1
|
Tao L, Guan C, Wang Z, Wang Y, Gesang Q, Sheng J, Dai J, Tian Y. Selenium Nanoparticles Derived from Moringa oleifera Lam. Polysaccharides: Construction, Stability, and In Vitro Antioxidant Activity. Foods 2025; 14:918. [PMID: 40231952 PMCID: PMC11941128 DOI: 10.3390/foods14060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Selenium nanoparticles (SeNPs) have drawn considerable attention to biomedicine, the food industry, and cosmetics due to their strong antioxidant potential and low toxicity. However, their poor stability limits broader applications. A promising strategy to overcome this limitation involves combining SeNPs with polysaccharides. In this study, selenium nanoparticles (MOLP-SeNPs) were synthesized using Moringa oleifera Lam. polysaccharide (MOLP) as a stabilizer and dispersant within a redox system comprising sodium selenite and ascorbic acid. The structural characteristics of the synthesized MOLP-SeNPs were analyzed using spectroscopy. Additionally, their thermal and storage stability was evaluated, and their antioxidant activity was explored through simulated digestion in vitro and a HepG2 cell oxidative stress model. The results demonstrated that well-dispersed, zero-valent MOLP-SeNPs showing a mean particle size of 166.58 nm were synthesized successfully through an MOLP-to-sodium selenite ratio of 2.8:3 at pH 7.3 and 35 °C. The MOLP-SeNPs exhibited excellent stability during preparation. In simulated in vitro digestion and H2O2-induced oxidative stress experiments on HepG2 cells, MOLP-SeNPs displayed strong free radical scavenging capacity while improving antioxidant activity. Cellular experiments deeply revealed that pretreatment with MOLP-SeNPs significantly improved cell viability and provided a pronounced protective effect against oxidative damage. In conclusion, MOLP-SeNPs represent a novel antioxidant with promising applications in food and biomedicine.
Collapse
Affiliation(s)
- Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chunhua Guan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
| | - Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
| | - Yue Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
| | - Quzheng Gesang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Jiahe Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Institute of Technology, Pu’er University, Pu’er 665000, China
| |
Collapse
|
2
|
Liu X, Liu Z, Li Y, Wang Y, Zhang W. Anthracene carboxyimide-based selenide as a fluorescent probe for the ultrasensitive detection of hypochlorous acid. Org Biomol Chem 2025; 23:1708-1713. [PMID: 39804073 DOI: 10.1039/d4ob01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
In situ detection of hypochlorous acid (HOCl) is critical for understanding its complex physiological and pathological roles. Fluorescent probes, known for their sensitivity and selectivity, are the preferred approach for such detections. Anthracene carboxyimide, an analog of naphthalimide, offers extended excitation and emission wavelengths, making it an excellent candidate for developing new fluorescent probes that address the limitations of naphthalimide. In this study, we designed a novel HOCl-specific fluorescent probe, AC-Se, by incorporating highly reactive selenium into anthracene carboxyimide. The probe exhibits a 104-fold fluorescence enhancement, a large Stokes shift of 72 nm, and a low detection limit of 36.2 nM. Moreover, AC-Se responds rapidly to HOCl within 4 seconds, enabling real-time intracellular monitoring of both exogenous and endogenous HOCl.
Collapse
Affiliation(s)
- Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Ziqi Liu
- Department of Chemistry, College of Pharmacy, North China University of Science and Technology, Tang Shan, 063000, China.
| | - Yujia Li
- Department of Chemistry, College of Pharmacy, North China University of Science and Technology, Tang Shan, 063000, China.
| | - Yali Wang
- Department of Chemistry, College of Pharmacy, North China University of Science and Technology, Tang Shan, 063000, China.
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
3
|
Ma J, Zhao M, Kong X, Li H, Xie H, Yang X, Zhang Z. Probing the toxic hypochlorous acid in natural waters and biosystem by a coumarin-based fluorescence probe. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116836. [PMID: 39097417 DOI: 10.1016/j.ecoenv.2024.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
Since the onset of the SARS-CoV-2 pandemic in early 2020, there has been a notable rise in sodium hypochlorite disinfectants. Sodium hypochlorite undergoes hydrolysis to generate hypochlorous acid for virus eradication. This chlorine-based disinfectant is widely utilized for public disinfection due to its effectiveness. Although sodium hypochlorite disinfection is convenient, its excessive and indiscriminate use can harm the water environment and pose a risk to human health. Hypochlorous acid, a reactive oxygen species, plays a crucial role in the troposphere, stratospheric chemistry, and oxidizing capacity. Additionally, hypochlorous acid is vital as a reactive oxygen species in biological systems, and its irregular metabolism and level is associated with several illnesses. Thus, it is crucial to identify hypochlorous acid to comprehend its environmental and biological functions precisely. Here, we constructed a new fluorescent probe, utilizing the twisted intramolecular charge transfer mechanism to quickly and accurately detect hypochlorous acid in environmental water and biosystems. The probe showed a notable increase in fluorescence when exposed to hypochlorous acid, demonstrating its excellent selectivity, fast response time (less than 10 seconds), a large Stokes shift (∼ 102 nm), and a low detection limit of 15.5 nM.
Collapse
Affiliation(s)
- Junyan Ma
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China; Department of Chemistry, Clemson University, Clemson, SC 29634, United States.
| | - Mingtao Zhao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Xiangtao Kong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - He Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaomei Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Zhenxing Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China; Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Guan B, Sun Y, Liu X, Zhong C, Li D, Shan X, Hui X, Lu C, Huo Y, Sun R, Wei M, Zheng W. Comparative evaluation of amino acid profiles, fatty acid compositions, and nutritional value of two varieties of head water Porphyra yezoensis: "Jianghaida No. 1" and "Sutong No.1". Food Chem X 2024; 22:101375. [PMID: 38633737 PMCID: PMC11021842 DOI: 10.1016/j.fochx.2024.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Comparative nutritional analysis of Porphyra yezoensis strains "Jianghai No. 1" and "Sutong No.1" revealed significant differences in crude protein, crude fat, crude fiber, crude ash, and total sugar. Both strains contained 16 amino acids, with alanine as the highest and histidine the lowest content. Methionine was determined to be the first limiting amino acid for both strains in both amino acid score and chemical score assessment. They also featured 24 fatty acids, differing notably in four saturated fatty acids and five unsaturated fatty acids. All 12 mineral elements were present, notably differing in sodium, magnesium, potassium, calcium, iron, and zinc. The "Jianghai No. 1" strain stands out with its nutrient-rich profile, featuring high protein content, low fat, and abundant minerals, which could potentially command higher market prices and generate greater economic benefits due to its superior nutritional, and set a strong foundation for its future large-scale promotion and cultivation.
Collapse
Affiliation(s)
- Bin Guan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yuyan Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Xuxiao Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Chongyu Zhong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Desheng Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Xin Shan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Xingxing Hui
- Lianyungang Xiangheng Food Co., Ltd., Lianyungang, China
| | - Chaofa Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yujia Huo
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Runkai Sun
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Min Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Wei Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
5
|
Soylak M, Çoban AN, Ahmed HEH. Micro solid phase extraction of lead and cadmium using functionalized nanodiamonds@CuAl 2O 4@HKUST-1 nanocomposite for FAAS analysis in food and water samples. Food Chem 2024; 442:138426. [PMID: 38237291 DOI: 10.1016/j.foodchem.2024.138426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
This study focuses on the development and application of a novel nanocomposite (functionalized nanodiamonds@CuAl2O4@HKUST-1)-based µ-SPE method for the sensitive and selective extraction of Pb and Cd from food and water samples. The technique offers high sensitivity and selectivity, allowing accurate measurement of these metals at trace levels. The detection limit is 0.031 µg kg-1 for Cd and 0.052 µg kg-1 for Pb, with a relative standard deviation of 1.7 % for Cd and 4.8 % for Pb. The method was successfully applied to real samples and efficiently quantified Pb and Cd in food and natural water samples. The highest concentrations were found in red lentils (0.274 µg kg-1 Pb) and fresh mint (0.197 µg kg-1Cd), but still below recommended limits set by FAO/WHO (300 µg kg-1 for Pb and 200 µg kg-1 for Cd). It promises to ensure food safety, monitor environmental contamination, and informs regulatory decisions to protect public health.
Collapse
Affiliation(s)
- Mustafa Soylak
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey.
| | - Ayşe Nur Çoban
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey
| | - Hassan Elzain Hassan Ahmed
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Sudan Atomic Energy Commission (SAEC) - Chemistry and Nuclear Physics Institute, Khartoum, Sudan; Sudan University of Science and Technology (SUST) - College of Science-Scientific Laboratories Department, Chemistry Section, Khartoum, Sudan
| |
Collapse
|
6
|
Jia J, Liu Q, Liu H, Yang C, Zhao Q, Xu Y, Wu W. Structure characterization and antioxidant activity of abalone visceral peptides-selenium in vitro. Food Chem 2024; 433:137398. [PMID: 37683490 DOI: 10.1016/j.foodchem.2023.137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Peptide-selenium chelate is widely regarded as one of the best selenium supplements for relieving selenium deficiency. In this study, abalone visceral peptides (AVP) was used to prepare a new type of peptides-selenium chelate to develop an organic selenium supplement with antioxidant activity. AVP prepared by alcalase exhibited the highest selenium-chelating ability. UV-visible spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy and other structural analysis showed that selenium was mainly bound to the functional groups of -NH, -OH, -CH, CC, CO, and CN bonds on AVP. The formation of AVP-selenium chelate enhanced thermal stability and generated a new crystal structure. The ABTS•+ and •OH scavenging activities of AVP-selenium chelate were increased after in vitro digestion than that of AVP. Conclusively, this study analyzed the chelating mechanism of AVP and selenium from a structural perspective, which would provide a theoretical basis for the development of new selenium supplements.
Collapse
Affiliation(s)
- Jiao Jia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qing Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Huimin Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunyu Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qi Zhao
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Xu
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wenfei Wu
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Han W, Pan Y, Welsch E, Liu X, Li J, Xu S, Peng H, Wang F, Li X, Shi H, Chen W, Huang C. Prioritization of control factors for heavy metals in groundwater based on a source-oriented health risk assessment model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115642. [PMID: 37924799 DOI: 10.1016/j.ecoenv.2023.115642] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Heavy metals (HMs) in groundwater seriously threaten ecological safety and human health. To facilitate the effective management of groundwater contamination, priority control factors of HMs in groundwater need to be categorized. A total of 86 groundwater samples were collected from the Huangpi district of Wuhan city, China, during the dry and wet seasons. To determine priority control factors, a source-oriented health risk assessment model was applied to compare the pollution sources and health risks of seven HMs (Cu, Pb, Zn, Cr, Ni, As, and Fe). The results showed that the groundwater had higher As and Fe contents. The sources of HM pollution during the wet period were mainly industrial and agricultural activities and natural sources. During the dry period, origins were more complex due to the addition of domestic discharges, such as sewage wastewater. Industrial activities (74.10% during the wet period), agricultural activities (53.84% during the dry period), and As were identified as the priority control factors for groundwater HMs. The results provide valuable insights for policymakers to coordinate targeted management of HM pollution in groundwater and reduce the cost of HM pollution mitigation.
Collapse
Affiliation(s)
- Wenjing Han
- Geological Survey Research Institute, China University of Geosciences, Wuhan 430074, China
| | - Yujie Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Emily Welsch
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Geography and Environment, The London School of Economics and Political Science, London, UK
| | - Xiaorui Liu
- China Electric Power Research Institute, Beijing 100192, China
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shasha Xu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hongxia Peng
- School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Fangtin Wang
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan 430205, China
| | - Xuan Li
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan 430205, China
| | - Huanhuan Shi
- School of Environment, China University of Geosciences, Wuhan 430074, China
| | - Wei Chen
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan 430205, China
| | - Changsheng Huang
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan 430205, China.
| |
Collapse
|
8
|
Uddin R, Islam GMR, Uddin MZ, Thakur MU. Development and validation of an effective and sensitive technique for nitrate determination in fruits and vegetables using HPLC/PDA. BMC Chem 2023; 17:105. [PMID: 37620944 PMCID: PMC10463336 DOI: 10.1186/s13065-023-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
This study aims to develop an effective and sensitive HPLC (High Performance Liquid Chromatography) method to determine the nitrate concentration in fruits and vegetables (F & V) using a C18 column (ZORBAX Eclipse XDB-C18, 80Å, 250 × 4.6 mm, 5 μm (Agilent Technologies)) maintained at 40 0 C, a mobile phase made up of methanol and buffer (pentane sulfonic acid sodium salt solution), and a Photo Diode Array Detector (PDA) at 225 nm. The developed method is validated in terms of selectivity, linearity, accuracy, precision, suitability, the limit of detection (LOD), and the limit of quantification (LOQ) according to the European Union Decision 2002/657/EC. The result revealed that a ratio of 30: 70 of the organic modifier methanol and buffer with pH 2.8 shows the highest efficiency. The calibration curve shows linearity with a correlation coefficient (r) of 0.9985. The LOD and LOQ were found to be 2.26 mg/kg and 7.46 mg/kg. The recovery was in the range of 98.96-100.21%. Moreover, the greenness assessment scores of different approaches (eco-scale score of 76, AGREE score of 0.71, and few red shades in GAPI portray) were at a very excellent level. Thus, our developed method is fully validated and can determine the nitrate content in F & V.
Collapse
Affiliation(s)
- Rayhan Uddin
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - G M Rabiul Islam
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | | | - Mostak Uddin Thakur
- Department of Analytical Chemistry and Environmental Science, Training Institute for Chemical Industries, Narsingdi, 1611, Bangladesh
| |
Collapse
|
9
|
Xu J, Wang Y, Jiang J, Li X, Xu Y, Song W. Quantification of underivatized amino acids in solid beverages using high-performance liquid chromatography and a potentiometric detector. J Chromatogr A 2023; 1696:463986. [PMID: 37059047 DOI: 10.1016/j.chroma.2023.463986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023]
Abstract
The simultaneous quantification of amino acids (AAs) in solid beverages without prior derivatization was explored by high-performance liquid chromatography (HPLC) coupled to a potentiometric detector. Included were threonine, leucine, methionine, phenylalanine, and histidine. The potentiometric detector was made consisting of a copper(II)-selective electrode based on a polyvinyl chloride (PVC) membrane, and the potential changes in the detector were determined according to the coordination interactions between cupric copper ions released from the inner filling solution of the electrode and AAs. Conditions were optimized for effective separation and sensitive detection. Fundamental characteristics such as linearity, limits of detection, limits of quantitation, accuracy, precision, and robustness were validated experimentally. The calibration curves showed a linear relationship between peak heights and the injection concentrations of the AAs. The detection limits down to the sub-micromolar range were achieved under isocratic conditions, outperforming ultraviolet detection. The copper(II)-selective electrode had a minimum lifetime of one month. Some real samples were examined to further demonstrate the feasibility of the proposed approach. The measurement results obtained by the present method were in good agreement with those obtained by the HPLC-mass spectrometry (MS), indicating that the combined HPLC-potentiometric method is a potential option for quantifying AAs.
Collapse
Affiliation(s)
- Jiale Xu
- School of Public Health, Shenyang Medical College, Shenyang 110034, P.R. China
| | - Yutong Wang
- School of Public Health, Shenyang Medical College, Shenyang 110034, P.R. China
| | - Junhui Jiang
- School of Public Health, Shenyang Medical College, Shenyang 110034, P.R. China
| | - Xiaomeng Li
- School of Public Health, Shenyang Medical College, Shenyang 110034, P.R. China
| | - Yuheng Xu
- School of Public Health, Shenyang Medical College, Shenyang 110034, P.R. China
| | - Wenjing Song
- School of Public Health, Shenyang Medical College, Shenyang 110034, P.R. China.
| |
Collapse
|
10
|
Ali A, Moradian JM, Naveed A, Aziz T, Muhammad N, Maouche C, Guo Y, Yaseen W, Yassen M, Haq F, Hassan M, Fan Z, Guo L. Progress toward Polymerization Reaction Monitoring with Different Dienes: How Small Amounts of Dienes Affect ansa-Zirconocenes/Borate/Triisobutylaluminium Catalyst Systems. Polymers (Basel) 2022; 14:polym14163239. [PMID: 36015497 PMCID: PMC9414859 DOI: 10.3390/polym14163239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The objectives of this work were to address the fundamental characteristics of ansa-zirconocene catalyzed E/diene copolymerization and E/diene/1-hexene and E/diene/propylene terpolymerizations, and the quantitative relationship between diene structure and polymer chain propagation rate constant in term of quantifiable catalytic active sites. One of the most important but unknown factors in olefins ansa-zirconocene complexes is the distribution of the catalyst between sites actively participating in polymer chain formation and dormant sites. A set of ethylene/dienes copolymerizations, and ethylene/dienes/1-hexene and ethylene/dienes/1-hexene terpolymerizations catalyzed with ansa-zirconocenes/borate/triisobutylaluminium (rac-Et(Ind)2ZrCl2/[Ph3C][B(C6F5)4]/triisobutylaluminium (TIBA) were performed in toluene at 50 °C To determine the active center [C*]/[Zr] ratio variation in the copolymerization of E with different dienes and their terpolymerization with 1-hexene and propylene, each polymer propagation chain ends were quenched with 2-thiophenecarbonyl, which selectively quenches the metal–polymer bonds through acyl chloride. The ethylene, propylene, 1-hexene, and diene composition-based propagation rate constants (kpE, kpP, kp1-H, and kpdiene), thermal (melting and crystalline) properties, composition (mol% of ethylene, propylene, 1-hexene, and diene), molecular weight, and polydispersity were also studied in this work. Systematic comparisons of the proportion of catalytically [Zr]/[C*] active sites and polymerization rate constant (kp) for ansa-zirconocenes catalyzed E/diene, E/diene/1-hexene, and E/diene/propylene polymerization have not been reported before. We evaluated the addition of 1-hexene and propylene as termonomers in the copolymerization with E/diene. To make a comparison for each diene under identical conditions, we started the polymerization by introducing an 80/20 mole ratio of E/P and 0.12 mol/L of 1-hexene in the system. The catalyst behavior against different dienes, 1-hexene, and propylene is very interesting, including changes in thermal properties, cyclization of 1-hexene, and decreased incorporation of isoprene and butadiene, changes in the diffusion barriers in the system, and its effect on kp.
Collapse
Affiliation(s)
- Amjad Ali
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jamile Mohammadi Moradian
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ahmad Naveed
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (A.N.); (L.G.)
| | - Tariq Aziz
- School of Engineering Yunqi Campus, Westlake University, Hangzhou 310024, China
| | - Nadeem Muhammad
- Department of Environmental Engineering, Wuhang University of Technology, Wuhan 430223, China
| | - Chanez Maouche
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yintian Guo
- Zhejiang Hetian Chemical Co., Ltd., Hangzhou 310023, China
| | - Waleed Yaseen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maria Yassen
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fazal Haq
- Department of Chemistry, Gomal University, Khyber Pakhtunkhwa 29220, Pakistan
| | - Mobashar Hassan
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zheqing Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Li Guo
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (A.N.); (L.G.)
| |
Collapse
|