1
|
Kittisabhorn A, Ahmed I, Pornputtapitak W, Ratchahat S, Chaiwat W, Koo-amornpattana W, Klysubun W, Limphirat W, Assabumrungrat S, Srifa A. Constructing Ni-Pt Bimetallic Catalysts for Catalytic Hydrogenation and Rearrangement of Furfural into Cyclopentanone with Insight in H/D Exchange by D 2O Labeling. ACS OMEGA 2024; 9:28637-28647. [PMID: 38973900 PMCID: PMC11223191 DOI: 10.1021/acsomega.4c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Developing a metallic catalyst for converting furfural (FAL) to highly valuable products such as cyclopentanone (CPO) is important for fine chemical synthesis by the efficient utilization of biomass resources. The presence of diverse unsaturated carbon atoms in FAL and the rearrangement of oxygen atoms hinder the production of CPO. We developed an optimal nickel (Ni)-to-platinum (Pt) molar ratio (1:0.007) for a bimetallic Ni-Pt/alumina (Al2O3) catalyst with a low Pt loading via an impregnation method to efficiently catalyze the selective hydrogenation of FAL in an aqueous solution to form CPO. The comprehensive characterizations by X-ray diffraction and X-ray absorption near edge structure analyses elucidated the formation of Ni0/Pt0 and Ni2+/Pt4+ after reduction by H2. The addition of a low amount of the Pt-Ni/Al2O3 catalyst resulted in an alleviation of H2 reduction behavior detected by hydrogen temperature-programmed reduction, accompanied by low H2 desorption ability observed by hydrogen temperature-programmed desorption. The catalytic activity of Ni-Pt/Al2O3 was higher than those of Ni/Al2O3 and Pt/Al2O3 catalysts. The maximum CPO yield was 66% with 93% FAL conversion under the optimized conditions (160 °C, 20 bar of H2 pressure, and 2 h). Isotopic deuterium oxide (D2O) labeling revealed the transfer of deuterium (D) atoms from D2O to the intermediates and products during hydrogenation and rearrangement, which confirmed that water was a medium for rearrangement and the source of hydrogen for the reaction. This study developed an efficient catalyst for the catalytic hydrogenation and ring rearrangement of FAL into CPO.
Collapse
Affiliation(s)
- Aurucha Kittisabhorn
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon
Pathom 73170, Thailand
| | - Imtiaz Ahmed
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon
Pathom 73170, Thailand
| | - Warangkana Pornputtapitak
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon
Pathom 73170, Thailand
| | - Sakhon Ratchahat
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon
Pathom 73170, Thailand
| | - Weerawut Chaiwat
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon
Pathom 73170, Thailand
| | - Wanida Koo-amornpattana
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon
Pathom 73170, Thailand
| | - Wantana Klysubun
- Synchrotron
Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Wanwisa Limphirat
- Synchrotron
Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Suttichai Assabumrungrat
- Center
of Excellence in Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Bio-Circular-Green-Economy
Technology & Engineering Center, Department of Chemical Engineering,
Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atthapon Srifa
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon
Pathom 73170, Thailand
| |
Collapse
|
2
|
Srivastava V, Lappalainen K, Rusanen A, Morales G, Lassi U. Current Status and Challenges for Metal-Organic-Framework-Assisted Conversion of Biomass into Value-Added Chemicals. Chempluschem 2023; 88:e202300309. [PMID: 37779099 DOI: 10.1002/cplu.202300309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Owing to the abundance of availability, low cost, and environmental-friendliness, biomass waste could serve as a prospective renewable source for value-added chemicals. Nevertheless, biomass conversion into chemicals is quite challenging due to the heterogeneous nature of biomass waste. Biomass-derived chemicals are appealing sustainable solutions that can reduce the dependency on existing petroleum-based production. Metal-organic frameworks (MOFs)-based catalysts and their composite materials have attracted considerable amounts of interest in biomass conversion applications recently because of their interesting physical and chemical characteristics. Due to their tunability, the catalytic activity and selectivity of MOF-based catalyst/composite materials can be tailored by functionalizing them with a variety of functional groups to enhance biomass conversion efficiency. This review focuses on the catalytic transformation of lignocellulosic biomass into value-added chemicals by employing MOF-based catalyst/composite materials. The main focus is given to the production of the platform chemicals HMF and Furfural from the corresponding (hemi)cellulosic biomass, due to their versatility as intermediates for the production of various biobased chemicals and fuels. The effects of different experimental parameters on the conversion of biomass by MOF-based catalysts are also included. Finally, current challenges and perspectives of biomass conversion into chemicals by MOF-based catalysts are highlighted.
Collapse
Affiliation(s)
- Varsha Srivastava
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Katja Lappalainen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Annu Rusanen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Gabriel Morales
- Chemical and Environmental Engineering Group, Universidad Rey Juan Carlos, Tulipán s-n, 28933, Móstoles, Madrid, Spain
| | - Ulla Lassi
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| |
Collapse
|
3
|
Wu HY, Qin YY, Xiao YH, Chen JS, Ye R, Guo R, Yao YG. Boosting Activity and Selectivity of UiO-66 through Acidity/Alkalinity Functionalization in Dimethyl Carbonate Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208238. [PMID: 36734211 DOI: 10.1002/smll.202208238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Indexed: 05/04/2023]
Abstract
The acid-base properties of supports have an enormous impact on catalytic reactions to regulate the selectivity and activity of supported catalysts. Herein, a train of Pd-X-UiO-66 (X = NO2 , NH2 , and CH3 ) catalysts with different acidity/alkalinity functional groups and encapsulated Pd(II) species is first developed, whose activities in dimethyl carbonate (DMC) catalysis are then investigated in details. Thereinto, the Pd-NO2 -UiO-66 catalyst with acidity functionalization exhibits the best catalytic behavior: the DMC selectivity stemmed from methyl nitrite (MN) is up to 68%, the conversion of CO is 73.4%. The obtained experimental results demonstrate that the NO2 group not only affected the interaction between X-UiO-66 and Pd(II) active sites but also play an indispensable role in the adsorption and activation of MN and CO, which remarkably promote the formation of the COOCH3 * intermediate and DMC product.
Collapse
Affiliation(s)
- Han-Ying Wu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ye-Yan Qin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yi-Hong Xiao
- College of Environmental and Biological Engineering, Putian University, Putian, 351100, P. R. China
| | - Jian-Shan Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Runping Ye
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Rong Guo
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yuan-Gen Yao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Effects of Acid Modulators on the Microwave-Assisted Synthesis of Cr/Sn Metal-Organic Frameworks. Polymers (Basel) 2022; 14:polym14183826. [PMID: 36145971 PMCID: PMC9504004 DOI: 10.3390/polym14183826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Metal-organic frameworks (MOFs) have attracted remarkable attention for their distinguished structural designability. Precisely controlling the particle size and improving the structural stability of MOF nanoparticles influence their catalytic activity significantly. In this study, six acids (nitric, hydrochloric, formic, acetic, succinic, and citric acids) were used as modulators to prepare bimetallic MIL-101 (Cr, Sn) (MIL stands for Materials of Institut Lavoisier) via a microwave-assisted hydrothermal method. Changes in volumetric, structural, stability, and catalytic properties, size, and shape of MIL-101 (Cr, Sn) were examined using scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and N2 adsorption–desorption measurements. All modulators altered the MOF properties. Compared with other samples, acetic acid as a modulator mildly altered the MOF morphology by narrowing their particle size distribution, enhancing the specific surface area, and significantly improving their water and thermal stabilities. The addition of acetic acid was suitable for the catalytic conversion of glucose to 5-hydroxymethylfurfural (5-HMF), achieving a 43.1% 5-HMF yield with 91.4% glucose conversion in a mixed solution of γ-valerolactone and saturated salt water at 150 °C after 30 min.
Collapse
|
5
|
Postsynthetic acid modification of amino-tagged metal-organic frameworks: Structure-function relationship for catalytic 5-hydroxymethylfurfural synthesis. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Zhong Y, Huang C, Cai J, Wang J, Zeng Z, Deng Q. A
2D
metal‐organic framework with dual‐acidic sites for the valorization of saccharides to 5‐hydroxymethylfurfural. AIChE J 2022. [DOI: 10.1002/aic.17890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yao Zhong
- School of Resources and Environment Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Cuiying Huang
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Jianxin Cai
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Jun Wang
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Zheling Zeng
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Qiang Deng
- School of Resources and Environment Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| |
Collapse
|
7
|
Tao S, Hu L, Zhang X, Mai Y, Xian X, Zheng X, Lin X. Insights into the Play of Novel Brønsted Acid-Based Deep Eutectic Solvents for the Conversion of Glucose into 5-Hydroxymethylfurfural without Additional Catalysts. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shunhui Tao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Lei Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xiaodong Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Yinglin Mai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xiaoling Xian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xiaojie Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xiaoqing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, People’s Republic of China
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Tong Z, Li X, Zhu J, Chen S, Dai G, Deng Q, Wang J, Yang W, Zeng Z, Zou JJ. Iodine-Modified Pd Catalysts Promote the Bifunctional Catalytic Synthesis of 2,5-Hexanedione from C 6 Furan Aldehydes. CHEMSUSCHEM 2022; 15:e202102444. [PMID: 34918485 DOI: 10.1002/cssc.202102444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Currently, low intimacy between hydrogenation sites and acidic sites causes unsatisfactory catalytic activity and selectivity for the synthesis of 2,5-hexanedione from C6 furan aldehydes (5-methylfurfural, 5-hydroxymethylfurfural). Herein, iodine(I) modification of Pd-supported catalysts (such as PdI/Al2 O3 and PdI/SiO2 ) was investigated to modulate the hydrogenation sites and acidic sites. Unlike Pd catalysts that produced 71.4 % yield of 2-hydroxymethyl-5-methyl tetrahydrofuran via an overhydrogenation route of 5-methylfurfural, PdI catalysts showed a high efficiency for 2,5-hexanedione with 93.7 % yield by a hydrogenative ring-opening route. More importantly, the selective synthesis of 2,5-hexanedione from 5-hydroxymethylfurfural with a high yield of 50.2 % by the hydrogenolysis and subsequent ring-opening route was reported for the first time. I-modified Pd nanoparticles produced in-situ hydrogen spillover, which promoted the selective C=O hydrogenation and ring-opening steps by regulating the adsorption configuration of the reactants and the transformation of Lewis to Brønsted acidity, respectively.
Collapse
Affiliation(s)
- Zhikun Tong
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiang Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jiawei Zhu
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Shixia Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Guiping Dai
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Qiang Deng
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jun Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Weiran Yang
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Zheling Zeng
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
9
|
Li X, Zhang L, Deng Q, Chen S, Wang J, Zeng Z, Deng S. Promoted Hydrogenolysis of Furan Aldehydes to 2,5-Dimethylfuran by Defect Engineering on Pd/NiCo 2 O 4. CHEMSUSCHEM 2022; 15:e202102532. [PMID: 34997695 DOI: 10.1002/cssc.202102532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Catalytic hydrogenolysis of biobased furan aldehydes (i. e., 5-methylfurfural, 5-hydroxymethylfurfural) to 2,5-dimethylfuran has gained extensive interest for biomass-derived fuels and chemicals. Herein, a class of NiCo2 O4 -supported palladium with considerable oxygen defects was synthesized by hydrogen plasma etching and phosphating methods. The oxygen defects not only promoted the hydrogenation of the C=O group but also enhanced the accessibility of coordinatively unsaturated metal cations with Lewis acidity for the hydrogenolysis of the C-OH group. Meanwhile, the additional Brønsted acidity in Pd/NiCo2 O4-x obtained by phosphating could further strengthen the hydrogenolysis ability by the etherification route of C-OH. Finally, Pd/NiCo2 O4-x exhibited the most effective performance with 2,5-dimethylfuran yields of 92.9 and 90.5 % from 5-methylfurfural and 5-hydroxymethylfurfural, respectively. These catalytic mechanisms were confirmed by in-situ infrared spectroscopy and control experiments. Furthermore, the catalyst showed outstanding recycling stability. This work shows powerful synergistic catalysis in the hydrogenolysis reaction by multifunctional active sites.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Likang Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Qiang Deng
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Shixia Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Jun Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Zheling Zeng
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
10
|
Ghobakhloo F, Azarifar D, Mohammadi M, Keypour H, Zeynali H. Copper(II) Schiff-Base Complex Modified UiO-66-NH 2(Zr) Metal-Organic Framework Catalysts for Knoevenagel Condensation-Michael Addition-Cyclization Reactions. Inorg Chem 2022; 61:4825-4841. [PMID: 35285616 DOI: 10.1021/acs.inorgchem.1c03284] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis of five- and six-membered oxygen- and nitrogen-containing heterocycles has been regarded as the most fundamental issue in organic chemistry and chemical industry because they are used in producing high-value products. In this study, an efficient, economic, sustainable, and green protocol for multicomponent synthesis has been developed. The one-pot direct Knoevenagel condensation-Michael addition-cyclization sequences for the transformation of aromatic aldehydes, malononitrile, and 4-hydroxycoumarin or phthalhydrazide generate the corresponding dihydropyrano[2,3-c]chromenes and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones over a novel mesoporous metal-organic framework-based supported Cu(II) nanocatalyst [UiO-66@Schiff-Base-Cu(II)] under ambient conditions. Moreover, the [UiO-66@Schiff-Base-Cu(II)] complex efficiently catalyzed the selectively large-scale synthesis of the target molecules with high yield and large turnover numbers. As presented, the catalyst demonstrates excellent reusability and stability and can be recycled up to six runs without noticeable loss of activity. Moreover, ICP-AES analysis showed that no leaching of Cu complex occurred during the recycling process of the heterogeneous [UiO-66@Schiff-Base-Cu(II)] nanocatalyst.
Collapse
Affiliation(s)
- Farzaneh Ghobakhloo
- Department of Organic Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Davood Azarifar
- Department of Organic Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam 6931173385, Iran
| | - Hassan Keypour
- Department of Organic Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hamid Zeynali
- Department of Organic Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| |
Collapse
|
11
|
Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Water-mediated hydrogen spillover accelerates hydrogenative ring-rearrangement of furfurals to cyclic compounds. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ye L, Han Y, Wang X, Lu X, Qi X, Yu H. Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Tong Z, Gao R, Li X, Guo L, Wang J, Zeng Z, Deng Q, Deng S. Highly Controllable Hydrogenative Ring Rearrangement and Complete Hydrogenation Of Biobased Furfurals over Pd/La
2
B
2
O
7
(B=Ti, Zr, Ce). ChemCatChem 2021. [DOI: 10.1002/cctc.202101063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhikun Tong
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Rui Gao
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Xiang Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Lingyun Guo
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Jun Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Zheling Zeng
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Qiang Deng
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Shuguang Deng
- School for Engineering of Matter Transport and Energy Arizona State University 551 E. Tyler Mall Tempe AZ 85287 USA
| |
Collapse
|
15
|
Zhong Y, Yao Q, Zhang P, Li H, Deng Q, Wang J, Zeng Z, Deng S. Preparation of Hydrophobic Acidic Metal–Organic Frameworks and Their Application for 5-Hydroxymethylfurfural Synthesis. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yao Zhong
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of the Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, P R China
| | - Qing Yao
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of the Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, P R China
| | - Peixin Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of the Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, P R China
| | - Huan Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of the Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, P R China
| | - Qiang Deng
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of the Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, P R China
| | - Jun Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of the Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, P R China
| | - Zheling Zeng
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) of the Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, P R China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, Arizona 85287, United States
| |
Collapse
|
16
|
Li L, Hu C, Dai X, Jin W, Hu C, Ma F. The performance of a biological aerated filter loaded with a novel non-sintered fly-ash ceramsite as pretreatment for dual membrane processes. ENVIRONMENTAL TECHNOLOGY 2015; 36:2024-2034. [PMID: 25686627 DOI: 10.1080/09593330.2015.1019930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This work focused on wastewater reclamation of secondary treated ethylene chemical plant effluent, which contained high conductivity and high organic concentration. To reduce the cost and improve operation stability, a biological aerated filter-ultrafiltration-reverse osmosis (BAF-UF-RO) process was proposed. The feasibility and effectiveness of BAF loaded with a novel non-sintered fly-ash ceramsite (NSFC) as a pretreatment method of a dual membrane system were investigated in detail. The results showed that the CODCr, turbidity, NH3-N and the silt density index (SDI) in the effluent from the BAF were reduced to 24.2 mg/L, 12.17 NTU, 0.42 mg/L and 7.52, respectively, and most of the organic compounds were biodegraded. The BAF-UF-RO process was stable with a recovery rate of 75%, and the desalination rate was up to about 97.5%. Compared with the UF-RO process, the operating pressure and backwash frequency decreased from 1.12-1.26 Mpa and 3 times/d to 0.94-0.98 Mpa and 2 times/d, respectively. After continuous operation for four months, there appeared to be no need for chemical cleaning of the RO membrane. Moreover, the analysis results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy proved that there was only slight membrane fouling, which was mainly colloidal blocking caused by refractory organic compound.
Collapse
Affiliation(s)
- Lihua Li
- a Department of Environmental Engineering, School of Chemical Engineering , University of Science and Technology Liaoning , 185 Anqian Road, Anshan 114051 , People's Republic of China
| | | | | | | | | | | |
Collapse
|