
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenkai Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (G.W.); (W.Z.)
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenwu Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (G.W.); (W.Z.)
| |
Collapse
|
4
|
Wu Z, Wang L, Chen X, Bu N, Duan J, Liu W, Ma C, Pang J. Enhancing Waterproof Food Packaging with Janus Structure: Lotus Leaf Biomimicry and Polyphenol Particle Technology for Vegetable Preservation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8248-8261. [PMID: 39846723 DOI: 10.1021/acsami.4c17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
With the increasing demand for improved food preservation, conventional waterproof food packaging has proven inadequate because of its limited functionality. Although incorporating features such as antibacterial and antioxidant properties into packaging enhances protection, it can compromise the hydrophobicity of the involved material, thereby increasing the risk of contamination from external sources. To address this challenge, a robust and reliable barrier capable of simultaneously integrating multiple protective functions is required. This research synthesizes polyphenol particles via metal ion coordination and multiple hydrogen bondings to enhance antioxidant and antimicrobial properties. In addition, inspired by the asymmetric wettability of Janus-structured lotus leaves, this study develops biomimetic multifunctional Janus electrospun fibers via electrostatic spinning. These fibers exhibit exceptional properties, including superhydrophobic, antifouling, ultraviolet-blocking, pH sensitivity, antioxidation, antimicrobial, and freshness retention properties. Experiments and mesoscopic capillary flow simulations elucidate the waterproofing ability and underlying mechanisms of the Janus electrospun fibers, demonstrating their function as hydrophobic shields for preventing water penetration. Overall, this study provides a reference for high-performance waterproof food packaging to enhance vegetable preservation.
Collapse
Affiliation(s)
- Zhenzhen Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Special Administrative Region, Hong Kong 999077, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Liu Q, Wang Y, Liu X, Li Y, Yu E, Sun Z, Wang L, Zhuang G, Yu J, Liu S. Robust and Ultra-Efficient Anti-/De-Icing Surface Engineered Through Photo-/Electrothermal Micro-Nanostructures With Switchable Solid-Liquid States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410941. [PMID: 39568235 DOI: 10.1002/adma.202410941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/05/2024] [Indexed: 11/22/2024]
Abstract
Photothermal superhydrophobic surfaces present a promising energy-saving solution for anti-/de-icing, offering effective icing delay and photothermal de-icing capabilities. However, a significant challenge in their practical application is the mechanical interlocking of micro-nanostructures with ice formed from condensed water vapor, leading to meltwater retention and compromised functionality post-de-icing. Here, a robust photo-/electrothermal icephobic surface with dynamic phase-transition micro-nanostructures are demonstrated through laser microfabrication and surface engineering. The engineered surface exhibits ultra-efficient, long-term stable anti-/de-icing performance and excellent superhydrophobicity, demonstrating an icing delay of ≈ 1250 s, photothermal de-icing in 8 s, water contact angle of 165°, and sliding angle of 0.2°. Furthermore, the surface maintains efficient anti-/de-icing ability and water repellency after 400 linear abrasion cycles under 0.93 MPa. Remarkably, under simulated natural icing conditions, where water vapor freezes within the micro-nanostructures causing mechanical interlocking, the surface remains entirely non-wetted after photo-/electrothermal de-icing, maintaining superhydrophobicity and effectiveness for continued anti-/de-icing. This exceptional performance is attributed to the designed phase-transition micro-nanostructures that liquefy during de-icing, significantly reducing interactions with water molecules, as quantitatively validated by molecular dynamics simulations. This work provides new perspectives and methodologies for designing and creating innovative, high-performance anti-/de-icing surfaces.
Collapse
Affiliation(s)
- Qiuyue Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yunpeng Wang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310023, P. R. China
| | - Xihuan Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yizhen Li
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Enze Yu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhiyong Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310023, P. R. China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jie Yu
- School of Laboratory Medicine and School of Bioengineering, Hangzhou Medical College, Hangzhou, 310014, P. R. China
| | - Shanqiu Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
6
|
Liu K, Zhang S, He J. Preparation of Robust, Antireflective and Superhydrophobic Hierarchical Coatings on PMMA Substrates via Mechanical Locking and Chemical Bonding. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4044-4054. [PMID: 39748337 DOI: 10.1021/acsami.4c19793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Antireflection (AR) coatings with mechanical robustness and superhydrophobic properties have wide potential applications in optical, electronic, and automotive fields. However, the fabrication of large-sized, robust, and multifunctional AR coatings on plastic/polymer substrates has been a challenging problem. In this study, we developed a bottom-up approach to produce mechanically robust, enhanced transmittance, and superhydrophobic coatings on poly(methyl methacrylate) (PMMA) substrate. Their AR structure is composed of two layers: acid-catalyzed silica and base-catalyzed silica nanoparticles to construct a three-dimensional porous structure as the top layer; the connecting layer consists of monolayer mesoporous silica nanoparticles (MSNs) that are partially embedded in the PMMA substrate. The lower part of mesoporous silica nanoparticles is mechanically locked in the PMMA substrate by organic vapor phase treatment, while the upper part is chemically bonded to the top layer, forming a solid double-layer structure. Finally, the AR structure surface is treated by chemical vapor deposition of hexamethyldisilazane (HMDS). The obtained double-layer coating exhibits outstanding light transmission (Tave: 98.96% in the wavelength range of 400-800 nm), superhydrophobicity (water contact angle (WCA): 157.6°, rolling angle (RA): 3.3°), mechanical robustness (pencil hardness: 4H), and weather resistance (3 months of outdoor exposure). This work offers a novel approach to the synthesis of multifunctional coatings on polymer substrates with robust mechanical properties.
Collapse
Affiliation(s)
- Kai Liu
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sainan Zhang
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Li HL, Wang F, Zhang RG, Guo ML, Wang YZ, Song F. Ex Situ pH-Induced Reversible Wettability Switching for an Environmentally Robust and High-Efficiency Stain-Proof Coating. SMALL METHODS 2024:e2401621. [PMID: 39722168 DOI: 10.1002/smtd.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Developing superwetting coatings with environmental adaptability is critical for sustainable industrial applications. However, traditional anti-wetting coatings often fall short due to their susceptibility to environmental factors (UV light, temperature, mold growth, and abrasion) and inadequate stain resistance in complex media. Herein, a durable ex situ pH-responsive coating with reversible wettability switching, engineered by integrating hydrophobic polydimethylsiloxane and tertiary amine structures is presented. The resulting hierarchical micro-nano surface structure, combined with a trapped air cushion, ensures low water adhesion and stable superhydrophobicity. Notably, after ex situ pH treatment, the modulation of surface N+ content synergistically interacts with polydimethylsiloxane chains, enabling a controlled transition in surface wettability from 150° to 68.5°, which can spontaneously revert to a hydrophobic state upon heating and drying. This transition enhances stain resistance in both air and underwater environments, resulting in a 17.2% increase in detergency compared to superhydrophobic controls. Moreover, the coating demonstrates remarkable durability, with no staining, peeling, or mildew growth (grade 0) even after 1500 h of UV radiation and 28 days of mildew resistance testing. This work offers a highly adaptable and stain-resistant coating for applications in building and infrastructure protection, as well as in smart textiles designed for multi-media decontamination.
Collapse
Affiliation(s)
- Hang-Lin Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fang Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Rong-Gang Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Mei-Lin Guo
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
8
|
Xie Y, Cai P, Cao X, Chen B, Pan Y. Water-Resistant Poly(vinyl alcohol)/ZnO Nanopillar Composite Films for Antibacterial Packaging. ACS OMEGA 2024; 9:50403-50413. [PMID: 39741812 PMCID: PMC11684479 DOI: 10.1021/acsomega.4c07173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025]
Abstract
To solve the problems that poly(vinyl alcohol) (PVA) easily breeds bacteria and swells in a humid environment, PVA and ZnO nanopillar (ZnO NP) components were composed to generate PVA/ZnO NP composite films via a simple combination process of blending and heat treatment in this study. Here, ZnO NPs endowed composite films with good antibacterial properties, and the etherification and dehydration of hydroxyl groups between PVA molecular chains induced by heat treatment resulted in the composite films having excellent water-swelling resistance. Most importantly, PVA/ZnO NP composite films revealed excellent tensile strength in both humid (52.85 MPa) and dry (74.63 MPa) environments. In addition, PVA/ZnO NP composite films showed good antibacterial and antisepsis abilities as well as preservation functions in the packaging test of half-cut apples. The current work disclosed an easy strategy for producing a PVA-based antibacterial film for packaging materials that are water-resistant and highly strong, making them suitable for applications in humid environments.
Collapse
Affiliation(s)
- Yuanjian Xie
- Guangxi
Key Laboratory of Green Chemical Materials and Safety Technology,
Guangxi Engineering Research Center for New Chemical Materials and
Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Pingxiong Cai
- Guangxi
Key Laboratory of Green Chemical Materials and Safety Technology,
Guangxi Engineering Research Center for New Chemical Materials and
Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Xiaofeng Cao
- Guangxi
Key Laboratory of Green Chemical Materials and Safety Technology,
Guangxi Engineering Research Center for New Chemical Materials and
Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Bo Chen
- Guangxi
Key Laboratory of Green Chemical Materials and Safety Technology,
Guangxi Engineering Research Center for New Chemical Materials and
Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Yuanfeng Pan
- Guangxi
Colleges and Universities Key Laboratory of New Technology and Application
in Resource Chemical Engineering, School of Chemistry and Chemical
Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
An B, Xu M, Sun W, Ma C, Luo S, Li J, Liu S, Li W. Butterfly wing-inspired superhydrophobic photonic cellulose nanocrystal films for vapor sensors and asymmetric actuators. Carbohydr Polym 2024; 345:122595. [PMID: 39227114 DOI: 10.1016/j.carbpol.2024.122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Cellulose nanocrystals (CNCs)-based stimuli responsive photonic materials demonstrate great application potential in mechanical and chemical sensors. However, due to the hydrophilic property of cellulose molecular, a significant challenge is to build a water-resistant photonic CNCs material. Here, inspired by butterfly wings with vivid structural color and superhydrophobic property, we have designed a CNCs based superhydrophobic iridescent film with hierarchical structures. The iridescent colored layer is ascribed to the chiral nematic alignment of CNCs, the superhydrophobic layer is ascribed to the micro-nano structures of polymer microspheres. Specially, superhydrophobic iridescent CNCs film could be used as an efficient colorimetric humidity sensor due to the existence of 'stomates' on superhydrophobic layer, which allowed the humid gas to enter into and out from the humidity responsive chiral nematic layers. Meanwhile, superhydrophobic iridescent films show out-standing self-cleaning and anti-fouling performance. Moreover, when the one side of the CNCs film was covered with superhydrophobic layer, the Janus film displays asymmetric expansion and bending behaviors as well as responsive structural colors in hydrous ethanol. This CNCs based hierarchical photonic materials have promising applications including photonic sensors suitable for extreme environment and smart photonic actuators.
Collapse
Affiliation(s)
- Bang An
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Mingcong Xu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Wenye Sun
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jian Li
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
10
|
Zhang H, Xie S, Zhang W, Wang F, Guo Z. Ultraslippery Surface for Efficient Fog Harvesting and Anti-Icing/Fouling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405875. [PMID: 39308335 DOI: 10.1002/smll.202405875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/29/2024] [Indexed: 12/06/2024]
Abstract
The conventional Slippery Liquid Infused Porous Surface (SLIPS) encounters challenges such as silicone oil leakage and complex manufacturing of rough substrate structures. Thus, it is crucial to develop a lubricant that is highly adaptable and less prone to loss for surface structures; a temperature-controlled method of infusing oleogel into a superhydrophobic surface (SHS) is presented in this paper. This approach draws inspiration from the characteristics of Nepenthes pitcher plant structures, albeit without the need for intricate pore-making or nanowire structures. It is demonstrated that this resulting surface has exceptional fog harvesting capability, with a fog harvesting efficiency of 0.3222 g cm-2 min-1, which is twice as high as that of the laser aluminum (Al) sheet (0.1553 g cm-2 min-1). Moreover, the surface exhibits remarkable anti-icing properties, significantly prolonging the icing time by 21-fold compared to the pure Al sheet while maintaining a minimal ice adhesion force of only 0.16 N. Additionally, the surface showcases excellent antifouling performance, because contaminated droplets readily slide off without leaving residue. The environmentally friendly and straightforward preparation process ensures that it is suitable for large-scale industrial applications.
Collapse
Affiliation(s)
- Huayang Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Shangzhen Xie
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Wenhao Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Fengyi Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
11
|
Xiao J, He M, Zhan B, Guo H, Yang JL, Zhang Y, Qi X, Gu J. Multifunctional microwave absorption materials: construction strategies and functional applications. MATERIALS HORIZONS 2024; 11:5874-5894. [PMID: 39229798 DOI: 10.1039/d4mh00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The widespread adoption of wireless communication technology, especially with the introduction of artificial intelligence and the Internet of Things, has greatly improved our quality of life. However, this progress has led to increased electromagnetic (EM) interference and pollution issues. The development of advanced microwave absorbing materials (MAMs) is one of the most feasible solutions to solve these problems, and has therefore received widespread attention. However, MAMs still face many limitations in practical applications and are not yet widely used. This paper presents a comprehensive review of the current status and future prospects of MAMs, and identifies the various challenges from practical application scenarios. Furthermore, strategies and principles for the construction of multifunctional MAMs are discussed in order to address the possible problems that are faced. This article also presents the potential applications of MAMs in other fields including environmental science, energy conversion, and medicine. Finally, an analysis of the potential outcomes and future challenges of multifunctional MAMs are presented.
Collapse
Affiliation(s)
- Junxiong Xiao
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Beibei Zhan
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Jing-Liang Yang
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Xiaosi Qi
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
12
|
Mirmohammadi SM, Shirazi HD, Heikkilä M, Franssila S, Vapaavuori J, Jokinen V. Anisotropic Superhydrophobic Properties Replicated from Leek Leaves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403863. [PMID: 39073295 DOI: 10.1002/smll.202403863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Indexed: 07/30/2024]
Abstract
A bio-inspired approach to fabricate robust superhydrophobic (SHB) surfaces with anisotropic properties replicated from a leek leaf is presented. The polydimethylsiloxane (PDMS) replica surfaces exhibit anisotropic wetting, anti-icing, and light scattering properties due to microgrooves replicated from leek leaves. Superhydrophobicity is achieved by a novel modified candle soot (CS) coating that mimics leek's epicuticular wax. The resulting surfaces show a contact angle (CA) difference of ≈30° in the directions perpendicular and parallel to the grooves, which is similar to the anisotropic properties of the original leek leaf. The coated replica is durable, withstanding cyclic bending tests (up to 10 000 cycles) and mechanical sand abrasion (up to 60 g of sand). The coated replica shows low ice adhesion (10 kPa) after the first cycle; and then, increases to ≈70 kPa after ten icing-shearing cycles; while, anisotropy in ice adhesion becomes more evident with more cycles. In addition, the candle soot-coated positive replica (CS-coated PR) demonstrates a transmittance of ≈73% and a haze of ≈65% at the wavelength of 550 nm. The results show that the properties depend on the replicated surface features of the leek leaf, which means that the leek leaf appears to be a highly useful template for bioinspired surfaces.
Collapse
Affiliation(s)
- Seyed Mehran Mirmohammadi
- Department of Chemistry and Materials Science, Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Hamidreza Daghigh Shirazi
- Department of Chemistry and Materials Science, Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Miika Heikkilä
- Department of Chemistry and Materials Science, Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Sami Franssila
- Department of Chemistry and Materials Science, Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Ville Jokinen
- Department of Chemistry and Materials Science, Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
13
|
Li S, Xiao P, Chen T. Superhydrophobic Solar-to-Thermal Materials Toward Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311453. [PMID: 38719350 DOI: 10.1002/adma.202311453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Solar-to-thermal conversion is a direct and effective way to absorb sunlight for heat via the rational design and control of photothermal materials. However, when exposed to water-existed conditions, the conventional solar-to-thermal performance may experience severe degradation owing to the high specific heat capacity of water. To tackle with the challenge, the water-repellent function is introduced to construct superhydrophobic solar-to-thermal materials (SSTMs) for achieving stable heating, and even, for creating new application possibilities under water droplets, sweat, seawater, and ice environments. An in-depth review of cutting-edge research of SSTMs is given, focusing on synergetic functions, typical construction methods, and cutting-edge potentials based on water medium. Moreover, the current challenges and future prospects based on SSTMs are also carefully discussed.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Peng Xiao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
14
|
Qu YX, Xia QQ, Li LT, Cao CF, Zhang GD, Castignolles P, Bae J, Song P, Gao JF, Tang LC. Rational Design of Oil-Resistant and Electrically Conductive Fluorosilicone Rubber Foam Nanocomposites for Sensitive Detectability in Complex Solvent Environments. ACS NANO 2024; 18:22021-22033. [PMID: 39102459 DOI: 10.1021/acsnano.4c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Recent years have witnessed the explosive development of highly sensitive smart sensors based on conductive polymer foam materials. However, the design and development of multifunctional polymeric foam composites as smart sensors applied in complex solvent and oil environments remain a critical challenge. Herein, we design and synthesize vinyl-terminated polytrifluoropropylmethylsiloxane through anionic ring-opening polymerization to fabricate fluorosilicone rubber foam (FSiRF) materials with nanoscale wrinkled surfaces and reactive Si-H groups via a green and rapid chemical foaming strategy. Based on the strong adhesion between FSiRF materials and consecutive oxidized ketjen black (OKB) nano-network, multifunctional FSiRF nanocomposites were prepared by a dip-coating strategy followed by fluoroalkylsilane modification. The optimized F-OKB@FSiRF nanocomposites exhibit outstanding mechanical flexibility in wide-temperature range (100 cycle compressions from -20 to 200 °C), structure stability (no detached particles after being immersed into various aqueous solutions for up to 15 days), surface superhydrophobicity (water contact angle of 154° and sliding angle of ∼7°), and tunable electrical conductivity (from 10-5 to 10-2 S m-1). Additionally, benefiting from the combined actions of multiple lines of defense (low surface energy groups, physical barriers, and "shielding effect"), the F-OKB@FSiRF sensor presents excellent anti-swelling property and high sensitivity in monitoring both large-deformation and tiny vibrations generated by knocking the beaker, ultrasonic action, agitating, and sinking objects in weak-polar or nonpolar solvents. This work conceivably provides a chemical strategy for the fabrication of multifunctional polymeric foam nanocomposite materials as smart sensors for broad applications.
Collapse
Affiliation(s)
- Yong-Xiang Qu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou 311121, China
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France
| | - Qiao-Qi Xia
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou 311121, China
| | - Long-Tao Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng-Fei Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou 311121, China
| | - Guo-Dong Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou 311121, China
| | - Patrice Castignolles
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France
| | - Joonho Bae
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia
| | - Jie-Feng Gao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
15
|
Tao J, Liu Y, Li M, Li Z, Zhang Y, Song X, Yang Q, Guan F, Guo J. Robust Superhydrophobic Composite Fabric with Self-Healing and Chemical Durability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304894. [PMID: 38546002 DOI: 10.1002/smll.202304894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 03/12/2024] [Indexed: 08/09/2024]
Abstract
Superhydrophobic fabrics with multiple functions have become a research hotspot. However, it is challenging to make self-healing mechanically robust and eco-friendly superhydrophobic fabrics, which are limited by complex fabrication processes and excessive use of environmentally unfriendly solvents during fabrication. Herein, inspired by the secretion of a waxy substance from the surface of lotus leaves to restore water repellency, self-healing superhydrophobic composite fabrics (as-synthesized PA66/6-PET@Tico) are obtained by constructing a papillary TiO2 and tentacle-like fluorinated acrylate polymer (FCB015) coating on polyester-nylon composite fabrics using two-step hydrothermal method. The result indicates that PA66/6-PET@Tico with hierarchical micro/nanostructure exhibits excellent superhydrophobic and self-healing properties. Compared with FCB015 coated fabric, the contact angles (CA) of water and soybean oil rise to 172.2° and 166.8° from 137.4° and 98.8°, respectively. After mechanical abrasion, PA66/6-PET@Tico recovers a water contact angle (WCA) of 165.6° at room temperature. The WCA remains higher than 155° after 18 h of chemical corrosion. Furthermore, the bacterial inhibition rates of PA66/6-PET@Tico for Staphylococcus Aureus and Escherichia Coli are 99.90 and 98.38%, respectively. In this work, a new idea is proposed for designing a simple and effective self-healing superhydrophobic coating, expecting to promote the large-scale industrial production and application of functional surfaces.
Collapse
Affiliation(s)
- Jing Tao
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yuanfa Liu
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Minghan Li
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Zheng Li
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yihang Zhang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xuecui Song
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Qiang Yang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Fucheng Guan
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jing Guo
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
- Fiber Composite Material Innovation Center of Liaoning Province, Dalian, 116034, P. R. China
| |
Collapse
|
16
|
Zhang B, Xue X, Zhao L, Hou B. Transparent Superhydrophobic and Self-Cleaning Coating. Polymers (Basel) 2024; 16:1876. [PMID: 39000731 PMCID: PMC11244105 DOI: 10.3390/polym16131876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Surface roughness and low surface energy are key elements for the artificial preparation of biomimetic superhydrophobic materials. However, the presence of micro-/nanostructures and the corresponding increase in roughness can increase light scattering, thereby reducing the surface transparency. Therefore, designing and constructing superhydrophobic surfaces that combine superhydrophobicity with high transparency has been a continuous research focus for researchers and engineers. In this study, a transparent superhydrophobic coating was constructed on glass substrates using hydrophobic fumed silica (HF-SiO2) and waterborne polyurethane (WPU) as raw materials, combined with a simple spray-coating technique, resulting in a water contact angle (WCA) of 158.7 ± 1.5° and a sliding angle (SA) of 6.2 ± 1.8°. Characterization tests including SEM, EDS, LSCM, FTIR, and XPS revealed the presence of micron-scale protrusions and a nano-scale porous network composite structure on the surface. The presence of HF-SiO2 not only provided a certain roughness but also effectively reduced surface energy. More importantly, the coating exhibited excellent water-repellent properties, extremely low interfacial adhesion, self-cleaning ability, and high transparency, with the light transmittance of the coated glass substrate reaching 96.1% of that of the bare glass substrate. The series of functional characteristics demonstrated by the transparent superhydrophobic HF-SiO2@WPU coating designed and constructed in this study will play an important role in various applications such as underwater observation windows, building glass facades, automotive glass, and goggles.
Collapse
Affiliation(s)
- Binbin Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Xue
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Zhao
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baorong Hou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
17
|
Luo G, Gao Z, Zhou C, Huang Y, Hu S, Hu Y, Zong C, Lei L, Li H. Well-Tailored Norbornene-Based Fluorinated Copolymers toward Modulating Icephobicity and Mechanical Robustness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11785-11794. [PMID: 38781461 DOI: 10.1021/acs.langmuir.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Well-tailored construction of icephobic surfaces with mechanical robustness and investigation of the structure-property relationships at the molecular level are highly desirable. Herein, a series of norbornene-based fluorinated polyolefin copolymers (FPOR-x) with varying norbornenyl dodecafluoroheptyl ester (NDFHE) molar fractions (0-100 mol %) were well-designed and fabricated via living ring-opening metathesis polymerization (ROMP) employing NDFHE and norbornenyl pentafluorophenyl ester (NPFPE) as the soft and hard segments, respectively. The mechanical and icephobic properties of the fluorinated copolymers can be regulated by adjusting the soft NDFHE contents. As a result, the well-designed norbornene-based copolymers exhibited a wide range of tunable mechanical properties, including tensile strength ranging from 0.2 to 26.4 MPa, elastic modulus ranging from 0.6 to 593.7 MPa, and breaking elongations ranging from 5718.7% to 3.7%, correlating with the proportion of soft NDFHE content. Furthermore, the synergistic interplay between soft and hard segments, particularly the hardness in the majority and softness in the minority or vice versa, could achieve a significant difference in the local modulus and enhance the propagations of cracks within the three-phase regions (soft regions/hard regions/ice), ultimately leading to a significant reduction in ice shear strength. Notably, FPOR-25% with a tensile strength of 12.0 MPa and an elastic modulus of 227.5 MPa exhibited a remarkably low ice shear strength of 57.7 kPa. This study not only highlights the relationship between the polymer molecular structure and surface icephobic properties but also breaks the limitations of icephobic surfaces with a low modulus.
Collapse
Affiliation(s)
- Guangzeng Luo
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Zhilu Gao
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Cuiping Zhou
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Yintan Huang
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Shuangshuang Hu
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Yifan Hu
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Chuanyong Zong
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Lan Lei
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Hui Li
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| |
Collapse
|
18
|
Zhang L, Zhao L, Tan Y, Gong X, Zhu M, Liu Y, Liu Y. Ultra-high flux mesh membranes coated with tannic acid-ZIF-8@MXene composites for efficient oil-water separation. ENVIRONMENTAL RESEARCH 2024; 248:118264. [PMID: 38266894 DOI: 10.1016/j.envres.2024.118264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Oil/water separation has become a global concern due to the increasing discharge of multi-component harmful oily wastewater. Super wetting membranes have been shown to be an effective material for oil/water separation. Ultra-high flux stainless-steel meshes (SSM) with superhydrophilicity and underwater superoleophobicity were fabricated by tannic acid (TA) modified ZIF-8 nanoparticles (TZIF-8) and two-dimensional MXene materials for oil/water separation. The TZIF-8 increased the interlayer space of MXene, enhancing the flux permeation (69,093 L m-2h-1) and rejection of the composite membrane (TZIF-8@MXene/SSM). The TZIF-8@MXene/SSM membrane showed an underwater oil contact angle of 154.2°. The membrane maintained underwater superoleophobic after stability and durability tests, including various pH solutions, organic solvents, reusability, etc. In addition, the oil/water separation efficiency of TZIF-8@MXene/SSM membranes was higher than 99% after treatment in harsh conditions and recycling. The outstanding anti-fouling, stability, durability, and recyclability properties of TZIF-8@MXene/SSM membrane highlight the remarkable potential of membranes for complex oil/water separation process.
Collapse
Affiliation(s)
- Lingrui Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Li Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Yating Tan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xiaobo Gong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education of China, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment, Sichuan Province Higher Education System, Chengdu, Sichuan, 610068, China.
| | - Meng Zhu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education of China, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Yong Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education of China, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment, Sichuan Province Higher Education System, Chengdu, Sichuan, 610068, China
| | - Yucheng Liu
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| |
Collapse
|
19
|
Ghasemlou M, Oladzadabbasabadi N, Ivanova EP, Adhikari B, Barrow CJ. Engineered Sustainable Omniphobic Coatings to Control Liquid Spreading on Food-Contact Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15657-15686. [PMID: 38518221 DOI: 10.1021/acsami.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
The adhesion of sticky liquid foods to a contacting surface can cause many technical challenges. The food manufacturing sector is confronted with many critical issues that can be overcome with long-lasting and highly nonwettable coatings. Nanoengineered biomimetic surfaces with distinct wettability and tunable interfaces have elicited increasing interest for their potential use in addressing a broad variety of scientific and technological applications, such as antifogging, anti-icing, antifouling, antiadhesion, and anticorrosion. Although a large number of nature-inspired surfaces have emerged, food-safe nonwetted surfaces are still in their infancy, and numerous structural design aspects remain unexplored. This Review summarizes the latest scientific research regarding the key principles, fabrication methods, and applications of three important categories of nonwettable surfaces: superhydrophobic, liquid-infused slippery, and re-entrant structured surfaces. The Review is particularly focused on new insights into the antiwetting mechanisms of these nanopatterned structures and discovering efficient platform methodologies to guide their rational design when in contact with food materials. A detailed description of the current opportunities, challenges, and future scale-up possibilities of these nanoengineered surfaces in the food industry is also provided.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
20
|
Ahmad W, Ahmad N, Rasheed S, Nabeel MI, Mohyuddin A, Riaz MT, Hussain D. Silica-Based Superhydrophobic and Superoleophilic Cotton Fabric with Enhanced Self-Cleaning Properties for Oil-Water Separation and Methylene Blue Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5639-5650. [PMID: 38447102 DOI: 10.1021/acs.langmuir.3c02821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Superhydrophobic textiles with multifunctional characteristics are highly desired and have attracted tremendous research attention. This research employs a simple dip-coating method to obtain a fluorine-free silica-based superhydrophobic and superoleophilic cotton fabric. Pristine cotton fabric is coated with SiO2 nanoparticles and octadecylamine. SiO2 nanoparticles are anchored on the cotton fabric to increase surface roughness, and octadecyl amine lowers the surface energy, turning the hydrophilic cotton fabric into superhydrophobic. The designed cotton fabric exhibits a water contact angle of 159° and a sliding angle of 7°. The prepared cotton fabric is characterized by attenuated total reflectance-fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. In addition, the coated fabric reveals excellent features, including mechanical and chemical stability, superhydrophobicity, superoleophilicity, and the self-cleaning ability. SiO2 nanoparticles and octadecylamine-coated cotton fabric demonstrate exceptional oil-water separation and wastewater remediation performance by degrading the methylene blue solution up to 89% under visible light. The oil-water separation ability is tested against five different oils with more than 90% separation efficiency. This strategy has the advantages of low-cost precursors, a simple and scalable coating method, enhanced superhydrophobicity and superoleophilicity, self-cleaning ability, efficient oil-water separation, and exceptional wastewater remediation performance.
Collapse
Affiliation(s)
- Waqas Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Naseer Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sufian Rasheed
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Ikram Nabeel
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University, Multan 60000, Pakistan
| | - Muhammad Tariq Riaz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
21
|
Zuo L, Yang Y, Zhang H, Ma Z, Xin Q, Ding C, Li J. Bioinspired Multiscale Mineralization: From Fundamentals to Potential Applications. Macromol Biosci 2024; 24:e2300348. [PMID: 37689995 DOI: 10.1002/mabi.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The wondrous and imaginative designs of nature have always been an inexhaustible treasure trove for material scientists. Throughout the long evolutionary process, biominerals with hierarchical structures possess some specific advantages such as outstanding mechanical properties, biological functions, and sensing performances, the formation of which (biomineralization) is delicately regulated by organic component. Provoked by the subtle structures and profound principles of nature, bioinspired functional minerals can be designed with the participation of organic molecules. Because of the designable morphology and functions, multiscale mineralization has attracted more and more attention in the areas of medicine, chemistry, biology, and material science. This review provides a summary of current advancements in this extending topic. The mechanisms underlying mineralization is first concisely elucidated. Next, several types of minerals are categorized according to their structural characteristic, as well as the different potential applications of these materials. At last, a comprehensive overview of future developments for bioinspired multiscale mineralization is given. Concentrating on the mechanism of fabrication and broad application prospects of multiscale mineralization, the hope is to provide inspirations for the design of other functional materials.
Collapse
Affiliation(s)
- Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
22
|
Pan S, Hu Q, Zhao Y, Wang Q, Li Y, Qian Y, He C. Fabrication of a Fluorocarbon Low Surface Energy Coating for Anti-Stain Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7516. [PMID: 38138658 PMCID: PMC10744669 DOI: 10.3390/ma16247516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
In the long-term working state, stains such as dust, oil, and charged particles in the environment are prone to deposit on the surface of the power equipment, which has great security risks. To achieve anti-stain performance, fluorocarbon composite coating with a low surface energy was prepared and studied. In this paper, SiO2 nanoparticles were used as inorganic fillers and fluorocarbon resin was used as the substrate to form anti-stain coatings. By adjusting and optimizing the ratio of fillers and organic resins, coatings with different static contact angles were constructed. The optimum composite coating has a contact angle of 151 ± 2° and a surface energy of 9.6 mJ/m2. After high-temperature treatment (up to 200 °C), immersion in corrosive solutions (pH 3-11), and sandpaper abrasion (after 5 abrasion cycles), the coating has been proven to show good thermal, chemical and mechanical stability. Our study provides significant research and market opportunities for the anti-stain application of the fluorocarbon composite coating on power equipment.
Collapse
Affiliation(s)
- Siwei Pan
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, China; (S.P.); (Y.Z.); (Q.W.); (Y.Q.)
| | - Qing Hu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China; (Q.H.); (Y.L.)
| | - Yaohong Zhao
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, China; (S.P.); (Y.Z.); (Q.W.); (Y.Q.)
| | - Qing Wang
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, China; (S.P.); (Y.Z.); (Q.W.); (Y.Q.)
| | - Yuanyuan Li
- School of Physics and Technology, Wuhan University, Wuhan 430072, China; (Q.H.); (Y.L.)
| | - Yihua Qian
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, China; (S.P.); (Y.Z.); (Q.W.); (Y.Q.)
| | - Chunqing He
- School of Physics and Technology, Wuhan University, Wuhan 430072, China; (Q.H.); (Y.L.)
| |
Collapse
|
23
|
Ge H, Liu Y, Liu F. Up to Date Review of Nature-Inspired Superhydrophobic Textiles: Fabrication and Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7015. [PMID: 37959613 PMCID: PMC10649416 DOI: 10.3390/ma16217015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
In recent years, with the rapid development of the economy and great progress in science and technology, people have become increasingly concerned about their quality of life and physical health. In order to pursue a higher life, various functional and biomimetic textiles have emerged one after another and have been sought after by people. There are many animal and plant surfaces with special wettability in nature, and their unique "micro-nano structures" and low surface energy have attracted extensive attention from researchers. Researchers have prepared various textiles with superhydrophobic features by mimicking these unique structures. This review introduces the typical organisms with superhydrophobicity in nature, using lotus, water strider, and cicada as examples, and describes their morphological features and excellent superhydrophobicity. The theoretical model, commonly used raw materials, and modification technology of superhydrophobic surfaces are analyzed. In addition, the application areas and the current study status of superhydrophobic surfaces for textiles are also summarized. Finally, the development prospects for superhydrophobic textiles based on bionic technology are discussed.
Collapse
Affiliation(s)
| | - Yu Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| | - Fujuan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| |
Collapse
|
24
|
Zhang Y, Guo Z. Transition metal compounds: From properties, applications to wettability regulation. Adv Colloid Interface Sci 2023; 321:103027. [PMID: 37883847 DOI: 10.1016/j.cis.2023.103027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Transition metal compounds (TMCs) have the advantages of abundant reserves, low cost, non-toxic and pollution-free, and have attracted wide attention in recent years. With the development of two-dimensional layered materials, a new two-dimensional transition metal carbonitride (MXene) has attracted extensive attention due to its excellent physicochemical properties such as gas selectivity, photocatalytic properties, electromagnetic interference shielding and photothermal properties. They are widely used in gas sensors, oil/water separation, wastewater and waste-oil treatment, cancer treatment, seawater desalination, strain sensors, medical materials and some energy storage materials. In this view, we aim to emphatically summarize MXene with their properties, applications and their wettability regulation in different applications. In addition, the properties of transition metal oxides (TMOs) and other TMCs and their wettability regulation applications are also discussed.
Collapse
Affiliation(s)
- Yidan Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
25
|
Qin J, Lu H. A review of self-cleaning coatings for solar photovoltaic systems: theory, materials, preparation, and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91591-91616. [PMID: 37498426 DOI: 10.1007/s11356-023-28550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023]
Abstract
Photovoltaic power generation is developing rapidly with the approval of The Paris Agreement in 2015. However, there are many dust deposition problems that occur in desert and plateau areas. Traditional cleaning methods such as manual cleaning and mechanical cleaning are unstable and produce a large economic burden. Therefore, self-cleaning coatings, which have unique mechanisms and high adaptability, have attracted wide attention in the photovoltaic industry and scientific community, especially the super-hydrophobic and super-hydrophilic coatings. The paper systematically reviewed the theory, materials, preparation, and applications of the super-hydrophobic and super-hydrophilic coatings on the photovoltaic modules. Super-hydrophobic materials such as organosilicon compounds, fluorinated polymers, and some inorganic materials are popular. TiO2 is widely used to prepare super-hydrophilic coatings on glass covers of photovoltaic panels due to its good photocatalytic activity. CVD-based surface treatment is suitable for preparing photovoltaic self-cleaning surfaces. These methods prepare self-cleaning surfaces by reacting gaseous substances with hot surfaces and depositing them on the surface. They are efficient but difficult to control accuracy. When applied to photovoltaic modules, it is crucial to consider the factors such as self-cleaning, transparency, anti-reflection, anti-icing, and durability. In future research, it is significant to improve the transparency, durability, and self-cleaning properties of coatings.
Collapse
Affiliation(s)
- Jing Qin
- Laboratory of Energy Carbon Neutrality, School of Electrical Engineering, Xinjiang University, Urumqi, 830047, China
| | - Hao Lu
- Laboratory of Energy Carbon Neutrality, School of Electrical Engineering, Xinjiang University, Urumqi, 830047, China.
- Engineering Research Center of Northwest Energy Carbon Neutrality, Ministry of Education, Xinjiang University, Urumqi, 830047, China.
- Center of New Energy Research, School of Future Technology, Xinjiang University, Urumqi, 830047, China.
| |
Collapse
|
26
|
Chang Y, Liu F. Review of Waterproof Breathable Membranes: Preparation, Performance and Applications in the Textile Field. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5339. [PMID: 37570043 PMCID: PMC10419557 DOI: 10.3390/ma16155339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Waterproof breathable membranes (WBMs) characterized by a specific internal structure, allowing air and water vapor to be transferred from one side to the other while preventing liquid water penetration, have attracted much attention from researchers. WBMs combine lamination and other technologies with textile materials to form waterproof breathable fabrics, which play a key role in outdoor sports clothing, medical clothing, military clothing, etc. Herein, a systematic overview of the recent progress of WBMs is provided, including the principles of waterproofness and breathability, common preparation methods and the applications of WBMs. Discussion starts with the waterproof and breathable mechanisms of two different membranes: hydrophilic non-porous membranes and hydrophobic microporous membranes. Then evaluation criteria and common preparation methods for WBMs are presented. In addition, treatment processes that promote water vapor transmission and prominent applications in the textile field are comprehensively analyzed. Finally, the challenges and future perspectives of WBMs are also explored.
Collapse
Affiliation(s)
| | - Fujuan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| |
Collapse
|
27
|
Wang Y, Ge-Zhang S, Mu P, Wang X, Li S, Qiao L, Mu H. Advances in Sol-Gel-Based Superhydrophobic Coatings for Wood: A Review. Int J Mol Sci 2023; 24:ijms24119675. [PMID: 37298624 DOI: 10.3390/ijms24119675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
As the focus of architecture, furniture, and other fields, wood has attracted extensive attention for its many advantages, such as environmental friendliness and excellent mechanical properties. Inspired by the wetting model of natural lotus leaves, researchers prepared superhydrophobic coatings with strong mechanical properties and good durability on the modified wood surface. The prepared superhydrophobic coating has achieved functions such as oil-water separation and self-cleaning. At present, some methods such as the sol-gel method, the etching method, graft copolymerization, and the layer-by-layer self-assembly method can be used to prepare superhydrophobic surfaces, which are widely used in biology, the textile industry, national defense, the military industry, and many other fields. However, most methods for preparing superhydrophobic coatings on wood surfaces are limited by reaction conditions and process control, with low coating preparation efficiency and insufficiently fine nanostructures. The sol-gel process is suitable for large-scale industrial production due to its simple preparation method, easy process control, and low cost. In this paper, the research progress on wood superhydrophobic coatings is summarized. Taking the sol-gel method with silicide as an example, the preparation methods of superhydrophobic coatings on wood surfaces under different acid-base catalysis processes are discussed in detail. The latest progress in the preparation of superhydrophobic coatings by the sol-gel method at home and abroad is reviewed, and the future development of superhydrophobic surfaces is prospected.
Collapse
Affiliation(s)
- Yudong Wang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Shangjie Ge-Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Pingxuan Mu
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Xueqing Wang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Shaoyi Li
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Lingling Qiao
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Hongbo Mu
- College of Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
28
|
Krasanakis F, Chatzaki TM, Chrissopoulou K, Anastasiadis SH. Modifying flexible polymer films towards superhydrophobicity and superoleophobicity by utilizing water-based nanohybrid coatings. NANOSCALE 2023; 15:6984-6998. [PMID: 36974833 DOI: 10.1039/d2nr06780c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of superhydrophobic and/or superoleophobic materials has been attracting the attention of the scientific community due to their wide range of applications. In this work, waterborne nanocomposite coatings were developed to be deposited onto flexible polyethylene films in order to modify them into superhydrophobic and even superoleophobic. The coatings consisted of either a low surface energy mixture of silanes/siloxanes or a fluoropolymer in conjunction with the appropriate inorganic nanoparticles that provide the necessary roughness; the effects of nanoparticle type and content on the behaviour was investigated. In both cases, the surface properties were investigated, and the polymer films were found to be superhydrophobic. Depending on the system utilized, the final material exhibited either low water adhesion, thus, being water repellent, or high water adhesion. The use of the fluoropolymer has led to coatings that exhibited superoleophobic behaviour for various organic compounds, as well. The application of the coatings did not influence either the optical transparency or the thermal properties of the polyethylene films. Moreover, the coated surfaces show similar or even better mechanical properties, scratch resistance and chemical durability in comparison to the neat LDPE film.
Collapse
Affiliation(s)
- Fanourios Krasanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 711 10 Heraklion, Crete, Greece.
| | - Thaleia-Michaela Chatzaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 711 10 Heraklion, Crete, Greece.
- Department of Chemistry, University of Crete, 710 03 Heraklion, Crete, Greece
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 711 10 Heraklion, Crete, Greece.
| | - Spiros H Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 711 10 Heraklion, Crete, Greece.
- Department of Chemistry, University of Crete, 710 03 Heraklion, Crete, Greece
| |
Collapse
|
29
|
Lippert D, Burnham J, Seo D. Active Control of Contact Angles of Various Liquids from the Response of Self-Assembled Thiol Molecules to Electric Current. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5021-5030. [PMID: 36972418 PMCID: PMC10100822 DOI: 10.1021/acs.langmuir.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The ability to change wettability in situ would realize active surfaces that can change their functionality and adapt to different environments. This article reports a new and easy method that controls surface wettability in situ. In doing so, three hypotheses were to be proven. First, thiol molecules with dipole moments at the end that were adsorbed onto gold could change the contact angles of nonpolar or slightly polar liquids when an electric current was provided at the gold surface without having to ionize the dipole. It was also hypothesized that the molecules would undergo conformation changes as their dipoles would align with the magnetic field induced by the applied current. Second, the ability to change contact angles was modified by mixing ethanethiol, a much shorter thiol with no dipole, with the abovementioned thiol molecules because it would provide space for the thiol molecules to undergo conformation changes. Third, the indirect evidence of the conformation change was verified with attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy. Four thiol molecules that controlled the contact angles of deionized water and hydrocarbon liquids were identified. The abilities of those four molecules in changing the contact angles were modified by adding ethanethiol. A quartz crystal microbalance was used to infer the possible change in the distance between the adsorbed thiol molecules by investigating adsorption kinetics. The changes in FT-IR peaks with respect to applied currents were also presented as indirect evidence for the conformation change. This method was compared with other reported methods that control wettability in situ. The differences between the voltage-driven method to induce conformation changes of thiol molecules and the method presented in this paper were further discussed to emphasize that the mechanism by which the conformation change was induced in this article was most likely because of the dipole-electric current interaction.
Collapse
Affiliation(s)
| | | | - Dongjin Seo
- . Tel: +1-801-422-8570.
Fax: +1-801-422-0151
| |
Collapse
|
30
|
Liu N, Sun Q, Yang Z, Shan L, Wang Z, Li H. Wrinkled Interfaces: Taking Advantage of Anisotropic Wrinkling to Periodically Pattern Polymer Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207210. [PMID: 36775851 PMCID: PMC10131883 DOI: 10.1002/advs.202207210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Periodically patterned surfaces can cause special surface properties and are employed as functional building blocks in many devices, yet remaining challenges in fabrication. Advancements in fabricating structured polymer surfaces for obtaining periodic patterns are accomplished by adopting "top-down" strategies based on self-assembly or physico-chemical growth of atoms, molecules, or particles or "bottom-up" strategies ranging from traditional micromolding (embossing) or micro/nanoimprinting to novel laser-induced periodic surface structure, soft lithography, or direct laser interference patterning among others. Thus, technological advances directly promote higher resolution capabilities. Contrasted with the above techniques requiring highly sophisticated tools, surface instabilities taking advantage of the intrinsic properties of polymers induce surface wrinkling in order to fabricate periodically oriented wrinkled patterns. Such abundant and elaborate patterns are obtained as a result of self-organizing processes that are rather difficult if not impossible to fabricate through conventional patterning techniques. Focusing on oriented wrinkles, this review thoroughly describes the formation mechanisms and fabrication approaches for oriented wrinkles, as well as their fine-tuning in the wavelength, amplitude, and orientation control. Finally, the major applications in which oriented wrinkled interfaces are already in use or may be prospective in the near future are overviewed.
Collapse
Affiliation(s)
- Ning Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Qichao Sun
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhensheng Yang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Linna Shan
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhiying Wang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Hao Li
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| |
Collapse
|
31
|
Wang J, Zhang Y, He Q. Stretchable superhydrophobic fluororubber fabricated by transferring mesh microstructures. SOFT MATTER 2023; 19:1560-1568. [PMID: 36748355 DOI: 10.1039/d2sm01677j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stretchable flexible superhydrophobic surfaces are in great demand to achieve waterproofing performance in aerospace, electronic industry, and other fields. However, there are still many challenges in developing superhydrophobic surfaces, which maintain their wetting characteristics under high strain conditions with good tensile durability. Here, we propose a simple and efficient method to prepare a stretchable superhydrophobic fluororubber surface composed of hierarchical micro-convexities, which are orderly arranged and interconnected. Its peculiar structure shows excellent superhydrophobicity (155.48 ± 1.97°) and high water sliding angle due to Cassie's impregnating wetting regime. Due to the special structure and high mechanical strength of the surface, it can still maintain its superhydrophobic property after a variety of durability tests, including various stretching tests, sandpaper abrasion, sand impact, and high-temperature treatment. In addition, the surface can still realize the lossless transfer of water droplets even at large stretching strains, which is expected to be applied to microfluidic devices under extreme working conditions.
Collapse
Affiliation(s)
- Jiwen Wang
- School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, Henan, China
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, Sichuan, 618307, China
- Henan Joint International Research Laboratory of Man Machine Environment and Emergency Management, Anyang 455000, Henan, China.
| | - Yanbin Zhang
- School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Qiang He
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, Sichuan, 618307, China
- Henan Joint International Research Laboratory of Man Machine Environment and Emergency Management, Anyang 455000, Henan, China.
| |
Collapse
|
32
|
Li X, Yang K, Yuan Z, Liu S, Du J, Li C, Meng S. Recent Advances on the Abrasion Resistance Enhancements and Applications of Superhydrophobic Materials. CHEM REC 2023; 23:e202200298. [PMID: 36779511 DOI: 10.1002/tcr.202200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Indexed: 02/14/2023]
Abstract
Researches on superhydrophobicity have been overwhelming and have shown great advantages in various fields. However, the abrasion resistance of superhydrophobic structures was usually poor, and they were easily damaged by external force or harsh environment, which greatly limited the applications of superhydrophobic surfaces. Much attention has been paid to improving the abrasion resistance of superhydrophobic materials by researchers. In this review, aimed at the advances on improving the abrasion resistance of superhydrophobic surfaces, it was summarized and compared three enhancement strategies including the reasonably design of micro-nano structures, the adoption of adhesives, and the preparation of self-healing surface. Finally, the applications of typical superhydrophobic materials with abrasion resistance were reviewed in various fields. In order to broaden the application fields of superhydrophobic materials, the abarasion resistance should be further improved. Therefore, we proposed the ideas for the future development of superhydrophobic materials with higher abrasion resistance. We hope that this review will provide a new approach to the preparation and development of stable superhydrophobic surfaces with higher abrasion resistance.
Collapse
Affiliation(s)
- Xinyi Li
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Kangli Yang
- Department of Teaching, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Zhiqing Yuan
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Shujuan Liu
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Juan Du
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Cancheng Li
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Shoutong Meng
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| |
Collapse
|
33
|
Baig N, Kammakakam I. Special wettable Azadirachta indica leaves like microarchitecture mesh filtration membrane produced by galvanic replacement reaction for layered oil/water separation. CHEMOSPHERE 2023; 313:137544. [PMID: 36528151 DOI: 10.1016/j.chemosphere.2022.137544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The oil/water separation has received significant attention due to its critical environmental impact. The special wettable surfaces are highly desired to deal with the oil/water mixtures. This work demonstrates a simple two-step method to develop a superhydrophobic Azadirachta indica leaves like Ag-decorated electrochemically copper-coated stainless-steel mesh (SH-AIL-Ag-EC-Cu-Mesh) for efficient separation of oil/water mixtures. In the first step, the electrodeposition of the copper took place on the mesh surface at a suitable applied potential. In the second step, the galvanic replacement reaction between the Ag+ and electrodeposited Cu produced the fascinating superhydrophobic Ag leaves on the mesh surface. The SH-AIL-Ag-EC-Cu-Mesh was thoroughly characterized by the X-ray photoelectron spectroscopy (XPS), Energy Dispersive X-Ray Spectroscopy (EDX), elemental mapping, surface wettability analysis, and the contact analyzer. The morphological analysis has shown the unique leafy structures of the reduced Ag on the surface of the mesh. The XPS analysis has confirmed that most of the Ag present on the surface is in zerovalent form. The combination of the electrodeposition and the displacement reaction between the copper and the silver turned the surface superhydrophobic, and the water contact angle was significantly improved from 115° to 158°. The designed SH-AIL-Ag-EC-Cu-Mesh has shown excellent selectivity for oil in oil/water mixtures with a separation efficiency of 99.1% with an exceptionally high flux of 8963 L m-2h-1. The SH-AIL-Ag-EC-Cu-Mesh has shown excellent reusability, and after 15 cycles of separation, no significant decrease in the oil/water separation efficiency was observed.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Irshad Kammakakam
- Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487-0203, USA.
| |
Collapse
|
34
|
Ivvala J, Arora HS, Grewal HS. Towards Development of Sustainable Metallic Superhydrophobic Materials. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Li Z, Guo Z. Self-healing system of superhydrophobic surfaces inspired from and beyond nature. NANOSCALE 2023; 15:1493-1512. [PMID: 36601906 DOI: 10.1039/d2nr05952e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Superhydrophobic surfaces show wide prospects in a variety of applications requiring self-cleaning, anti-fog, anti-ice, anti-corrosion and anti-fouling properties, which have attracted the attention of many researchers. However, superhydrophobic surfaces are inevitably affected by chemical corrosion, scratches and wear in practical applications, resulting in the loss of superhydrophobicity. To solve this problem, researchers have developed superhydrophobic surfaces with self-healing properties. In this paper, the research achievements of self-healing superhydrophobic materials in recent years are summarized, and the preparation and repair principle of self-healing superhydrophobic surfaces are introduced from three aspects: surface chemical composition repair, surface roughness repair and double repair. In addition, some multifunctional self-healing superhydrophobic surfaces are introduced, such as conductive, stretchable, antibacterial, etc. Finally, in order to provide a reference for the preparation of widely used long-acting superhydrophobic materials, some existing problems and future development prospects are described in order to attract more researchers' attention and promote the development of this field.
Collapse
Affiliation(s)
- Zijie Li
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
36
|
Zhao Z, Zhang Q, Song X, Chen J, Ding Y, Wu H, Guo S. Versatile Melanin-Like Coatings with Hierarchical Structure toward Personal Thermal Management, Anti-Icing/Deicing, and UV Protection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3522-3533. [PMID: 36600550 DOI: 10.1021/acsami.2c20714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Superhydrophobic photothermal coatings are promising for multifunctional applications due to the efficient use of solar energy, but the current challenge is to seek one easy-to-prepare material with high photothermal performance. Herein, inspired by mussel adhesion and lotus leaf surfaces, we developed superhydrophobic photothermal coatings with hierarchical structure by depositing melanin-like polydopamine (PDA) and dip-coating polydimethylsiloxane (PDMS)/hydrophobic fumed silica (SiO2) sequentially. Benefitting from the efficient photothermal conversion performance of PDA, the coated fabric can rapidly warm up to 100 °C under 100 mW/cm2 sun irradiation. Meanwhile, the coatings show excellent superhydrophobic properties (WCA of 163°), which not only prevent the adhesion of the contaminant from maintaining a long-term and efficient photothermal performance but also help the fabric to own outstanding passive anti-icing and active deicing performances. Furthermore, the superhydrophobic properties of the coatings can be maintained after sandpaper abrasion, repeat tape-peeling, and ultrasonication. In addition, superior UV protection of the coatings can meet the long-term service conditions under outdoor sunlight. The PDA-based superhydrophobic photothermal coatings are believed to inspire new strategies for solar-driven multifunctional applications such as personal thermal management, anti-icing/deicing of variously shaped components, photothermal antibacterial, and so on.
Collapse
Affiliation(s)
- Zhiheng Zhao
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Qi Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xudong Song
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jing Chen
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yitong Ding
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
37
|
He W, Ou J, Wang F, Lei S, Fang X, Li W, Amirfazli A. Transparent and Superhydrophobic Coating via One-step Spraying for Cultural Relic Protection against Water and Moisture. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Yu X, Li H, Song Y. Ink-Drop Dynamics on Chemically Modified Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15453-15462. [PMID: 36502385 DOI: 10.1021/acs.langmuir.2c03108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inkjet printing provides an efficient routine for distributing functional materials into locations with well-designed arrangements. As one of the most critical factors in determining the printing quality, the impacting and depositing behaviors of ink drops largely depend on the wettability of the target surface. In addition to printing on solids with intrinsic wettability, various ink-drop impact dynamics and deposition morphologies have been reported through modifying the surface wettability including both homogeneous and heterogeneous, which opens up possibilities for applications such as advanced optic/electric device fabrication and highly sensitive detection. In this Perspective, we summarize recent progress in the modification methods of solid surface wettability and their capability in modulating the ink-drop impacting and depositing dynamics. The challenges facing ink-drop regulation by chemical modification methodologies are also envisaged at the end of the Perspective.
Collapse
Affiliation(s)
- Xinye Yu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
39
|
Si W, Guo Z. Enhancing the lifespan and durability of superamphiphobic surfaces for potential industrial applications: A review. Adv Colloid Interface Sci 2022; 310:102797. [DOI: 10.1016/j.cis.2022.102797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/01/2022]
|
40
|
Ye X, Li Y, Zhang Y, Wang P, Hu D. Superhydrophobic Polyurethane Membrane with a Biomimetically Hierarchical Structure for Self-Cleaning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49274-49283. [PMID: 36259519 DOI: 10.1021/acsami.2c13208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a stable and durable hexadecyltrimethoxysilane (HDTMS)/thermoplastic polyurethane (TPU) superhydrophobic film is successfully prepared by a simple and low-cost two-step method, namely, carrying out biomimetically hierarchical structures and low surface energy material modification concurrently. Meanwhile, effective parameters affecting the water contact angle (WCA) are studied and optimized. More importantly, under optimum parameters, the maximum WCA is 165°, the minimum slide angle (SA) is 3°, and the adhesion force is 13 μN, showing good self-cleaning performance. Besides, considerable mechanical stability to withstand 4000 tension or 5000 compression cycles, breathability, and moisture penetrability, as well as chemical resistance with sustained superhydrophobic properties in various harsh environments, are presented.
Collapse
Affiliation(s)
- Xu Ye
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China
| | - Yuanyuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China
| | - Yan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China
| | - Ping Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China
| | - Dongmei Hu
- Key Laboratory of Multifunctional and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
41
|
Peng J, Wu L, Zhang H, Wang B, Si Y, Jin S, Zhu H. Research progress on eco-friendly superhydrophobic materials in environment, energy and biology. Chem Commun (Camb) 2022; 58:11201-11219. [PMID: 36125075 DOI: 10.1039/d2cc03899d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past few years, bioinspired eco-friendly superhydrophobic materials (EFSMs) have made great breakthroughs, especially in the fields of environment, energy and biology, which have made remarkable contributions to the sustainable development of the natural environment. However, some potential challenges still exist, which urgently need to be systematically summarized to guide the future development of this field. Herein, in this review, initially, we discuss the five typical superhydrophobic models, namely, the Wenzel, Cassie, Wenzel-Cassie, "lotus", and "gecko" models. Then, the existence of superhydrophobic creatures in nature and artificial EFSMs are summarized. Then, we focus on the applications of EFSMs in the fields of environment (self-cleaning, wastewater purification, and membrane distillation), energy (solar evaporation, heat accumulation, and batteries), and biology (biosensors, biomedicine, antibacterial, and food packaging). Finally, the challenges and developments of eco-friendly superhydrophobic materials are highlighted.
Collapse
Affiliation(s)
- Jiao Peng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China.
| | - Laiyan Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Hui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China.
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518000, P. R. China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hongkong SAR 999077, P. R. China.
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China.
| | - Hai Zhu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China. .,China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
42
|
Chen H, Li X, Li D. Superhydrophilic–superhydrophobic patterned surfaces: From simplified fabrication to emerging applications. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0013222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Superhydrophilic–superhydrophobic patterned surfaces constitute a branch of surface chemistry involving the two extreme states of superhydrophilicity and superhydrophobicity combined on the same surface in precise patterns. Such surfaces have many advantages, including controllable wettability, enrichment ability, accessibility, and the ability to manipulate and pattern water droplets, and they offer new functionalities and possibilities for a wide variety of emerging applications, such as microarrays, biomedical assays, microfluidics, and environmental protection. This review presents the basic theory, simplified fabrication, and emerging applications of superhydrophilic–superhydrophobic patterned surfaces. First, the fundamental theories of wettability that explain the spreading of a droplet on a solid surface are described. Then, the fabrication methods for preparing superhydrophilic–superhydrophobic patterned surfaces are introduced, and the emerging applications of such surfaces that are currently being explored are highlighted. Finally, the remaining challenges of constructing such surfaces and future applications that would benefit from their use are discussed.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiaoping Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
43
|
Parsimehr H, Ehsani A. Stimuli-Responsive Electrochemical Energy Storage Devices. CHEM REC 2022; 22:e202200075. [PMID: 35832003 DOI: 10.1002/tcr.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/24/2022] [Indexed: 11/11/2022]
Abstract
Electrochemical energy storage (EES) devices have been swiftly developed in recent years. Stimuli-responsive EES devices that respond to different external stimuli are considered the most advanced EES devices. The stimuli-responsive EES devices enhanced the performance and applications of the EES devices. The capability of the EES devices to respond to the various external stimuli due to produced advanced EES devices that distinguished the best performance and interactions in different situations. The stimuli-responsive EES devices have responsive behavior to different external stimuli including chemical compounds, electricity, photons, mechanical tensions, and temperature. All of these advanced responsiveness behaviors have originated from the functionality and specific structure of the EES devices. The multi-responsive EES devices have been recognized as the next generation of stimuli-responsive EES devices. There are two main steps in developing stimuli-responsive EES devices in the future. The first step is the combination of the economical, environmental, electrochemical, and multi-responsiveness priorities in an EES device. The second step is obtaining some advanced properties such as biocompatibility, flexibility, stretchability, transparency, and wearability in novel stimuli-responsive EES devices. Future studies on stimuli-responsive EES devices will be allocated to merging these significant two steps to improve the performance of the stimuli-responsive EES devices to challenge complicated situations.
Collapse
Affiliation(s)
- Hamidreza Parsimehr
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
44
|
Zheng X, Zhang H, Liu M, Zhou X, Wang H, Jiang R. Porous sponge with surface modified for superhydrophobic/superoleophilic and special functionalization. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Effect of the Composition of Copolymers Based on Glycidyl Methacrylate and Fluoroalkyl Methacrylates on the Free Energy and Lyophilic Properties of the Modified Surface. Polymers (Basel) 2022; 14:polym14101960. [PMID: 35631841 PMCID: PMC9145383 DOI: 10.3390/polym14101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
This study proposes to use reactive copolymers based on glycidyl methacrylate and fluoroalkyl methacrylates with a low fluorine content in the monomer unit as agents to reduce the surface free energy (SFE). This work reveals the effect of the structure and composition of copolymers on the SFE and water-repellent properties of these coatings. On a smooth surface, coatings based on copolymers of glycidyl methacrylate and fluoroalkyl methacrylates with fluorine atoms in the monomer unit ranging from three to seven are characterized by SFE values in the range from 25 to 13 mN/m, which is comparable to the values for polyhedral oligomeric silsesquioxanes and perfluoroalkyl acrylates. On textured aluminum surfaces, the obtained coatings provide time-stable superhydrophobic properties with contact angles up to 170° and sliding angles up to 2°. The possibility of using copolymers based on glycidyl methacrylate and fluoroalkyl methacrylates for the creation of self-cleaning polymer coatings is shown.
Collapse
|
46
|
Disjoining pressure analysis of the lubricant nanofilm stability of liquid-infused surface upon lubricant depletion. J Colloid Interface Sci 2022; 618:121-128. [PMID: 35334360 DOI: 10.1016/j.jcis.2022.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The structure of the slippery layer and the evolution of functional properties of a lubricant infused substrate (LIS) is determined by the isotherm of disjoining pressure in the lubricant film. METHODS The macroscopic theory of van der Waals forces was applied to the layered system used to model the structure and properties of LIS. For a lubricant layer sandwiched between the flat substrate and air or water, the isotherms of disjoining pressure were calculated and their analysis was used to conclude about stability of LIS. FINDINGS The results obtained for silicone oil and perfluorodecalin on smooth and porous hydrophilic and hydrophobic solids allow selecting the LIS components corresponding to stability of lubricant films in air and water. It was found that for hydrophilic substrates in conditions of lubricant depletion, silicone oil and perfluorodecalin show lubricant film stability in both air and water. On flat or post microtexture hydrophobic substrate with flat tops, the perfluorodecalin lubricating layer is typically stable in air and unstable in water. In contrast, silicone oil lubricating layer demonstrates the stability in a wide range of lubricant film thicknesses for the hydrophobic substrate with flat-top textures in water, however, it can be unstable in air.
Collapse
|
47
|
Xie A, Chen X, Ai X, Wang Y, Wang Y, Zhu X, Xing T, Chen G. Novel fabrication of robust superhydrophobic polyester fabric with eugenol based on thiol-ene click chemistry for self-cleaning and water–oil separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Abstract
Superhydrophobic surfaces have great potential for self-cleaning, anti-icing, and drag-reducing because of their water repellency property. However, their super-hydrophobicity is destroyed under mechanical abrasion due to the vulnerability of the delicate surface textures. Here, we demonstrate a strategy to create a robust superhydrophobic surface using MXene and fluoridated silica as functional fillers in epoxy resin. The fluoridated silica produces low surface energy, MXene serves as a wear-resistant phase and epoxy resin is the binding matrix. The composite coating demonstrates a self-cleaning effect to remove particles from the superhydrophobic surface by rolling water droplets. Moreover, the coating exhibits excellent mechanical durability by standing abrasion to maintain super-hydrophobicity. The superhydrophobic composite coating has the advantages of low cost and feasibility and has the potential for expandable industrial promotion.
Collapse
|
49
|
Lu C, Gao Y, Yu S, Zhou H, Wang X, Li L. Non-Fluorinated Flexible Superhydrophobic Surface with Excellent Mechanical Durability and Self-Cleaning Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4750-4758. [PMID: 35029969 DOI: 10.1021/acsami.1c21840] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although plenty of superhydrophobic surfaces have been developed owing to their tremendous potential applications, it is still a great challenge for the superhydrophobic surfaces to possess environmental friendliness, biocompatibility, and mechanical durability simultaneously. Herein, a non-fluorinated flexible superhydrophobic surface was designed by constructing a film-substrate system with labyrinth-like wrinkles combining an intrinsically hydrophobic Zn film and a polydimethylsiloxane (PDMS) substrate. Excellent superhydrophobicity with a contact angle up to 168.5° and a slide angle as low as 0° has been achieved on the Zn/PDMS surface, which is attributed to the micro-/nano-textured structures of the labyrinth-like wrinkles, providing sufficient air pockets to form a stable Cassie-Baxter state. Furthermore, the Zn/PDMS surface retains excellent superhydrophobicity under stretching, bending, and twisting mechanical deformation up to 500 cycles due to the stability of the micro-/nano-textured structures of the labyrinth-like wrinkles protected by the fantastic self-healing ability of the micro-cracks. Additionally, the Zn/PDMS superhydrophobic surface possesses an outstanding self-cleaning performance for various contaminants. The present work provides a valuable routine to design non-fluorinated flexible superhydrophobic surfaces with superb mechanical durability and self-cleaning property as promising functional layers for flexible electronics, wearable devices, biomedical engineering, and so forth.
Collapse
Affiliation(s)
- Chenxi Lu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310012, P. R. China
| | - Yuan Gao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310012, P. R. China
| | - Senjiang Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310012, P. R. China
| | - Hong Zhou
- Department of Physics, China Jiliang University, Hangzhou 310018, P. R. China
| | - Xin Wang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310012, P. R. China
| | - Lingwei Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310012, P. R. China
| |
Collapse
|
50
|
Wan J, Xu J, Zhu S, Li J, Wang B, Zeng J, Li J, Chen K. Eco-Friendly Superhydrophobic Composites with Thermostability, UV Resistance, and Coating Transparency. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61681-61692. [PMID: 34913682 DOI: 10.1021/acsami.1c20419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the market demand for biofiber assemblies endowed with superhydrophobicity being huge, the current approaches to their production are complicated, time-consuming, and even pose a serious threat to the environment. Here, we report a simple surface treatment strategy to prepare environmentally friendly superhydrophobic biofiber composites. The obtained samples have certain UV resistance properties, which are mainly determined by the titanium dioxide (TiO2) dosage. Additionally, the sample has excellent thermal stability, and the contact angle is maintained at 153.26° after heat treatment at 140 °C for 1 h. Quite encouragingly, thermal annealing of samples can transform translucent coatings into transparent structures and increase the tensile strength. The results also showed that this strategy could be integrated into the mass production process of other biofiber components as coating, such as coated paper, pulp boards, cotton gauzes, tissues, and so forth. Due to the facile preparation and environment-friendliness, this sustainable paper-based product can be used in diversified applications: packaging and storage of liquid food, protection of ancient books, UV- and rain-proof materials, and teaching demonstrations relevant to bionics, among others.
Collapse
Affiliation(s)
- Jinming Wan
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Shiyun Zhu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jinpeng Li
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jinsong Zeng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Li
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Kefu Chen
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| |
Collapse
|