1
|
Wei D, Tan S, Pang S, Liu B, Zhang Q, Zhu S, Fu G, Sun D, Wei W. Protective effects of anthocyanins on the nervous system injury caused by fluoride-induced endoplasmic reticulum stress in rats. Food Chem Toxicol 2025; 200:115386. [PMID: 40073964 DOI: 10.1016/j.fct.2025.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/14/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Long-term fluoride exposure can produce neurotoxicity. Anthocyanins, as antioxidants, have a certain protective effect in nerve damage. This study aimed to investigate the protective role of anthocyanins in fluoride-induced neurological damage due to endoplasmic reticulum stress (ERS). Using a fluoride-exposed Wistar rat model, we assessed learning memory capacity and pathologic and ultrastructural injury. The level of oxidative stress (OS) in vivo was detected by colorimetric method, the level of ERS was analyzed by immunohistochemistry, and the apoptosis of neuronal cells was observed by TUNEL staining. The results showed that fluoride exposure could decrease the learning and memory ability in rats, and led to histopathological and ultrastructural damage in the hippocampal CA1, CA3 and cortical regions. Fluoride exposure-induced OS in vivo, which further activates ERS, which was manifested by increased levels of ERS-related proteins GRP78, Caspase 12, and Caspase 3 in hippocampal CA1, CA3, and cortical regions, and eventually led to a significant increase in neuronal apoptosis rate. Notably, after anthocyanins treatment, pathological and ultrastructural damage was restored, the level of OS and ERS were significantly restored, and the apoptosis rate of neuronal cells was significantly reduced. In summary, as nutritional interventions, anthocyanins exert a protective role in fluoride-induced neurological injury.
Collapse
Affiliation(s)
- Dan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shiwen Tan
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Shujuan Pang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong Province, 266033, China
| | - Bingshu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qiong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Siqi Zhu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, China
| | - Guiyu Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Jining Center For Disease Control and Prevention, Jining, Shandong Province, 272000, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, China.
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Wang W, Bao J, Lu Y, Jiang H. Association between brominated flame retardants and heart failure in U.S. adults: A cross-sectional analysis of national health and nutrition examination survey 2005-2016. Heart Lung 2025; 71:47-55. [PMID: 39999515 DOI: 10.1016/j.hrtlng.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/21/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Brominated flame retardants (BFRs) are environmental pollutants widely used in consumer products, which accumulate in human tissues. Despite their prevalence, the potential impact of BFRs on cardiovascular health, particularly heart failure (HF), remains insufficiently explored. OBJECTIVES This study aims to investigate the association between BFR exposure and the prevalence of HF in U.S. adults. METHODS Data were obtained from the National Health and Nutrition Examination Survey (NHANES) 2005-2016. To assess the relationship between BFR exposure and HF prevalence, weighted generalized linear regressions (GLMs) were applied. Restricted cubic splines (RCS) were used to examine potential nonlinear associations. Additionally, quantile-weighted quantile sum (WQS) regression and quantile g-computation (QGC) analysis were performed to evaluate the overall effect of BFR mixtures on HF. RESULTS A total of 6,931 individuals participated, with 219 diagnosed with HF. In the adjusted Model 3, BFRs including PBDE28, PBDE47, PBDE85, PBDE99, PBDE100, PBDE154, and PBB153 were significantly associated with increased odds of HF (all p < 0.05). RCS analysis revealed a significant nonlinear relationship between serum BFRs and HF. The WQS analysis showed a positive association between combined BFR exposure and HF (OR: 1.694; 95 % CI: 1.264, 2.270; p < 0.001), and QGC analysis similarly showed a significant positive association (OR: 1.365; 95 % CI: 1.094, 1.705; p = 0.006). CONCLUSION This study suggests a link between BFR exposure and an increased risk of HF. Further research is needed to explore the causal relationship and underlying mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Jiaxin Bao
- Department of Nephrology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Yi Lu
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Hao Jiang
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
3
|
Chen J, Xiong D, Long M. Curcumin Attenuates Fumonisin B1-Induced PK-15 Cell Apoptosis by Upregulating miR-1249 Expression to Inhibit the IRE1/MKK7/JNK/CASPASE3 Signaling Pathway. Antioxidants (Basel) 2025; 14:168. [PMID: 40002355 PMCID: PMC11852309 DOI: 10.3390/antiox14020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Fumonisin B1 (FB1) is an important toxin which poses global concerns in terms of food safety. Curcumin (Cur), a natural polyphenolic compound, has strong antioxidant and anti-inflammatory effects. Meanwhile, the mechanisms underlying the mitigation of FB1-induced toxicity by Cur are not fully understood, limiting its potential application as a novel feed additive to prevent FB1 toxicity. In this study, porcine kidney cells (PK-15) were used as an experimental model, utilizing mRNA and miRNA transcriptome technologies. The results revealed that Cur upregulated miR-1249 and inhibited the target gene Ern1 in the PK-15 cells, thereby suppressing the IRE1/MKK7/JNK/CASPASE3 endoplasmic reticulum (ER) stress pathway and alleviating FB1-induced cell apoptosis. Cell transfection experiments confirmed that Cur effectively attenuated the apoptosis induced by ER stress following transfection with a miR-1249 inhibitor. Similarly, transfection with a miR-1249 mimic alleviated the ER stress and FB1-induced PK-15 cell apoptosis. These findings reveal that Cur mitigates FB1-induced ER stress and significantly reduces apoptotic damage in porcine kidney cells.
Collapse
Affiliation(s)
- Jia Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (J.C.); (D.X.)
- College of Laboratory Animal Medicine, Liaoning University of Traditional Chinese Medicine, 79 Chongshan Road, Shenyang 110847, China
| | - Dongwei Xiong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (J.C.); (D.X.)
| | - Miao Long
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (J.C.); (D.X.)
| |
Collapse
|
4
|
Long Y, Shi H, Ye J, Qi X. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Antioxidants (Basel) 2025; 14:114. [PMID: 39857448 PMCID: PMC11762571 DOI: 10.3390/antiox14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Key Laboratory of Birth, Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (H.S.); (J.Y.)
| |
Collapse
|
5
|
Arzuk E, Armağan G. In vitro assessment of the role of endoplasmic reticulum stress in sunitinib-induced liver and kidney toxicity. Toxicol Lett 2025; 403:9-16. [PMID: 39613054 DOI: 10.1016/j.toxlet.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Sunitinib, a multi-targeted tyrosine kinase inhibitor, is prescribed for the treatment of metastatic gastrointestinal stromal tumors, advanced metastatic renal cell carcinoma, and pancreatic neuroendocrine tumors. Hepatotoxicity and nephrotoxicity are significant adverse effects of sunitinib administration; however, there is limited information regarding the molecular mechanisms of these adverse effects. The aim of the present study was to elucidate the role of endoplasmic reticulum stress in hepatotoxicity and nephrotoxicity induced by sunitinib. In addition to endoplasmic reticulum stress, oxidative stress and mitochondrial membrane potential were evaluated to investigate the molecular mechanism more comprehensively. Findings revealed that sunitinib exposure significantly increased the reactive oxygen species levels and decreased the Nrf2 gene expression and GSH/GSSG ratio, suggesting oxidative stress induction in normal hepatocyte (AML12) and normal kidney (HK-2) cell lines. Endoplasmic reticulum stress markers, including ATF4, CHOP, IRE1α, XBP1s and ATF6 mRNA expressions, were upregulated in AML12 cells. Furthermore, enhanced intracellular calcium levels also indicate endoplasmic reticulum stress in hepatocytes. In contrast, sunitinib exposure did not alter endoplasmic reticulum-related gene expression levels and intracellular calcium levels in HK-2 cells. In terms of mitochondrial membrane potential and caspase-3 activity, sunitinib induced mitochondrial membrane damage and increased caspase-3 activation not only in AML12 cells but also in HK-2 cells. The research findings indicate that sunitinib may induce cytotoxic effects in hepatocytes through mechanisms involving oxidative stress, endoplasmic reticulum stress, and mitochondrial damage. However, in the kidney, the toxicity mechanism is different from that of liver, and the endoplasmic reticulum stress does not seem to be involved in this mechanism.
Collapse
Affiliation(s)
- Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, İzmir, Turkey.
| | - Güliz Armağan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey.
| |
Collapse
|
6
|
Berillo O, Schiffrin EL. Advances in Understanding of the Role of Immune Cell Phenotypes in Hypertension and Associated Vascular Disease. Can J Cardiol 2024; 40:2321-2339. [PMID: 39154911 DOI: 10.1016/j.cjca.2024.08.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Many studies in the past 20 years have identified a contribution of inflammation and immune mechanisms to the pathophysiology of hypertension. Innate and adaptive immunity participate in this process. Among innate immune cells, macrophages and monocytes as well as dendritic cells, myeloid-derived suppressor cells, and neutrophils directly or via formation of neutrophil extracellular traps, play roles in the modulation of the inflammatory response in hypertension. Among adaptive immune cells, T and B cells have been implicated to varying degrees, particularly interleukin (IL)-17- and interferon γ-producing T lymphocytes, antagonized by T regulatory lymphocytes that are anti-inflammatory via production of IL-10. Among T cells that produce abundant IL-17, γδ T cells are unconventional T lymphocytes that are infrequent in the circulation in contrast to the much more abundant circulating αβ T lymphocytes, but are found mostly in tissues, and appear to play a role in triggering and sustaining inflammation in hypertension leading to vascular and renal injury. This review will provide an overview of these different immune cell phenotypes involved in the immune pathophysiology of hypertension and associated vascular disease.
Collapse
Affiliation(s)
- Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Hazuková R, Zadák Z, Pleskot M, Zdráhal P, Pumprla M, Táborský M. Oxidative DNA Damage and Arterial Hypertension in Light of Current ESC Guidelines. Int J Mol Sci 2024; 25:12557. [PMID: 39684269 DOI: 10.3390/ijms252312557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
A new insight into oxidative stress is based on oxidative deoxyribonucleic acid (DNA) damage. DNA is the pivotal biopolymer for life and health. Arterial hypertension (HT) is a globally common disease and a major risk factor for numerous cardiovascular (CV) conditions and non-cardiac complications, making it a significant health and socio-economic problem. The aetiology of HT is multifactorial. Oxidative stress is the main driver. Oxidative DNA damage (oxidised guanosine (8OHdG), strand breaks (SSBs, DSBs)) seems to be the crucial and initiating causal molecular mechanism leading to HT, acting through oxidative stress and the resulting consequences (inflammation, fibrosis, vascular remodelling, stiffness, thickness, and endothelial dysfunction). In light of the current European Society of Cardiology (ESC) guidelines with defined gaps in the evidence, this manuscript, for the first time, (1) summarizes evidence for oxidative DNA damage in HT and other CV risk factors, (2) incorporates them into the context of known mechanisms in HT genesis, (3) proposes the existing concept of HT genesis innovatively supplemented with oxidative DNA damage, and (4) mentions consequences such as promising new targets for the treatment of HT (DNA damage response (DDR) pathways).
Collapse
Affiliation(s)
- Radka Hazuková
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
- Department of Cardiology and Internal Medicine, Profi-Kardio, s.r.o., 50801 Hořice, Czech Republic
| | - Zdeněk Zadák
- IIIrd Department of Internal Medicine-Gerontology and Metabolism, Medical Faculty in Hradec Králové, University Hospital Hradec Králové, Charles University Prague, 50003 Hradec Králové, Czech Republic
| | - Miloslav Pleskot
- Department of Cardiology and Internal Medicine, Profi-Kardio, s.r.o., 50801 Hořice, Czech Republic
| | - Petr Zdráhal
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Martin Pumprla
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Miloš Táborský
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| |
Collapse
|
8
|
Zhang X, Shi S, Du Y, Chai R, Guo Z, Duan C, Wang H, Hu Y, Chang X, Du B. Shaping cardiac destiny: the role of post-translational modifications on endoplasmic reticulum - mitochondria crosstalk in cardiac remodeling. Front Pharmacol 2024; 15:1423356. [PMID: 39464632 PMCID: PMC11502351 DOI: 10.3389/fphar.2024.1423356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiac remodeling is a shared pathological change in most cardiovascular diseases. Encompassing both adaptive physiological responses and decompensated pathological changes. Anatomically, atrial remodeling is primarily caused by atrial fibrillation, whereas ventricular remodeling is typically induced by myocardial infarction, hypertension, or cardiomyopathy. Mitochondria, the powerhouse of cardiomyocytes, collaborate with other organelles such as the endoplasmic reticulum to control a variety of pathophysiological processes such as calcium signaling, lipid transfer, mitochondrial dynamics, biogenesis, and mitophagy. This mechanism is proven to be essential for cardiac remodeling. Post-translational modifications can regulate intracellular signaling pathways, gene expression, and cellular stress responses in cardiac cells by modulating protein function, stability, and interactions, consequently shaping the myocardial response to injury and stress. These modifications, in particular phosphorylation, acetylation, and ubiquitination, are essential for the regulation of the complex molecular pathways that underlie cardiac remodeling. This review provides a comprehensive overview of the crosstalk between the endoplasmic reticulum and mitochondria during cardiac remodeling, focusing on the regulatory effects of various post-translational modifications on these interactions.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihang Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruoning Chai
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezhen Guo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chenglin Duan
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Matsumoto T, Nagano T, Taguchi K, Kobayashi T, Tanaka-Totoribe N. Toll-like receptor 3 involvement in vascular function. Eur J Pharmacol 2024; 979:176842. [PMID: 39033837 DOI: 10.1016/j.ejphar.2024.176842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Maintaining endothelial cell (EC) and vascular smooth muscle cell (VSMC) integrity is an important component of human health and disease because both EC and VSMC regulate various functions, including vascular tone control, cellular adhesion, homeostasis and thrombosis regulation, proliferation, and vascular inflammation. Diverse stressors affect functions in both ECs and VSMCs and abnormalities of functions in these cells play a crucial role in cardiovascular disease initiation and progression. Toll-like receptors (TLRs) are important detectors of pathogen-associated molecular patterns derived from various microbes and viruses as well as damage-associated molecular patterns derived from damaged cells and perform innate immune responses. Among TLRs, several studies reveal that TLR3 plays a key role in initiation, development and/or protection of diseases, and an emerging body of evidence indicates that TLR3 presents components of the vasculature, including ECs and VSMCs, and plays a functional role. An agonist of TLR3, polyinosinic-polycytidylic acid [poly (I:C)], affects ECs, including cell death, inflammation, chemoattractant, adhesion, permeability, and hemostasis. Poly (I:C) also affects VSMCs including inflammation, proliferation, and modulation of vascular tone. Moreover, alterations of vascular function induced by certain molecules and/or interventions are exerted through TLR3 signaling. Hence, we present the association between TLR3 and vascular function according to the latest studies.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan.
| | - Takayuki Nagano
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Naoko Tanaka-Totoribe
- First Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan
| |
Collapse
|
10
|
Cui Y, Liao Y, Chen Y, Zhao X, Zhang Y, Wang H, Li L, Zhang X, Chen K, Jia M, Tian J, Ruan X, Shi Y, Yang P, Chen J. Low expression of selenoprotein S induces oxidative damage in cartilages. J Trace Elem Med Biol 2024; 85:127492. [PMID: 38964025 DOI: 10.1016/j.jtemb.2024.127492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Low levels of the indispensable trace element selenium (Se) can cause oxidative stress and disrupt environmental homeostasis in humans and animals. Selenoprotein S (Selenos), of which Se is a key component, is a member of the selenoprotein family involved in various biological processes. This study aimed to investigate whether low-level SELENOS gene expression can induce oxidative stress and decrease the antioxidative capacity of chondrocytes. Compared with control cells, SELENOS-knockdown ATDC5 cells showed substantially higher dihydroethidium, reactive oxygen species and malondialdehyde levels, and lower superoxide dismutase (SOD) expression. Knockout of the gene in C57BL/6 mice increased the 8-hydroxy-2-deoxyguanosine level considerably and decreased SOD expression in cartilages relative to the levels in wild-type mice. The results showed that the increased nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling mediated by low-level SELENOS expression was involved in oxidative damage. The proliferative zone of the cartilage growth plate of SELENOS-knockout mice was shortened, suggesting cartilage differentiation dysfunction. In conclusion, this study confirmed that low-level Selenos expression plays a role in oxidative stress in cartilages.
Collapse
Affiliation(s)
- Yixin Cui
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Yucheng Liao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Yonghui Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Xu Zhao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Yi Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Lian Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Xinhe Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Kunpan Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Mingzhao Jia
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Jing Tian
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Xingran Ruan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Yawen Shi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Pinglin Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, People's Republic of China.
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| |
Collapse
|
11
|
Samsami H, Maali-Amiri R. Global insights into intermediate metabolites: Signaling, metabolic divergence and stress response modulation in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108862. [PMID: 38917735 DOI: 10.1016/j.plaphy.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Climate change-induced environmental stresses pose significant challenges to plant survival and agricultural productivity. In response, many plants undergo genetic reprogramming, resulting in profound alterations in metabolic pathways and the production of diverse secondary metabolites. As a critical molecular junction, intermediate metabolites by targeted intensification or suppression of subpathways channel cell resources into a multifaceted array of functions such as cell signals, photosynthesis, energy metabolism, ROS homeostasis, producing defensive and protective molecules, epigenetic regulation and stress memory, phytohormones biosynthesis and cell wall architecture under stress conditions. Unlike the well-established functions of end products, intermediate metabolites are context-dependent and produce enigmatic alternatives during stress. As key components of signal transduction pathways, intermediate metabolites with relay and integration of stress signals ensure responses to stress combinations. Investigating efficient metabolic network pathways and their role in regulating unpredictable paths from upstream to downstream levels can unlock their full potential to shape the future of agriculture and ensure global food security. Here, we summarized the activity of some intermediate metabolites, from the perception step to tolerance responses to stress factors.
Collapse
Affiliation(s)
- Hanna Samsami
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
12
|
Cheng Z, Liu Z, Liu C, Yang A, Miao H, Bai X. Esculin suppresses the PERK-eIF2α-CHOP pathway by enhancing SIRT1 expression in oxidative stress-induced rat chondrocytes, mitigating osteoarthritis progression in a rat model. Int Immunopharmacol 2024; 132:112061. [PMID: 38608474 DOI: 10.1016/j.intimp.2024.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative disease characterized by the gradual degeneration of chondrocytes, involving endoplasmic reticulum (ER) stress. Esculin is a natural compound with antioxidant, anti-inflammatory and anti-tumor properties. However, its impact on ER stress in OA therapy has not been thoroughly investigated. We aim to determine the efficiency of Esculin in OA treatment and its underlying mechanism. METHODS We utilized the tert-butyl hydroperoxide (TBHP) to establish OA model in chondrocytes. The expression of SIRT1, PERK/eIF2α pathway-related proteins, apoptosis-associated proteins and ER stress-related proteins were detected by Western blot and Real-time PCR. The apoptosis was evaluated by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. X-ray imaging, Hematoxylin & Eosin staining, Safranin O staining and immunohistochemistry were used to assess the pharmacological effects of Esculin in the anterior cruciate ligament transection (ACLT) rat OA model. RESULTS Esculin downregulated the expression of PERK/eIF2α pathway-related proteins, apoptosis-associated proteins and ER stress-related proteins, while upregulated the expression of SIRT1 and Bcl2 in the TBHP-induced OA model in vitro. It was coincident with the results of TUNEL staining and flow cytometry. We further confirmed the protective effect of Esculin in the rat ACLT-related model. CONCLUSION Our results suggest the potential therapeutic value of Esculin on osteoarthritis. It probably inhibits the PERK-eIF2α-ATF4-CHOP pathway by upregulating SIRT1, thereby mitigating endoplasmic reticulum stress and protecting chondrocytes from apoptosis.
Collapse
Affiliation(s)
- Zhihua Cheng
- Dalian Medical University, Dalian City, Liaoning Province, China
| | - Zheyuan Liu
- China Medical University, Shenyang City, Liaoning Province, China
| | - Chao Liu
- Department of Orthopedics, Liaoning Jinqiu Hospital, Shenyang City, Liaoning Province, China
| | - Aoxiang Yang
- Dalian Medical University, Dalian City, Liaoning Province, China
| | - Haichuan Miao
- Dalian Medical University, Dalian City, Liaoning Province, China
| | - Xizhuang Bai
- Dalian Medical University, Dalian City, Liaoning Province, China; Department of Arthrology, Liaoning Provincial People's Hospital, Shenyang City, Liaoning Province, China.
| |
Collapse
|
13
|
Costa RM, Cerqueira DM, Francis L, Bruder-Nascimento A, Alves JV, Sims-Lucas S, Ho J, Bruder-Nascimento T. In utero exposure to maternal diabetes exacerbates dietary sodium intake-induced endothelial dysfunction by activating cyclooxygenase 2-derived prostanoids. Am J Physiol Endocrinol Metab 2024; 326:E555-E566. [PMID: 38446637 PMCID: PMC11376489 DOI: 10.1152/ajpendo.00009.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024]
Abstract
Prenatal exposure to maternal diabetes has been recognized as a significant cardiovascular risk factor, increasing the susceptibility to the emergence of conditions such as high blood pressure, atherosclerosis, and heart disease in later stages of life. However, it is unclear if offspring exposed to diabetes in utero have worse vascular outcomes on a high-salt (HS) diet. To test the hypothesis that in utero exposure to maternal diabetes predisposes to HS-induced vascular dysfunction, we treated adult male wild-type offspring (DM_Exp, 6 mo old) of diabetic Ins2+/C96Y mice (Akita mice) with HS (8% sodium chloride, 10 days) and analyzed endothelial function via wire myograph and cyclooxygenase (COX)-derived prostanoids pathway by ELISA, quantitative PCR, and immunochemistry. On a regular diet, DM_Exp mice did not manifest any vascular dysfunction, remodeling, or inflammation. However, HS increased aortic contractility to phenylephrine and induced endothelial dysfunction (analyzed by acetylcholine-induced endothelium-dependent relaxation), vascular hydrogen peroxide production, COX2 expression, and prostaglandin E2 (PGE2) overproduction. Interestingly, ex vivo antioxidant treatment (tempol) or COX1/2 (indomethacin) or COX2 (NS398) inhibitors improved or reverted the endothelial dysfunction in DM_Exp mice fed a HS diet. Finally, DM_Exp mice fed with HS exhibited greater circulating cytokines and chemokines accompanied by vascular inflammation. In summary, our findings indicate that prenatal exposure to maternal diabetes predisposes to HS-induced vascular dysfunction, primarily through the induction of oxidative stress and the generation of COX2-derived PGE2. This supports the concept that in utero exposure to maternal diabetes is a cardiovascular risk factor in adulthood.NEW & NOTEWORTHY Using a unique mouse model of prenatal exposure to maternal type 1 diabetes, our study demonstrates the novel observation that prenatal exposure to maternal diabetes results in a predisposition to high-salt (HS) dietary-induced vascular dysfunction and inflammation in adulthood. Mechanistically, we demonstrated that in utero exposure to maternal diabetes and HS intake induces vascular oxidative stress, cyclooxygenase-derived prostaglandin E2, and inflammation.
Collapse
Affiliation(s)
- Rafael M Costa
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Institute of Health Sciences, Federal University of Jatai, Jatai, Goiás, Brazil
| | - Débora Malta Cerqueira
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Nephrology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lydia Francis
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Nephrology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ariane Bruder-Nascimento
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Institute of Health Sciences, Federal University of Jatai, Jatai, Goiás, Brazil
| | - Juliano V Alves
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Institute of Health Sciences, Federal University of Jatai, Jatai, Goiás, Brazil
| | - Sunder Sims-Lucas
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Nephrology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jacqueline Ho
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Nephrology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
14
|
Förster CY, Künzel SR, Shityakov S, Stavrakis S. Synergistic Effects of Weight Loss and Catheter Ablation: Can microRNAs Serve as Predictive Biomarkers for the Prevention of Atrial Fibrillation Recurrence? Int J Mol Sci 2024; 25:4689. [PMID: 38731908 PMCID: PMC11083177 DOI: 10.3390/ijms25094689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In atrial fibrillation (AF), multifactorial pathologic atrial alterations are manifested by structural and electrophysiological changes known as atrial remodeling. AF frequently develops in the context of underlying cardiac abnormalities. A critical mechanistic role played by atrial stretch is played by abnormal substrates in a number of conditions that predispose to AF, including obesity, heart failure, hypertension, and sleep apnea. The significant role of overweight and obesity in the development of AF is known; however, the differential effect of overweight, obesity, cardiovascular comorbidities, lifestyle, and other modifiable risk factors on the occurrence and recurrence of AF remains to be determined. Reverse remodeling of the atrial substrate and subsequent reduction in the AF burden by conversion into a typical sinus rhythm has been associated with weight loss through lifestyle changes or surgery. This makes it an essential pillar in the management of AF in obese patients. According to recently published research, microRNAs (miRs) may function as post-transcriptional regulators of genes involved in atrial remodeling, potentially contributing to the pathophysiology of AF. The focus of this review is on their modulation by both weight loss and catheter ablation interventions to counteract atrial remodeling in AF. Our analysis outlines the experimental and clinical evidence supporting the synergistic effects of weight loss and catheter ablation (CA) in reversing atrial electrical and structural remodeling in AF onset and in recurrent post-ablation AF by attenuating pro-thrombotic, pro-inflammatory, pro-fibrotic, arrhythmogenic, and male-sex-associated hypertrophic remodeling pathways. Furthermore, we discuss the promising role of miRs with prognostic potential as predictive biomarkers in guiding approaches to AF recurrence prevention.
Collapse
Affiliation(s)
- Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Stephan R. Künzel
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, 01307 Dresden, Germany
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, 197101 Saint-Petersburg, Russia;
| | - Stavros Stavrakis
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Caminiti R, Carresi C, Mollace R, Macrì R, Scarano F, Oppedisano F, Maiuolo J, Serra M, Ruga S, Nucera S, Tavernese A, Gliozzi M, Musolino V, Palma E, Muscoli C, Rubattu S, Volterrani M, Federici M, Volpe M, Mollace V. The potential effect of natural antioxidants on endothelial dysfunction associated with arterial hypertension. Front Cardiovasc Med 2024; 11:1345218. [PMID: 38370153 PMCID: PMC10869541 DOI: 10.3389/fcvm.2024.1345218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Arterial hypertension represents a leading cause of cardiovascular morbidity and mortality worldwide, and the identification of effective solutions for treating the early stages of elevated blood pressure (BP) is still a relevant issue for cardiovascular risk prevention. The pathophysiological basis for the occurrence of elevated BP and the onset of arterial hypertension have been widely studied in recent years. In addition, consistent progress in the development of novel, powerful, antihypertensive drugs and their appropriate applications in controlling BP have increased our potential for successfully managing disease states characterized by abnormal blood pressure. However, the mechanisms responsible for the disruption of endogenous mechanisms contributing to the maintenance of BP within a normal range are yet to be fully clarified. Recently, evidence has shown that several natural antioxidants containing active ingredients originating from natural plant extracts, used alone or in combination, may represent a valid solution for counteracting the development of arterial hypertension. In particular, there is evidence to show that natural antioxidants may enhance the viability of endothelial cells undergoing oxidative damage, an effect that could play a crucial role in the pathophysiological events accompanying the early stages of arterial hypertension. The present review aims to reassess the role of oxidative stress on endothelial dysfunction in the onset and progression of arterial hypertension and that of natural antioxidants in covering several unmet needs in the treatment of such diseases.
Collapse
Affiliation(s)
- Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rocco Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Annamaria Tavernese
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Renato Dulbecco Institute, Catanzaro, Italy
| |
Collapse
|