1
|
Siddiqui AJ, Patel M, Jahan S, Abdelgadir A, Alam MJ, Alshahrani MM, Alturaiki W, Sachidanandan M, Khan A, Badraoui R, Adnan M. Silver Nanoparticles Derived from Probiotic Lactobacillus casei-a Novel Approach for Combating Bacterial Infections and Cancer. Probiotics Antimicrob Proteins 2025; 17:1277-1294. [PMID: 38085438 DOI: 10.1007/s12602-023-10201-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 05/07/2025]
Abstract
In the face of rising antibiotic resistance and the need for novel therapeutic approaches against cancer, the present study delves into the various facets of biosynthesized silver nanoparticles (AgNPs) derived from the probiotic strain Lactobacillus casei (AgNPs-LC), assessing their efficacy in combating bacterial infections, disrupting biofilm formation, interfering with quorum sensing mechanisms, and exhibiting anti-cancer properties. The results showed that the AgNPs-LC had a spherical shape with an average size of 15 nm. The biosynthesized AgNPs-LC showed a symmetrical absorption spectrum with a peak at 458 nm with a diameter of 5-20 nm. AgNPs-LC exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria and inhibited the biofilm formation (> 50% at sub-MIC) and quorum sensing-mediated virulence factors, such as the production of violacein in C. violaceum (> 80% at sub-MIC), pyocyanin in P. aeruginosa (> 70% at sub-MIC), and prodigiosin in S. marcescens (> 80% at sub-MIC). The exopolysaccharides (EPS) were also found to reduce in the presence of AgNPs-LC. Furthermore, the AgNPs-LC showed anti-cancer and anti-metastasis activity via inhibiting cell migration and invasion of human lung cancer (A-549) cells. Overall, the present study brings out the multifaceted therapeutic capabilities of AgNPs-LC which offer exciting prospects for the development of innovative biomedical and pharmaceutical interventions, making AgNPs-LC a versatile and promising candidate for a wide range of applications in healthcare and medicine. However, further research is essential to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia.
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Abdelmushin Abdelgadir
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran, 61441, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 22602, India
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1017 La Rabta, Tunis, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| |
Collapse
|
2
|
Niu L, Lin Z, Hu W, Yang D, Shen H, Guo F. Silver nanoparticles derived from Streptomyces sp. YJD18 with multifunctional biomedical applications. Sci Rep 2025; 15:18139. [PMID: 40415041 DOI: 10.1038/s41598-025-02925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
A sustainable and energy-efficient approach was developed for the biosynthesis of silver nanoparticles (AgNPs) using a cell-free supernatant derived from Streptomyces sp. strain YJD18, an actinomycete isolated from saline soil. Optimized synthesis conditions, including pH 10 and a biomass concentration of 5 g/100 mL, facilitated the rapid formation of AgNPs. The highest yield was achieved by mixing the supernatant with silver nitrate (AgNO₃) at a 4:1 ratio, followed by incubation at 100 °C for 15 min.The synthesized AgNPs exhibited multifunctional bioactivities, including antibacterial, anticancer, antioxidant, and wound-healing properties, as confirmed by UV-Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), Fourier-transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDX). The formation of AgNPs was indicated by a characteristic color change, with UV-Vis spectral analysis revealing a distinct absorption peak at 420 nm. Morphological analysis showed that the nanoparticles were predominantly spherical, with a few triangular and cylindrical structures, measuring 50-80 nm in size, with a polydispersity index (PDI) of 0.312 and a zeta potential of -24.0 mV, indicating moderate colloidal stability. The AgNPs exhibited potent antibacterial activity against both Gram-positive (G⁺) and Gram-negative (G⁻) bacteria, with synergistic effects observed in combination with standard antibiotics. Furthermore, the AgNPs displayed significant anticancer activity, with pronounced cytotoxic effects against human pulmonary carcinoma (A549) and human liver hepatocellular carcinoma (HepG2) cell lines, compared to their effects on human breast adenocarcinoma (MDA-MB-231) and human cervical carcinoma (HeLa) cells.
Collapse
Affiliation(s)
- Lijuan Niu
- Microbiology Laboratory, College of Life Science & Technology, Xinjiang University, Xinjiang, 830017, China
| | - Zihan Lin
- Zhuhai College of Science and Technology, Guangdong, 519040, China
| | - Wenzhong Hu
- Zhuhai College of Science and Technology, Guangdong, 519040, China
| | - Dongsheng Yang
- Zhuhai College of Science and Technology, Guangdong, 519040, China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Fei Guo
- Zhuhai College of Science and Technology, Guangdong, 519040, China.
| |
Collapse
|
3
|
El-Moslamy SH, El-Maradny YA, El-Sayed MH, El-Sakhawy MA, El-Fakharany EM. Facile phyto-mediated synthesis of ternary CuO/Mn 3O 4/ZnO nanocomposite using Nigella Sativa seeds extract: characterization,antimicrobial, and biomedical evaluations. Sci Rep 2025; 15:16139. [PMID: 40341630 PMCID: PMC12062449 DOI: 10.1038/s41598-024-85044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/30/2024] [Indexed: 05/10/2025] Open
Abstract
The phyto-synthesis of ternary CuO/ Mn3O4/ZnO nanocomposite was achieved by the utilization of an eco-friendly, straightforward approach that involved the extract of Nigella sativa seeds. Our ternary nanocomposite appears to include equal amounts of CuO, Mn3O4, and ZnO based on the atomic percentages. The results indicate that a robust and thermally stable CuO/Mn3O4/ZnO nanocomposite was developed in stable nanosuspensions. The CuO/Mn3O4/ZnO nanocomposites showed antimicrobial capabilities against multidrug-resistant human pathogens. The highest biofilm reduction in viable planktonic populations of all human pathogens investigated was significantly reduced by the CuO/Mn3O4/ZnO ternary nanocomposites with a value of 18.5 µg/mL. The unique, enhanced, and triple-combined properties enabled the nanocomposite to have strong antimicrobial ability. The CuO/Mn3O4/ZnO nanocomposite exhibited strong anticancer activity against A549, MDA, HCT-116, and HepG2 cells, with selectivity index values ranging from 24.72 to 41.96. The CuO/Mn3O4/ZnO nanocomposite appeared to induce selective dose-dependent nuclear condensation and cell shrinkage in the treated cancer cells, significantly inducing the apoptosis mechanism to combat cancer progression. The phytosynthetic CuO/Mn3O4/ZnO nanocomposite appears to induce selective dose-dependent nuclear condensation and cell shrinkage in treated cancer cells, significantly triggering apoptotic mechanisms to combat cancer progression. This apoptotic pathway was confirmed by the strong affinity of CuO/Mn3O4/ZnO nanocomposites for ErbBs and VEGF with potent antioxidant activity to scavenge ABTS and DPPH radicals at EC50 values of 236.6 µg/mL and 134.8 µg/mL, respectively.
Collapse
Affiliation(s)
- Shahira H El-Moslamy
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-city), New Borg El Arab City, 21934, Alexandria, Egypt.
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, 21934, Alexandria, Egypt
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Mohamed A El-Sakhawy
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Esmail M El-Fakharany
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, 21934, Alexandria, Egypt.
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
- Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648, Alexandria, Egypt.
| |
Collapse
|
4
|
Palanisamy J, Palanichamy VS, Vellaichamy G, Perumal P, Vinayagam J, Gunalan S, Prabhakaran SG, Thiraviam PP, Musthafa F, Balaraman AK, Rathinasamy S. A comprehensive review on the green synthesis of silver nanoparticles from marine sources. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3409-3432. [PMID: 39560753 DOI: 10.1007/s00210-024-03547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
The primary purpose of this review is to explore the green synthesis of silver nanoparticle (AgNP) using natural biomolecules derived from marine sources. This review aims to evaluate the effectiveness of environmentally friendly approaches for synthesizing AgNPs and to examine their potential applications across various fields such as medicine, biotechnology, and environmental remediation. The key research question focuses on understanding how marine biomolecules, including polysaccharides, proteins, enzymes, amino acids, alkaloids, and vitamins, contribute to the formation of AgNPs and how these green-synthesized nanoparticles retain their functional properties. This review systematically examines current literature on the green synthesis of AgNPs, focusing on marine-derived biomolecules such as polysaccharides, proteins, and alkaloids. The methodology includes analyzing green synthesis techniques and comparing them with traditional chemical methods to highlight environmental benefits and overall efficiency. Various marine species, such as seagrass and seaweed, are explored as potent agents in the reduction of silver ions. The findings reveal that green synthesis of AgNPs using marine biomolecules is not only environmentally sustainable but also retains the desirable properties of the nanoparticles, such as antimicrobial, antioxidant, and anticancer activities. Additionally, the green-synthesized AgNPs show significant potential applications in mosquito control, wound healing, and anticancer therapies. Green synthesis of AgNPs using marine sources presents a viable and sustainable alternative to conventional chemical methods, significantly reducing the environmental impact of nanoparticle production while ensuring biocompatibility and functional integrity. This approach holds promise for diverse applications in biomedicine, environmental remediation, and beyond. Further research is recommended to address challenges in scaling up production and commercialization.
Collapse
Affiliation(s)
- Janagandhan Palanisamy
- Department of Pharmaceutical Chemistry, Pannai College of Pharmacy, Dindigul - 624005, India (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Tamil Nadu, Chennai, India
| | - Vinothkumar Suruli Palanichamy
- Department of Pharmaceutical Chemistry, Pannai College of Pharmacy, Dindigul - 624005, India (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Tamil Nadu, Chennai, India
| | - Ganesan Vellaichamy
- Department of Pharmaceutical Chemistry, Pannai College of Pharmacy, Dindigul - 624005, India (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Tamil Nadu, Chennai, India
| | - Parthasarathi Perumal
- Department of Molecular and Cell Biology, Greensmed Labs, Chennai, 600097, Tamil Nadu, India
| | - Jayaraman Vinayagam
- Department of Molecular and Cell Biology, Greensmed Labs, Chennai, 600097, Tamil Nadu, India
| | - Seshan Gunalan
- Department of Molecular and Cell Biology, Greensmed Labs, Chennai, 600097, Tamil Nadu, India
| | | | | | - Fasna Musthafa
- Department of Molecular and Cell Biology, Greensmed Labs, Chennai, 600097, Tamil Nadu, India
| | - Ashok Kumar Balaraman
- Centre for Research and Innovation, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia.
| | - Suresh Rathinasamy
- Department of Molecular and Cell Biology, Greensmed Labs, Chennai, 600097, Tamil Nadu, India.
| |
Collapse
|
5
|
Sevinc-Sasmaz C, Erci F, Torlak E, Yöntem M. Characterization of Silver Nanoparticles Synthesized Using Hypericum perforatum L. and Their Effects on Staphylococcus aureus. Microsc Res Tech 2025. [PMID: 40121669 DOI: 10.1002/jemt.24862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
This study investigates the synthesis of silver nanoparticles (AgNPs) using Hypericum perforatum L. and evaluates their antibacterial and antibiofilm activities against Staphylococcus aureus. The synthesized AgNPs were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). UV-Vis spectroscopy showed a maximum absorption peak at 448 nm, which indicates that nanoparticles have been formed successfully. TEM analysis showed that the AgNPs were spherical, with an average size of 35 ± 2.7 nm. FTIR confirmed the presence of functional groups on the surface of AgNP that may be contributing to its biological activity. The AgNPs exhibited significant antibacterial activity, with a minimum inhibitory concentration (MIC) of 75 μg/mL and an inhibition zone of 13 ± 0.13 mm at this concentration. They were also highly effective in inhibiting biofilm formation even at a concentration of 25 μg/mL, reducing biofilm formation by 47.25% ± 3.51%. At increased concentrations, nanoparticles have been shown to compromise bacterial membranes, leading to significant membrane disruption. This disruption subsequently results in a reduction of cellular respiration, with observed decreases of approximately twofold when compared to controls. Additionally, nanoparticles facilitate the production of superoxide anions, which can rise by about threefold, consequently enhancing the overall effectiveness of bacterial inactivation. Field emission scanning electron microscopy (FE-SEM) revealed structural damage to bacterial cells treated with AgNPs, supporting their antimicrobial effects. These findings suggest that AgNPs synthesized from H. perforatum could serve as effective antimicrobial agents against S. aureus. Their ability to disrupt bacterial cell membranes, inhibit respiration, and induce oxidative stress makes them promising candidates for antimicrobial and antibiofilm applications, particularly given the increasing concern over bacterial resistance to conventional antibiotics.
Collapse
Affiliation(s)
- Canan Sevinc-Sasmaz
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Fatih Erci
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Emrah Torlak
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Mustafa Yöntem
- Department of Nursing, Faculty of Health Sciences, Karamanoglu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
6
|
Nijil S, Bhat SG, Kedla A, Thomas MR, Kini S. A silver lining in MRSA treatment: The synergistic action of poloxamer-stabilized silver nanoparticles and methicillin against antimicrobial resistance. Microb Pathog 2024; 197:107087. [PMID: 39481693 DOI: 10.1016/j.micpath.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Increasing antibiotic resistance in bacterial infections, including drug-resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), necessitates innovative therapeutic solutions. Silver nanoparticles are promising for combating infections, but toxicity concerns emphasize the importance of factors like dosage, size, shape, and surface chemistry. Hence, exploring poloxamer as a stabilizing agent to reduce its toxicity and enhance the antibacterial effect on MRSA is investigated. METHODS Silver nanoparticles stabilized with poloxamer (AgNPs@Pol) were synthesized through the chemical reduction method and characterized using UV-visible spectrophotometer, HR-TEM, DLS, and Zeta potential measurements. Subsequently, the antibacterial activity of AgNPs@Pol alone and in combination with methicillin against MRSA and methicillin-susceptible S. aureus (MSSA) was evaluated using the broth microdilution method. RESULTS AgNPs@Pol showed significant efficacy against MRSA and MSSA, achieving a 100 % reduction in colony-forming units (CFU) at 9.7 μg/ml. The minimum inhibitory concentration (MIC) against MRSA and MSSA was 8.6 μg/ml and 4.3 μg/ml, respectively. A synergistic effect was observed when AgNPs@Pol was combined with methicillin. Treatment with AgNPs@Pol increased reactive oxygen species (ROS) production in both strains, contributing to its antibacterial activity. Real-time qPCR analysis indicated the downregulation of genes involved in antimicrobial resistance and cell adhesion in both strains. Further, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated low cytotoxicity for AgNPs@Pol against MCF-7, MG-63, and NIH-3T3 cell lines. CONCLUSION The developed AgNPs@Pol demonstrated extensive colloidal stability, potent antibacterial activity and synergistic effect with methicillin against MRSA and MSSA. Further studies in primary cells and in vivo models may validate its potential for clinical applications.
Collapse
Affiliation(s)
- S Nijil
- Nitte (Deemed to be University), Department of Bio and Nano Technology, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India
| | - Sinchana G Bhat
- Nitte (Deemed to be University), Department of Bio and Nano Technology, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India
| | - Anushree Kedla
- Nitte (Deemed to be University), Department of Bio and Nano Technology, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India
| | - Mahima Rachel Thomas
- Nitte (Deemed to be University), Department of Bio and Nano Technology, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India
| | - Sudarshan Kini
- Nitte (Deemed to be University), Department of Bio and Nano Technology, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
7
|
Khan MA, Masood A, Ali K, Farid N, Bashir A, Dar MS. Green synthesis of silver, starch, and zinc oxide mediated nanoparticles with probiotics and plant extracts, their characterization and anti-bacterial activity. Microb Pathog 2024; 196:107012. [PMID: 39396685 DOI: 10.1016/j.micpath.2024.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Nanotechnology has various applications in all branches of science, including engineering, medicine, pharmacy, and other related fields. Conventional techniques, such as the chemical reduction approach, which produces nanoparticles (NPs) using various hazardous chemicals, offer several health risks due to their toxicity and raise serious environmental concerns. In contrast, other techniques are expensive and need a lot of energy. More than 70 % of pathogenic bacterial strains have developed resistance to at least one class of antibiotics, leading to an increase in life-threatening bacterial infections that pose a significant health risk. However, the creation of NPs by biogenic synthesis is risk-free for the environment and clean enough for biological use. This study was aimed at synthesis of novel Moringa oleifera mediated starch capped silver-zinc NPs and green synthesis of ZnO nanoparticles from Aloe vera, papaya, and Lactobacillus plantarum. Antimicrobial activity of both NPs was tested against Gram-negative antibiotic-resistant bacteria Pseudomonas aeruginosa, Gram-positive bacteria Staphylococcus aureus (ATCC 6538), and two foodborne pathogens Listeria monocytogenes and Campylobacter jejuni. Ultraviolet-visible spectroscopy, Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscopy were used for characterization. Majority of the research studies stress the flexibility, repeatability, and desirable features of the metals, polymers, and plant components employed in the production of biomedical nanoparticles. Such an intuitive approach provides several advantages, particularly a reasonable total expense, compliance with healthcare and pharmaceutical implementations, and the ability to produce massive volumes for industrial use. The novelty of the presented work lies in the unusual combination of silver, starch, and zinc oxide nanoparticles using Moringa oleifera, which is an eco-friendly alternative to chemical-based methods. This research exhibits the formation of well-defined nanoparticles with strong antibacterial activity against a wide range of pathogens, giving us insights into their potential applications in various biomedical fields.
Collapse
Affiliation(s)
- Mansoor Ahmer Khan
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) University, Karachi, Pakistan
| | - Areeb Masood
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) University, Karachi, Pakistan
| | - Kashif Ali
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) University, Karachi, Pakistan.
| | - Neha Farid
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) University, Karachi, Pakistan
| | - Asma Bashir
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) University, Karachi, Pakistan
| | - Muhammad Shaheer Dar
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) University, Karachi, Pakistan
| |
Collapse
|
8
|
Jalil K, Ahmad S, Islam NU, Muhammad S, Jalil Q, Ali A. Excellent antibacterial and anti-inflammatory efficacy of amoxicillin by AgNPs and their conjugates synthesized using Micromeria biflora crude flavonoid extracts. Heliyon 2024; 10:e36752. [PMID: 39281441 PMCID: PMC11399619 DOI: 10.1016/j.heliyon.2024.e36752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Antibacterial resistance is considered to be one of the major causes for mortality in coming years. In recent years green nanotechnology played a key role in addressing this problem. Biocompatible metal nanoparticles have gained popularity owing to their excellent therapeutic effects and minimal side effects. Method We report the synthesis of AgNPs and their amoxicillin conjugates (Ag-amoxi) using Micromeria biflora crude flavonoid extracts. The physicochemical properties of the synthesized NPs and Ag-amoxi conjugates were systematically evaluated using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR), and UV-visible (UV-Vis) spectroscopic techniques. Results The average sizes of AgNPs and Ag-amoxi conjugates were 45 and 62 nm, respectively. We have also explored the antibacterial, antioxidant, anti-inflammatory, and analgesic properties of the AgNPs and Ag-amoxi conjugates through in vivo and in vitro analysis. The Ag-amoxi conjugates showed better antibacterial potential against Streptococcus Pneumoniae (S.P), Staphylococcus aureus (S.A), Pseudomonas aeruginosa (P.A), and Methicillin resistance Staphylococcus aureus (MRSA) strain both the drug and AgNPs. Similarly, in vivo anti-inflammatory studies revealed that both Ag-amoxi (68 %) and AgNPs (64 %) had strong anti-inflammatory effects, with (***p < 0.001) significance at a dose of 10 mg kg-1 body weight as compared to standard, amoxicillin (45 %), and flavonoids extract (48 %) at a dose of 100 mg kg-1. The findings of the antinociceptive activities (writhing and hot plate tests) demonstrated that the Ag-amoxi conjugates produced fewer writhing (15 in 20 s) and a shorter latency time of 22 s as compared to vehicle-treated (tramadol) animals, amoxicillin, and P.E at much lower doses. In vitro antioxidant studies revealed that the Ag-amoxi conjugate has the potential to be used as an antioxidant with an IC50 value of 43.58, compared with AgNPs (46.34), amoxicillin (58.17), compared to the standard of ascorbic acid (34.14). Conclusion These results reveals that these biologically inspired AgNPs and Ag-amoxi conjugate could be used to improve antibiotic efficiency and could play a critical role in addressing the multidrug resistance problem in coming years.
Collapse
Affiliation(s)
- Kamran Jalil
- Department of Chemistry, Islamia College, Peshawar, 25120, Khyber, Pakhtunkhwa, Pakistan
| | - Shabir Ahmad
- Department of Chemistry, Islamia College, Peshawar, 25120, Khyber, Pakhtunkhwa, Pakistan
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science & Information Technology, Peshawar, Khyber, Pakhtunkhwa, Pakistan
| | - Sayyar Muhammad
- Department of Chemistry, Islamia College, Peshawar, 25120, Khyber, Pakhtunkhwa, Pakistan
| | - Qudsia Jalil
- Department of Chemistry, Islamia College, Peshawar, 25120, Khyber, Pakhtunkhwa, Pakistan
| | - Asad Ali
- Energy Engineering, Division of Energy Science, Lulea University of Technology, 97187, Lulea, Sweden
| |
Collapse
|
9
|
Wang SY, Zhang YZ, Liu XH, Guo XC, Wang XF, Wang JR, Liu BJ, Han FT, Zhang Y, Wang CL. BNT12, a novel hybrid peptide of opioid and neurotensin pharmacophores, produces potent central antinociception with limited side effects. Eur J Pharmacol 2024; 978:176775. [PMID: 38925288 DOI: 10.1016/j.ejphar.2024.176775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The development of multitarget opioid drugs has emerged as an attractive approach for innovative pain management with reduced side effects. In the present study, a novel hybrid peptide BNT12 containing the opioid and neurotensin (NT)-like fragments was synthesized and pharmacologically characterized. In acute radiant heat paw withdrawal test, intracerebroventricular (i.c.v.) administration of BNT12 produced potent antinociception in mice. The central antinociceptive activity of BNT12 was mainly mediated by μ-, δ-opioid receptor, neurotensin receptor type 1 (NTSR1) and 2 (NTSR2), supporting a multifunctional agonism of BNT12 in the functional assays. BNT12 also exhibited significant antinociceptive effects in spared nerve injury (SNI)-neuropathic pain, complete Freund's adjuvant (CFA)-induced inflammatory pain, acetic acid-induced visceral and formalin-induced pain after i.c.v. administration. Furthermore, BNT12 exhibited substantial reduction of acute antinociceptive tolerance, shifted the dose-response curve to the right by only 1.3-fold. It is noteworthy that BNT12 showed insignificant chronic antinociceptive tolerance at the supraspinal level. In addition, BNT12 exhibited reduced or no opioid-like side effects on conditioned place preference (CPP) response, naloxone-precipitated withdrawal response, acute hyperlocomotion, motor coordination, gastrointestinal transit, and cardiovascular responses. The present investigation demonstrated that the novel hybrid peptide BNT12 might serve as a promising analgesic candidate with limited opioid-like side effects.
Collapse
Affiliation(s)
- Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Xiao-Han Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Xue-Ci Guo
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | | | - Jia-Ran Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Bing-Jie Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China.
| |
Collapse
|
10
|
Ahmad E, Athar A, Nimisha, Zia Q, Sharma AK, Sajid M, Bharadwaj M, Ansari MA, Saluja SS. Harnessing nature's potential: Alpinia galanga methanolic extract mediated green synthesis of silver nanoparticle, characterization and evaluation of anti-neoplastic activity. Bioprocess Biosyst Eng 2024; 47:1183-1196. [PMID: 38509420 DOI: 10.1007/s00449-024-02993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) from methanolic extract of Alpinia galanga rhizome and characterized them by UV-Vis spectrophotometry, Fourier transform Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM). UV-Vis spectrophotometry absorption spectrum showed surface plasmon between 400 and 480 nm. FTIR spectrum analysis implies that various phytochemicals/secondary metabolites are involved in the reduction, caping, and stabilization of AgNPs. The Zetasier result suggests that the particles formed are small in size with a low polydispersity index (PDI), suggesting a narrow range of particle distribution. The TEM image suggests that the particles formed are mostly of spherical morphology with nearly 20-25 nm. Further, the selected area electron diffraction (SAED) image showed five electron diffraction rings, suggesting the polycrystalline nature of the particles. The nanoparticles showed high anticancer efficacy against cervical cancer (SiHa) cell lines. The nanostructures showed dose-dependent inhibition with 40% killing observed at 6.25 µg/mL dose. The study showed an eco-friendly and cost-effective approach to the synthesis of AgNPs and provided insight into the development of antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Alina Athar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Qamar Zia
- Department of Medical Laboratory Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Mohammed Sajid
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | | | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India.
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India.
| |
Collapse
|
11
|
Patel J, Kumar GS, Roy H, Maddiboyina B, Leporatti S, Bohara RA. From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications. DISCOVER NANO 2024; 19:85. [PMID: 38724833 PMCID: PMC11082127 DOI: 10.1186/s11671-024-04021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
The escalating global challenge of antimicrobial resistance demands innovative approaches. This review delves into the current status and future prospects of bioengineered metallic nanoparticles derived from natural sources as potent antimicrobial agents. The unique attributes of metallic nanoparticles and the abundance of natural resources have sparked a burgeoning field of research in combating microbial infections. A systematic review of the literature was conducted, encompassing a wide range of studies investigating the synthesis, characterization, and antimicrobial mechanisms of bioengineered metallic nanoparticles. Databases such as PubMed, Scopus, Web of Science, ScienceDirect, Springer, Taylor & Francis online and OpenAthen were extensively searched to compile a comprehensive overview of the topic. The synthesis methods, including green and sustainable approaches, were examined, as were the diverse biological sources used in nanoparticle fabrication. The amalgamation of metallic nanoparticles and natural products has yielded promising antimicrobial agents. Their multifaceted mechanisms, including membrane disruption, oxidative stress induction, and enzyme inhibition, render them effective against various pathogens, including drug-resistant strains. Moreover, the potential for targeted drug delivery systems using these nanoparticles has opened new avenues for personalized medicine. Bioengineered metallic nanoparticles derived from natural sources represent a dynamic frontier in the battle against microbial infections. The current status of research underscores their remarkable antimicrobial efficacy and multifaceted mechanisms of action. Future prospects are bright, with opportunities for scalability and cost-effectiveness through sustainable synthesis methods. However, addressing toxicity, regulatory hurdles, and environmental considerations remains crucial. In conclusion, this review highlights the evolving landscape of bioengineered metallic nanoparticles, offering valuable insights into their current status and their potential to revolutionize antimicrobial therapy in the future.
Collapse
Affiliation(s)
- Jitendra Patel
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - G Shiva Kumar
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, 522503, India.
| | - Balaji Maddiboyina
- Department of Medical and Scientific Communications, Scientific Writing Services, Freyr Global Regulatory Solutions & Services, Phoenix SEZ, Hitech City, Gachibowli, Hyderabad, 500081, India.
| | - Stefano Leporatti
- CNR Nanotec-Istituto Di Nanotecnologia, C\O Campus EcotekneVia Monteroni, 3100, Lecce, Italy
| | - Raghvendra A Bohara
- D.Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India.
- University of Galway, Galway, Ireland.
| |
Collapse
|
12
|
Dubey S, Virmani T, Yadav SK, Sharma A, Kumar G, Alhalmi A. Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. JOURNAL OF NANOMATERIALS 2024; 2024:1-48. [DOI: 10.1155/2024/9914079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanotechnology has emerged as a promising field in pharmaceutical research, involving producing unique nanoscale materials with sizes up to 100 nm via physiochemical and biological approaches. Nowadays more emphasis has been given to eco-friendly techniques for developing nanomaterials to enhance their biological applications and minimize health and environmental risks. With the help of green nanotechnology, a wide range of green metal, metal oxide, and bimetallic nanoparticles with distinct chemical compositions, sizes, and morphologies have been manufactured which are safe, economical, and environment friendly. Due to their biocompatibility and vast potential in biomedical (antibacterial, anticancer, antiviral, analgesic, anticoagulant, biofilm inhibitory activity) and in other fields such as (nanofertilizers, fermentative, food, and bioethanol production, construction field), green metal nanoparticles have garnered significant interest worldwide. The metal precursors combined with natural extracts such as plants, algae, fungi, and bacteria to get potent novel metal, metal oxide, and bimetallic nanoparticles such as Ag, Au, Co, Cu, Fe, Zr, Zn, Ni, Pt, Mg, Ti, Pd, Cd, Bi2O3, CeO2, Co3O4, CoFe2O4, CuO, Fe2O3, MgO, NiO, TiO2, ZnO, ZrO2, Ag-Au, Ag-Cr, Ag-Cu, Ag-Zn, Ag-CeO2, Ag-CuO, Ag-SeO2, Ag-TiO2, Ag-ZnO, Cu-Ag, Cu-Mg, Cu-Ni, Pd-Pt, Pt-Ag, ZnO-CuO, ZnO-SeO, ZnO-Se, Se-Zr, and Co-Bi2O3. These plant-mediated green nanoparticles possess excellent antibacterial and anticancer activity when tested against several microorganisms and cancer cell lines. Plants contain essential phytoconstituents (polyphenols, flavonoids, terpenoids, glycosides, alkaloids, etc.) compared to other natural sources (bacteria, fungi, and algae) in higher concentration that play a vital role in the development of green metal, metal oxide, and bimetallic nanoparticles because these plant-phytoconstituents act as a reducing, stabilizing, and capping agent and helps in the development of green nanoparticles. After concluding all these findings, this review has been designed for the first time in such a way that it imparts satisfactory knowledge about the antibacterial and anticancer activity of plant-mediated green metal, metal oxide, and bimetallic nanoparticles together, along with antibacterial and anticancer mechanisms. Additionally, it provides information about characterization techniques (UV–vis, FT-IR, DLS, XRD, SEM, TEM, BET, AFM) employed for plant-mediated nanoparticles, biomedical applications, and their role in other industries. Hence, this review provides information about the antibacterial and anticancer activity of various types of plant-mediated green metal, metal oxide, and bimetallic nanoparticles and their versatile application in diverse fields which is not covered in other pieces of literature.
Collapse
Affiliation(s)
- Swati Dubey
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | | | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
13
|
Elmetwalli A, Abdel-Monem MO, El-Far AH, Ghaith GS, Albalawi NAN, Hassan J, Ismail NF, El-Sewedy T, Alnamshan MM, ALaqeel NK, Al-Dhuayan IS, Hassan MG. Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment. Med Oncol 2024; 41:106. [PMID: 38575697 PMCID: PMC10995097 DOI: 10.1007/s12032-024-02330-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/08/2024] [Indexed: 04/06/2024]
Abstract
Recent advances in nanotechnology have offered novel ways to combat cancer. By utilizing the reducing capabilities of Lactobacillus acidophilus, silver nanoparticles (AgNPs) are synthesized. The anti-cancer properties of AgNPs have been demonstrated in previous studies against several cancer cell lines; it has been hypothesized that these compounds might inhibit AMPK/mTOR signalling and BCL-2 expression. Consequently, the current research used both in vitro and in silico approaches to study whether Lactobacillus acidophilus AgNPs could inhibit cell proliferation autophagy and promote apoptosis in HepG2 cells. The isolated strain was identified as Lactobacillus acidophilus strain RBIM based on 16 s rRNA gene analysis. Based on our research findings, it has been observed that this particular strain can generate increased quantities of AgNPs when subjected to optimal growing conditions. The presence of silanols, carboxylates, phosphonates, and siloxanes on the surface of AgNPs was confirmed using FTIR analysis. AgNPs were configured using UV-visible spectroscopy at 425 nm. In contrast, it was observed that apoptotic cells exhibited orange-coloured bodies due to cellular shrinkage and blebbing initiated by AgNP treatment, compared to non-apoptotic cells. It is worth mentioning that AgNPs exhibited remarkable selectivity in inducing cell death, specifically in HepG2 cells, unlike normal WI-38 cells. The half-maximum inhibitory concentration (IC50) values for HepG2 and WI-38 cells were 4.217 µg/ml and 154.1 µg/ml, respectively. AgNPs induce an upregulation in the synthesis of inflammation-associated cytokines, including (TNF-α and IL-33), within HepG2 cells. AgNPs co-treatment led to higher glutathione levels and activating pro-autophagic genes such as AMPK.Additionally, it resulted in the suppression of mTOR, MMP-9, BCL-2, and α-SMA gene expression. The docking experiments suggest that the binding of AgNPs to the active site of the AMPK enzyme leads to inhibiting its activity. The inhibition of AMPK ultimately results in the suppression of the mechanistic mTOR and triggers apoptosis in HepG2 cells. In conclusion, the results of our study indicate that the utilization of AgNPs may represent a viable strategy for the eradication of liver cancerous cells through the activation of apoptosis and the enhancement of immune system reactions.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Mohamed O Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Gehad S Ghaith
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Jihan Hassan
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nadia F Ismail
- Health Information Management Program, Biochemistry, Faculty of Health Science Technology, Borg El Arab Technological University, Alexandria, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mashael Mashal Alnamshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf K ALaqeel
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Ibtesam S Al-Dhuayan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
14
|
Daphedar AB, Majani SS, Kaddipudi PJ, Hujaratti RB, Kakkalmeli SB, Shati AA, Alfaifi MY, Elbehairi SEI, Shivamallu C, Jinendra U, Kollur SP. Evaluation of antioxidant and antibacterial activities of silver nanoparticles derived from Limonia acidissima L. fruit extract. CURRENT RESEARCH IN GREEN AND SUSTAINABLE CHEMISTRY 2024; 8:100399. [DOI: 10.1016/j.crgsc.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|