1
|
Shiri I, Salimi Y, Mohammadi Kazaj P, Bagherieh S, Amini M, Saberi Manesh A, Zaidi H. Deep Radiogenomics Sequencing for Breast Tumor Gene-Phenotype Decoding Using Dynamic Contrast Magnetic Resonance Imaging. Mol Imaging Biol 2025; 27:32-43. [PMID: 39815134 PMCID: PMC11805855 DOI: 10.1007/s11307-025-01981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
PURPOSE We aim to perform radiogenomic profiling of breast cancer tumors using dynamic contrast magnetic resonance imaging (MRI) for the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) genes. METHODS The dataset used in the current study consists of imaging data of 922 biopsy-confirmed invasive breast cancer patients with ER, PR, and HER2 gene mutation status. Breast MR images, including a T1-weighted pre-contrast sequence and three post-contrast sequences, were enrolled for analysis. All images were corrected using N4 bias correction algorithms. Based on all images and tumor masks, a bounding box of 128 × 128 × 68 was chosen to include all tumor regions. All networks were implemented in 3D fashion with input sizes of 128 × 128 × 68, and four images were input to each network for multi-channel analysis. Data were randomly split into train/validation (80%) and test set (20%) with stratification in class (patient-wise), and all metrics were reported in 20% of the untouched test dataset. RESULTS For ER prediction, SEResNet50 achieved an AUC mean of 0.695 (CI95%: 0.610-0.775), a sensitivity of 0.564, and a specificity of 0.787. For PR prediction, ResNet34 achieved an AUC mean of 0.658 (95% CI: 0.573-0.741), a sensitivity of 0.593, and a specificity of 0.734. For HER2 prediction, SEResNext101 achieved an AUC mean of 0.698 (95% CI: 0.560-0.822), a sensitivity of 0.750, and a specificity of 0.625. CONCLUSION The current study demonstrated the feasibility of imaging gene-phenotype decoding in breast tumors using MR images and deep learning algorithms with moderate performance.
Collapse
Affiliation(s)
- Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Yazdan Salimi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | | | - Sara Bagherieh
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Abdollah Saberi Manesh
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
- University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| |
Collapse
|
2
|
Ge S, Wang C, You X, He H, Zhang B, Jia T, Cai X, Sang S, Xu T, Deng S. Imaging and Monitoring HER2 Expression in Tumors during HER2 Antibody-Drug Conjugate Therapy Utilizing a Radiolabeled Site-Specific Single-Domain Antibody Probe: 68Ga-NODAGA-SNA004-GSC. J Med Chem 2024. [PMID: 39077778 DOI: 10.1021/acs.jmedchem.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The overexpression of HER2 is pivotal in the initiation and progression of breast cancer. Developing HER2-targeted radiotracers is crucial for noninvasive assessment of HER2 expression, patient selection for HER2-targeted therapy, monitoring treatment response, and identifying resistance. Here, we reported a nonsite-specific coupled radiotracer, 68Ga-NOTA-SNA004-His6, and a site-specific coupled radiotracer, 68Ga-NODAGA-SNA004-GSC, based on a novel HER2 nanobody, SNA004. Both radiotracers exhibited high affinity, specific targeting, and rapid clearance in vitro and in vivo. Additionally, these tracers and trastuzumab showed noncompetitive binding to HER2. Compared to 68Ga-NOTA-SNA004-His6, 68Ga-NODAGA-SNA004-GSC demonstrated significantly reduced renal and liver uptake. PET/CT imaging with 68Ga-NODAGA-SNA004-GSC sensitively detected the responsiveness of various tumor models to trastuzumab and its antibody-drug conjugates (ADCs). Overall, the site-specific coupled radiotracer 68Ga-NODAGA-SNA004-GSC offered significant advantages in biodistribution and signal-to-noise ratio, making it a valuable tool for monitoring HER2 expression levels before, during, and after trastuzumab and ADC treatment.
Collapse
Affiliation(s)
- Shushan Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215006, China
- Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang 621099, China
| | - Chao Wang
- Smart-Nuclide Biotech, No. 218 Xing-Hu Road, Suzhou, 215125, China
| | - Xuyang You
- Department of Nuclear Medicine, Suzhou Ninth People's Hospital, Suzhou 215006, China
| | - Huihui He
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tongtong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaowei Cai
- Department of Nuclear Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223812, China
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tao Xu
- Smart-Nuclide Biotech, No. 218 Xing-Hu Road, Suzhou, 215125, China
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang 621099, China
| |
Collapse
|
3
|
Li X, Wang Y, Hu W, Song Q, Ding L. Development and validation of pharmacokinetics assays for a novel HER2-targeting antibody-drug conjugate (SHR-A1201): Application to its dose-escalation pharmacokinetic study. J Pharm Biomed Anal 2024; 240:115964. [PMID: 38219442 DOI: 10.1016/j.jpba.2024.115964] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Approximately 25% of breast cancer patients with HER2 overexpression tend to have a high risk of disease progression and death. Various HER2-targeting therapies have been approved for treatment. Recently, a novel antibody-drug conjugate, SHR-A1201, is being researched and developed. For the pharmacokinetic study of SHR-A1201, suitable bioanalytical methods are needed for quantifying unconjugated cytotoxin, cytotoxin-conjugated antibodies and total antibodies. In this research, bioanalytical methods involving a highly sensitive LC-MS/MS assay for unconjugated cytotoxic payload DM1 in human plasma, ELISA strategies for DM1-conjugated trastuzumab and total trastuzumab in human serum were developed, validated and successfully applied to a phase I dose-escalation pharmacokinetic study of SHR-A1201. The pharmacokinetic properties and exposure-to-dose proportionality was evaluated for SHR-A1201. According to the bioanalytical method validation guidance, the bioanalytical methods were fully validated and the validation results met the acceptance criteria. The nonspecific binding of DM1 and dimer was avoided for the LC-MS/MS assay. In the dose-escalation pharmacokinetic study of SHR-A1201, a potential dose-proportional pharmacokinetics was observed over the dose from 1.2 mg/kg to 4.8 mg/kg. The validated bioanalytical strategies are robust and reproducible and these bioanalytical methods will contribute to better understanding of the pharmacokinetic properties of SHR-A1201.
Collapse
Affiliation(s)
- Xianjing Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yiya Wang
- Nanjing Clinical Tech Laboratories Inc., 18 Zhilan Road, Jiangning District, Nanjing 211100, China
| | - Wenhui Hu
- Nanjing Jiening Pharmaceutical Technology, 18 Zhilan Road, Jiangning District, Nanjing 211100, China
| | - Qinxin Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Li Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Nanjing Clinical Tech Laboratories Inc., 18 Zhilan Road, Jiangning District, Nanjing 211100, China; Nanjing Jiening Pharmaceutical Technology, 18 Zhilan Road, Jiangning District, Nanjing 211100, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
4
|
Mandelkow T, Bady E, Lurati MCJ, Raedler JB, Müller JH, Huang Z, Vettorazzi E, Lennartz M, Clauditz TS, Lebok P, Steinhilper L, Woelber L, Sauter G, Berkes E, Bühler S, Paluchowski P, Heilenkötter U, Müller V, Schmalfeldt B, von der Assen A, Jacobsen F, Krech T, Krech RH, Simon R, Bernreuther C, Steurer S, Burandt E, Blessin NC. Automated Prognosis Marker Assessment in Breast Cancers Using BLEACH&STAIN Multiplexed Immunohistochemistry. Biomedicines 2023; 11:3175. [PMID: 38137396 PMCID: PMC10741079 DOI: 10.3390/biomedicines11123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Prognostic markers in routine clinical management of breast cancer are often assessed using RNA-based multi-gene panels that depend on fluctuating tumor purity. Multiplex fluorescence immunohistochemistry (mfIHC) holds the potential for an improved risk assessment. To enable automated prognosis marker detection (i.e., progesterone receptor [PR], estrogen receptor [ER], androgen receptor [AR], GATA3, TROP2, HER2, PD-L1, Ki67, TOP2A), a framework for automated breast cancer identification was developed and validated involving thirteen different artificial intelligence analysis steps and an algorithm for cell distance analysis using 11+1-marker-BLEACH&STAIN-mfIHC staining in 1404 invasive breast cancers of no special type (NST). The framework for automated breast cancer detection discriminated normal glands from malignant glands with an accuracy of 98.4%. This approach identified that five (PR, ER, AR, GATA3, PD-L1) of nine biomarkers were associated with prolonged overall survival (p ≤ 0.0095 each) and two of these (PR, AR) were found to be independent risk factors in multivariate analysis (p ≤ 0.0151 each). The combined assessment of PR-ER-AR-GATA3-PD-L1 as a five-marker prognosis score showed strong prognostic relevance (p < 0.0001) and was an independent risk factor in multivariate analysis (p = 0.0034). Automated breast cancer detection in combination with an artificial intelligence-based analysis of mfIHC enables a rapid and reliable analysis of multiple prognostic parameters. The strict limitation of the analysis to malignant cells excludes the impact of fluctuating tumor purity on assay precision.
Collapse
Affiliation(s)
- Tim Mandelkow
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elena Bady
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Magalie C. J. Lurati
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jonas B. Raedler
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- College of Arts and Sciences, Boston University, Boston, MA 02215, USA
| | - Jan H. Müller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Zhihao Huang
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrück, 49076 Osnabrück, Germany
| | - Lisa Steinhilper
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Linn Woelber
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Enikö Berkes
- Department of Gynecology, Albertinen Clinic Schnelsen, 22457 Hamburg, Germany
| | - Simon Bühler
- Department of Gynecology, Amalie Sieveking Clinic, 22359 Hamburg, Germany
| | - Peter Paluchowski
- Department of Gynecology, Regio Clinic Pinneberg, 25421 Pinneberg, Germany
| | - Uwe Heilenkötter
- Department of Gynecology, Clinical Centre Itzehoe, 25524 Itzehoe, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Krech
- Institute of Pathology, Clinical Center Osnabrück, 49076 Osnabrück, Germany
| | - Rainer H. Krech
- Institute of Pathology, Clinical Center Osnabrück, 49076 Osnabrück, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Niclas C. Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Li C, Yuan Q, Deng T, Xu G, Hou J, Zheng L, Wu G. Prognosis difference between HER2-low and HER2-zero breast cancer patients: a systematic review and meta-analysis. Breast Cancer 2023; 30:965-975. [PMID: 37470943 DOI: 10.1007/s12282-023-01487-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND HER2-low breast cancer (BC) is proposed to be a special population of patients with an immunohistochemistry (IHC) score of 1 + or 2 + and non-amplified in situ hybridization (ISH) results. The role and prognostic impact of HER2-low BC is still controversial. This meta-analysis aims to explore the prognostic difference between of HER2-low and HER2-zero characteristic in BC patients. METHODS A meta-analysis was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and eligible studies were search in PubMed, Web of Science and EMBASE databases. Quality assessment of included studies were performed by Quality in Prognostic Studies (QUIPS) tool. Hazard ratios (HRs) and corresponding 95% confidence interval (CI) for overall survival (OS) and disease-free survival (DFS) were pooled in a meta-analysis. Furthermore, subgroup analysis, sensitivity analysis, and analysis for publication bias were conducted. RESULTS Eighteen studies comprising a total of 93,317 patients were included for meta-analysis. BC patients with HER2-low characteristic have longer OS (HRs 0.87, 95% CI 0.81-0.93, p < 0.0001) and DFS (HRs 0.82, 95% CI 0.73-0.93, p = 0.001) compared to those with HER2-zero characteristic. Subgroup analysis indicate that the source of heterogeneity may come from the hormone receptor (HR) status group. Although, the publication bias was detected, sensitivity analysis and the trim-and-fill method analysis demonstrated the stability and reliability of the results. CONCLUSION HER2-low BC patients have longer OS and DFS compared to HER2-zero BC patients, and its prognostic value is consistent among different HR status patients. Whether HER2-low breast cancer is an independent subtype of breast cancer is still a subject of ongoing research, and more studies are needed to fully understand the molecular and clinical features of this subtype.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China
| | - Qianqian Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China
| | - Tong Deng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China
| | - Gaoran Xu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China
| | - Jinxuan Hou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China
| | - Lewei Zheng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Rodriguez-Perdigon M, Haeni L, Rothen-Rutishauser B, Rüegg C. Dual CSF1R inhibition and CD40 activation demonstrates anti-tumor activity in a 3D macrophage- HER2 + breast cancer spheroid model. Front Bioeng Biotechnol 2023; 11:1159819. [PMID: 37346794 PMCID: PMC10281737 DOI: 10.3389/fbioe.2023.1159819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
The complex interaction between tumor-associated macrophages (TAMs) and tumor cells through soluble factors provides essential cues for breast cancer progression. TAMs-targeted therapies have shown promising clinical therapeutical potential against cancer progression. The molecular mechanisms underlying the response to TAMs-targeted therapies depends on complex dynamics of immune cross-talk and its understanding is still incomplete. In vitro models are helpful to decipher complex responses to combined immunotherapies. In this study, we established and characterized a 3D human macrophage-ER+ PR+ HER2+ breast cancer model, referred to as macrophage-tumor spheroid (MTS). Macrophages integrated within the MTS had a mixed M2/M1 phenotype, abrogated the anti-proliferative effect of trastuzumab on tumor cells, and responded to IFNγ with increased M1-like polarization. The targeted treatment of MTS with a combined CSF1R kinase inhibitor and an activating anti-CD40 antibody increased M2 over M1 phenotype (CD163+/CD86+ and CD206+/CD86+ ratio) in time, abrogated G2/M cell cycle phase transition of cancer cells, promoted the secretion of TNF-α and reduced cancer cell viability. In comparison, combined treatment in a 2D macrophage-cancer cell co-culture model reduced M2 over M1 phenotype and decreased cancer cell viability. Our work shows that this MTS model is responsive to TAMs-targeted therapies, and may be used to study the response of ER+ PR+ HER2+ breast cancer lines to novel TAM-targeting therapies.
Collapse
Affiliation(s)
- Manuel Rodriguez-Perdigon
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laetitia Haeni
- Adolphe Merkle Institute, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Song J, Peng C, Wang R, Hua Y, Wu Q, Deng L, Cao Y, Zhang L, Hou L. Ribosome Biogenesis Regulator 1 Homolog (RRS1) Promotes Cisplatin Resistance by Regulating AEG-1 Abundance in Breast Cancer Cells. Molecules 2023; 28:molecules28072939. [PMID: 37049702 PMCID: PMC10095748 DOI: 10.3390/molecules28072939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Many ribosomal proteins are highly expressed in tumors and are closely related to their diagnosis, prognosis and pathological characteristics. However, few studies are available on the correlation between ribosomal proteins and chemoresistance. RRS1 (human regulator of ribosome synthesis 1), a critical nuclear protein involved in ribosome biogenesis, also plays a key role in the genesis and development of breast cancer by protecting cancer cells from apoptosis. Given that apoptosis resistance is one of the causes of the cisplatin resistance of tumor cells, our aim was to determine the relationship between RRS1 and cisplatin resistance in breast cancer cells. Here, we report that RRS1 is associated with cisplatin resistance in breast cancer cells. RRS1 silencing increased the sensitivity of MCF-7/DDP cells to cisplatin and inhibited cancer cell proliferation by blocking cell cycle distribution and enhancing apoptosis. AEG-1 (astrocyte elevated gene-1) promotes drug resistance by interfering with the ubiquitination and proteasomal degradation of MDR1 (multidrug resistance gene 1), thereby enhancing drug efflux. We found that RRS1 binds to and stabilizes AEG-1 by inhibiting ubiquitination and subsequent proteasomal degradation, which then promotes drug efflux by upregulating MDR1. Furthermore, RRS1 also induces apoptosis resistance in breast cancer cells through the ERK/Bcl-2/BAX signaling pathway. Our study is the first to show that RRS1 sensitizes breast cancer cells to cisplatin by binding to AEG-1, and it provides a theoretical basis to improve the efficacy of cisplatin-based chemotherapy.
Collapse
|
8
|
Liu W, Wang Y, Zhang Y, Yu T, Ge J. Analysis of Breast Cancer Biomarker HER2 Based on Single Stranded DNA Aptamer and Enzyme Signal Amplification. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
9
|
Tang JLY, Moonshi SS, Ta HT. Nanoceria: an innovative strategy for cancer treatment. Cell Mol Life Sci 2023; 80:46. [PMID: 36656411 PMCID: PMC9851121 DOI: 10.1007/s00018-023-04694-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Nanoceria or cerium oxide nanoparticles characterised by the co-existing of Ce3+ and Ce4+ that allows self-regenerative, redox-responsive dual-catalytic activities, have attracted interest as an innovative approach to treating cancer. Depending on surface characteristics and immediate environment, nanoceria exerts either anti- or pro-oxidative effects which regulate reactive oxygen species (ROS) levels in biological systems. Nanoceria mimics ROS-related enzymes that protect normal cells at physiological pH from oxidative stress and induce ROS production in the slightly acidic tumour microenvironment to trigger cancer cell death. Nanoceria as nanozymes also generates molecular oxygen that relieves tumour hypoxia, leading to tumour cell sensitisation to improve therapeutic outcomes of photodynamic (PDT), photothermal (PTT) and radiation (RT), targeted and chemotherapies. Nanoceria has been engineered as a nanocarrier to improve drug delivery or in combination with other drugs to produce synergistic anti-cancer effects. Despite reported preclinical successes, there are still knowledge gaps arising from the inadequate number of studies reporting findings based on physiologically relevant disease models that accurately represent the complexities of cancer. This review discusses the dual-catalytic activities of nanoceria responding to pH and oxygen tension gradient in tumour microenvironment, highlights the recent nanoceria-based platforms reported to be feasible direct and indirect anti-cancer agents with protective effects on healthy tissues, and finally addresses the challenges in clinical translation of nanoceria based therapeutics.
Collapse
Affiliation(s)
- Joyce L. Y. Tang
- grid.1022.10000 0004 0437 5432Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 Australia ,grid.1022.10000 0004 0437 5432Bioscience Discipline Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111 Australia
| | - Shehzahdi S. Moonshi
- grid.1022.10000 0004 0437 5432Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 Australia
| | - Hang T. Ta
- grid.1022.10000 0004 0437 5432Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 Australia ,grid.1022.10000 0004 0437 5432Bioscience Discipline Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111 Australia ,grid.1003.20000 0000 9320 7537Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
10
|
Combined Vaccination with B Cell Peptides Targeting Her-2/neu and Immune Checkpoints as Emerging Treatment Option in Cancer. Cancers (Basel) 2022; 14:cancers14225678. [PMID: 36428769 PMCID: PMC9688220 DOI: 10.3390/cancers14225678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
The application of monoclonal antibodies (mAbs), targeting tumor-associated (TAAs) or tumor-specific antigens or immune checkpoints (ICs), has shown tremendous success in cancer therapy. However, the application of mAbs suffers from a series of limitations, including the necessity of frequent administration, the limited duration of clinical response and the emergence of frequently pronounced immune-related adverse events. However, the introduction of mAbs has also resulted in a multitude of novel developments for the treatment of cancers, including vaccinations against various tumor cell-associated epitopes. Here, we reviewed recent clinical trials involving combination therapies with mAbs targeting the PD-1/PD-L1 axis and Her-2/neu, which was chosen as a paradigm for a clinically highly relevant TAA. Our recent findings from murine immunizations against the PD-1 pathway and Her-2/neu with peptides representing the mimotopes/B cell peptides of therapeutic antibodies targeting these molecules are an important focus of the present review. Moreover, concerns regarding the safety of vaccination approaches targeting PD-1, in the context of the continuing immune response, as a result of induced immunological memory, are also addressed. Hence, we describe a new frontier of cancer treatment by active immunization using combined mimotopes/B cell peptides aimed at various targets relevant to cancer biology.
Collapse
|
11
|
Juen L, Baltus CB, Gély C, Kervarrec T, Feuillâtre O, Desgranges A, Viaud-Massuard MC, Martin C. Therapeutic Potential of MF-TTZ-MMAE, a Site-Specifically Conjugated Antibody-Drug Conjugate, for the Treatment of HER2-Overexpressing Breast Cancer. Bioconjug Chem 2022; 33:418-426. [PMID: 35104102 DOI: 10.1021/acs.bioconjchem.2c00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With three clinically approved antibody-drug conjugates targeting HER2, this target is clearly identified to be of interest in oncology. Moreover, the advent of new bioconjugation technologies producing site-specific homogenous conjugates led to the opportunity of developing new medicines linking antibodies and payloads. Here, a new relevant HER2-targeting ADC was obtained by the conjugation of monomethyl auristatin E onto trastuzumab using McSAF Inside bioconjugation technology. The antibody-drug conjugate formed presented an average drug-to-antibody ratio of 4 with a high homogeneity and an excellent stability especially when incubated with human serum albumin or in human plasma. Moreover, it demonstrated a strong efficacy in an HER2 xenograft tumor model in mice, superior to the clinically approved antibody-drug conjugate ado-trastuzumab emtansine, with a complete tumor regression observed both macroscopically and microscopically demonstrating its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Thibault Kervarrec
- Department of Pathology, University of Tours, BIP INRA UMR1282 ISP, CHU de Tours, avenue de la République, 37170 Chambray-lès-tours, France
| | | | | | - Marie-Claude Viaud-Massuard
- McSAF, 1 rue Claude Thion, 37000 Tours, France.,IMT, GICC EA7501 University of Tours, 31 avenue Monge, 37200 Tours, France
| | | |
Collapse
|
12
|
Zarychta E, Ruszkowska-Ciastek B. Cooperation between Angiogenesis, Vasculogenesis, Chemotaxis, and Coagulation in Breast Cancer Metastases Development: Pathophysiological Point of View. Biomedicines 2022; 10:biomedicines10020300. [PMID: 35203510 PMCID: PMC8869468 DOI: 10.3390/biomedicines10020300] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer is one of the main causes of morbidity and mortality in women. Early breast cancer has a relatively good prognosis, in contrast to metastatic disease with rather poor outcomes. Metastasis formation in distant organs is a complex process requiring cooperation of numerous cells, growth factors, cytokines, and chemokines. Tumor growth, invasion, and finally systemic spread are driven by processes of angiogenesis, vasculogenesis, chemotaxis, and coagulation. This review summarizes their role in development of distant metastases in breast cancer, as well as explains the essential processes occurring throughout these actions. Abstract With almost 2.3 million new cases and 685 thousand fatal events in 2020 alone, breast cancer remains one of the main causes of morbidity and mortality in women worldwide. Despite the increasing prevalence of the disease in recent years, the number of deaths has dropped—this is mostly the result of better diagnostic and therapeutic opportunities, allowing to recognize and treat breast cancer earlier and more efficiently. However, metastatic disease still remains a therapeutic challenge. As mechanisms of tumor spread are being explored, new drugs can be implemented in clinical practice, improving the outcomes in patients with advanced disease. Formation of metastases is a complex process, which involves activation of angiogenesis, vasculogenesis, chemotaxis, and coagulation. The actions, which occur during metastatic spread are interrelated and complementary. This review summarizes their importance and mutual connections in formation of secondary tumors in breast cancer.
Collapse
|
13
|
Wang N, Li L, Xiong Y, Chi J, Liu X, Zhong C, Wang F, Gu Y. Case Report: Significant Efficacy of Pyrotinib in the Treatment of Extensive Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer Cutaneous Metastases: A Report of Five Cases. Front Oncol 2022; 11:729212. [PMID: 34976791 PMCID: PMC8716402 DOI: 10.3389/fonc.2021.729212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/23/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common tumor to develop cutaneous metastases. Most BCs with cutaneous metastasis are human epidermal growth factor receptor 2 (HER2)-positive subtypes. Although the molecular mechanisms of breast cancer metastasis to different sites and the corresponding treatment methods are areas of in-depth research, there are few studies on cutaneous metastasis. CASE PRESENTATION Five HER2-positive BC patients with extensive cutaneous metastases were treated with a regimen containing pyrotinib, a novel small-molecule tyrosine kinase inhibitor that irreversibly blocks epidermal growth factor receptor (EGFR), HER2, and human epidermal growth factor receptor 4 (HER4), then their cutaneous metastases quickly resolved at an astonishing speed and their condition was well controlled during the follow-up period. CONCLUSIONS This case series reports the significant therapeutic effect of pyrotinib on cutaneous metastases of HER2-positive BC for the first time. Based on this, we recommend that pyrotinib can be used as a supplement to trastuzumab for HER2-positive BC patients with cutaneous metastases. In addition, we should consider that the pan-inhibitory effect of pyrotinib on EGFR, HER2, and HER4 may provide a dual therapeutic effect against HER2 and mucin 1.
Collapse
Affiliation(s)
- Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiangrui Chi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaochao Zhong
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Zhang L, Chen Y, Lv Y, Jiao S, Zhao W. OUP accepted manuscript. Oncologist 2022; 27:245-250. [PMID: 35380719 DOI: 10.1093/oncolo/oyac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/28/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Li Zhang
- Department of Oncology, PLA General Hospital, Beijing, People's Republic of China
| | - Yimeng Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Yao Lv
- Department of Oncology, PLA General Hospital, Beijing, People's Republic of China
| | - Shunchang Jiao
- Department of Oncology, PLA General Hospital, Beijing, People's Republic of China
| | - Weihong Zhao
- Department of Oncology, PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
15
|
Wen Y, Ouyang D, Chen Q, Zeng L, Luo N, He H, Anwar M, Qu L, Zou Q, Yi W. Prognostic value of tumor mutation burden and the relationship between tumor mutation burden and immune infiltration in HER2+ breast cancer: a gene expression-based study. Gland Surg 2022; 11:100-114. [PMID: 35242673 PMCID: PMC8825527 DOI: 10.21037/gs-21-594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/16/2021] [Indexed: 08/02/2023]
Abstract
BACKGROUND Whether tumor mutation burden (TMB) correlated with improved survival outcomes or promotion of immunotherapies remained controversy in various malignancies. We aimed to explore the prognostic value of TMB and the relationship between TMB and immune infiltration in human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC). METHODS We downloaded somatic mutation data and clinical information for 216 HER2+ BC patients from the The Cancer Genome Atlas (TCGA) and cBioPortal databases. Patients were divided into high- and low-TMB groups through TMB calculation. Cox regression analysis was used to establish an immune- and mutant-related risk model based on 5-hub genes. The relationship between 5-hub genes mutants and the level of immune infiltration, as well as the relationship between the risk model and the immune microenvironment were analyzed by "TIMER" database. RESULTS TMB was negatively correlated with overall survival (OS) and disease-free survival (DFS), and high TMB may inhibit immune infiltration in HER2+ BC. Furthermore, risk score classified effectively patients into low- and high-risk groups in training and validation cohorts. The infiltration of CD4+ T cells and NK cells and the levels of immune checkpoint pathway genes were lower in the high-risk group, which indicated a poor prognosis. CONCLUSIONS Higher TMB correlated with poor survival outcomes and might inhibit the immune infiltrates in HER2+ BC. The 5-hub TMB-related signature conferred lower immune cells infiltration which deserved further validation.
Collapse
Affiliation(s)
- Ying Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dengjie Ouyang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liyun Zeng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongye He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Munawar Anwar
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Limeng Qu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiongyan Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Salkeni MA, Rizvi W, Hein K, Higa GM. Neu Perspectives, Therapies, and Challenges for Metastatic HER2-Positive Breast Cancer. BREAST CANCER-TARGETS AND THERAPY 2021; 13:539-557. [PMID: 34602823 PMCID: PMC8481821 DOI: 10.2147/bctt.s288344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022]
Abstract
Even though gene amplification or protein overexpression occurs in approximately one-fifth of all breast cancers, the discovery of HER2 has, nevertheless, had profound implications for the disease. Indeed, the characterization of the receptor resulted in a number of significant advances. Structurally, unique features provided avenues for the development of numerous compounds with target-specificity; molecularly, biological constructs revealed a highly complex, internal signal transduction pathway with regulatory effects on tumor proliferation, survival, and perhaps, even resistance; and clinically, disease outcomes manifested its predictive and prognostic value. Yet despite the receptor’s utility, the beneficial effects are diminished by tumor recurrence after neo- or adjuvant therapy as well as losses resulting from the inability to cure patients with metastatic disease. What these observations suggest is that while tumor response may be partially linked to uncoupling cell surface message reception and nuclear gene expression, as well as recruitment of the innate immune system, disease progression and/or resistance may involve a reprogrammable signaling mainframe that elicits alternative growth and survival signals. This review attempts to meld current perceptions related to HER2-positive metastatic breast cancer with particular attention to current biological insights and therapeutic challenges.
Collapse
Affiliation(s)
- Mohamad Adham Salkeni
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wajeeha Rizvi
- Department of Internal Medicine, West Virginia University, Morgantown, WV, USA
| | - Kyaw Hein
- Department of Business, Lamar University, Houston, TX, USA
| | - Gerald M Higa
- Departments of Clinical Pharmacy and Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
17
|
Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proc Natl Acad Sci U S A 2021; 118:2026849118. [PMID: 34257155 PMCID: PMC8307693 DOI: 10.1073/pnas.2026849118] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study demonstrates the efficacy of combining macrophage-checkpoint inhibition with tumor-specific antibodies for cancer immunotherapy. The combination of anti-CD47 (magrolimab) and anti-HER2 (trastuzumab) antibodies eliminated HER2+ breast cancer cells with increased efficacy due to the enhancement of antibody-dependent cellular phagocytosis by macrophages, even when the cancer cells were tolerant to trastuzumab-induced antibody-dependent cellular cytotoxicity by natural killer cells. We believe these findings present a promising therapeutic approach for treating HER2+ breast cancer patients whose tumors are either sensitive or resistant to trastuzumab treatment, as long as the cells harbor the HER2 trastuzumab-binding epitope. This study supports the notion that combining CD47 blockade with existing macrophage FcR-engaging tumor-specific antibodies may be an effective approach for treating a wide range of cancers. Trastuzumab, a targeted anti-human epidermal-growth-factor receptor-2 (HER2) monoclonal antibody, represents a mainstay in the treatment of HER2-positive (HER2+) breast cancer. Although trastuzumab treatment is highly efficacious for early-stage HER2+ breast cancer, the majority of advanced-stage HER2+ breast cancer patients who initially respond to trastuzumab acquire resistance to treatment and relapse, despite persistence of HER2 gene amplification/overexpression. Here, we sought to leverage HER2 overexpression to engage antibody-dependent cellular phagocytosis (ADCP) through a combination of trastuzumab and anti-CD47 macrophage checkpoint immunotherapy. We have previously shown that blockade of CD47, a surface protein expressed by many malignancies (including HER2+ breast cancer), is an effective anticancer therapy. CD47 functions as a “don’t eat me” signal through its interaction with signal regulatory protein-α (SIRPα) on macrophages to inhibit phagocytosis. Hu5F9-G4 (magrolimab), a humanized monoclonal antibody against CD47, blocks CD47’s “don’t eat me” signal, thereby facilitating macrophage-mediated phagocytosis. Preclinical studies have shown that combining Hu5F9-G4 with tumor-targeting antibodies, such as rituximab, further enhances Hu5F9-G4’s anticancer effects via ADCP. Clinical trials have additionally demonstrated that Hu5F9-G4, in combination with rituximab, produced objective responses in patients whose diffuse large B cell lymphomas had developed resistance to rituximab and chemotherapy. These studies led us to hypothesize that combining Hu5F9-G4 with trastuzumab would produce an anticancer effect in antibody-dependent cellular cytotoxicity (ADCC)-tolerant HER2+ breast cancer. This combination significantly suppressed the growth of ADCC-tolerant HER2+ breast cancers via Fc-dependent ADCP. Our study demonstrates that combining trastuzumab and Hu5F9-G4 represents a potential new treatment option for HER2+ breast cancer patients, even for patients whose tumors have progressed after trastuzumab.
Collapse
|
18
|
Amjad AM. DENDRIMERS IN ANTICANCER TARGETED DRUG DELIVERY: ACCOMPLISHMENTS, CHALLENGES AND DIRECTIONS FOR FUTURE. PHARMACY & PHARMACOLOGY 2021. [DOI: 10.19163/2307-9266-2021-9-1-4-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendrimers are nanoparticles with unique features including globular 3D shape and nanometer size. The availability of numerous terminal functional groups and modifiable surface engineering permit modification of dendrimer surface with several therapeutic agents, diagnostic moieties and targeting substances.The aim. To enlighten the readers regarding design, development, limitations, challenges and future directions regarding anticancer bio-dendrimers.Materials and methods. The data base was represented by such systems as Medline, Cochrane Central Register of Controlled Trials, Scopus, Web of Science Core Collection, PubMed. gov, Google-Academy. A search was carried out for the following keywords and combinations: Polypropylene imine (PPI); Poly-L-lysine (PLL); polyamidoamine (PAMAM); cancer; drug delivery; dendrimers.Results. High encapsulation of drug and effective passive targeting are also among their therapeutic uses. Herein, we have described latest developments in chemotherapeutic delivery of drugs by dendrimers. For the most part, the potential and efficacy of dendrimers are anticipated to have considerable progressive effect on drug targeting and delivery.Conclusion. The newest discoveries have shown that the dendritic nanocarriers have many unique features that endorse more research and development.
Collapse
Affiliation(s)
- A. M. Amjad
- Northern Border University
Rafha, Saudi Arabia, 76322
| |
Collapse
|
19
|
Yan X, Yang Y, Sun Y. Dendrimer Applications for Cancer Therapies. JOURNAL OF PHYSICS: CONFERENCE SERIES 2021; 1948:012205. [DOI: 10.1088/1742-6596/1948/1/012205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Human cancer therapy is a major issue in modern medical science. Lots of emerging materials are developing rapidly. Dendrimers, as a nanocarrier, are now widely used in the field of biomedicine, pharmacy, and so on. As a super-branched macromolecule, dendrimers have a series of outstanding properties. Such as simple to functionalize, have nano & symmetric dimension and cavities for host-guest entrapment. It has made much progress in drug and gene delivery. Dendrimers have higher efficiency by perfecting the surface modification methods. The small molecules, DNAs, therapeutic agents, and more can be loaded into dendrimers. Also, the cytotoxicity is reducing gradually. This review aims to make a summary of dendrimers’ history and provide guidance for future research. This review gives a brief review of dendrimers’ properties, presents how dendrimers developed in drug and gene delivery, what drawbacks are remaining to resolve.
Collapse
|
20
|
Concurrent mutations associated with trastuzumab-resistance revealed by single cell sequencing. Breast Cancer Res Treat 2021; 187:613-624. [PMID: 33905021 DOI: 10.1007/s10549-021-06237-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE HER2-positive breast cancer patients benefit from HER2-targeted therapies, among which the most commonly used is trastuzumab. However, acquired resistance typically happens within one year. The cellular heterogeneity of it is less clear. METHODS Here we generated trastuzumab-resistant cells in two HER2-positive breast cancer cell lines, SK-BR-3 and BT-474. Cells at different time points during the resistance induction were examined by exome sequencing to study changes of genomic alterations over time. Single cell-targeted sequencing was also used to identify resistance-associated concurrent mutations. RESULTS We found a rapid increase of copy number variation (CNV) regions and gradual accumulation of single nucleotide variations (SNVs). On the pathway level, non-synonymous SNVs for SK-BR-3 cells were enriched in the MAPK signaling pathway, while for BT-474 cells they were enriched in mTOR and PI3K-Akt signaling pathways. However, all of the three signaling pathways were in the downstream of the HER2 kinase. Putative trastuzumab-resistance-associated SNVs included AIFM1 P548L and ERBB2 M833R in SK-BR-3 cells, and ADAMTS19 V451L, OR5M9 D230N, COL9A1 R627T, and ITGA7 H911Q in BT-474 cells. Single-cell-targeted sequencing identified several concurrent mutations. By validation, we found that concurrent mutations (AIFM1 P548L and IL1RAPL2 S546C in SK-BR-3 cells, MFSD11 L242I and ANAPC4 E16K in BT-474 cells) led to a decrease of trastuzumab sensitivity. CONCLUSION Taken together, our study revealed a common pathway level trastuzumab-resistance mechanism for HER2-positive breast cancer cells. In addition, our identification of concurrent SNVs associated with trastuzumab-resistance may be indicative of potential targets for the treatment of trastuzumab-resistant breast cancer patients.
Collapse
|
21
|
Hussain Qureshi MF, Shah M, Lakhani M, Abubaker ZJ, Mohammad D, Farhan H, Zia I, Tafveez R, Khan ST, Rubina G, Shamim M, Ghulam H. Gene signatures of cyclin-dependent kinases: a comparative study in naïve early and advanced stages of lung metastasis breast cancer among pre- and post-menopausal women. Genes Cancer 2021; 12:1-11. [PMID: 33868579 PMCID: PMC8018704 DOI: 10.18632/genesandcancer.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
The Human epidermal growth factor receptor 2 positive (HER2+) breast cancer (BC) is a more aggressive tumor with 5 years median survival rates after metastasis. Despite successful treatment, unfortunately, the majority of affected patients die. Defects in cell cycle and transcription regulation phases which are governed by cyclin-dependent kinases (CDKs) are the hallmark of many cancers that underpinning the progression of the disease. Therefore, the current study looked at the alteration of six CDKs mRNA expression levels in pre- and postmenopausal lung metastasis BC groups; the majority were HER2+. Two hundred pre-and postmenopausal lung metastasis breast cancer and healthy control blood samples were taken for RNA isolation. Quantitative PCR was done for CDKs mRNA expressions. We observed overexpression of CDK11, CDK12, CDK17, CDK18, and CDK19 in both pre- and postmenopausal groups. However, CDK20 showed progressive downregulation from early to advanced stages in both groups of patients. Collectively, this data revealed that CDKs overexpression levels may predict BC disease progression and provide further rationale for novel anticancer strategies for HER2+ BC cancers.
Collapse
Affiliation(s)
| | - Muzna Shah
- Medical Students, Ziauddin University, Clifton, Karachi, Pakistan
| | - Mahira Lakhani
- Medical Students, Ziauddin University, Clifton, Karachi, Pakistan
| | | | - Danish Mohammad
- Medical Students, Ziauddin University, Clifton, Karachi, Pakistan
| | - Hira Farhan
- Medical Students, Ziauddin University, Clifton, Karachi, Pakistan
| | - Iman Zia
- Medical Students, Ziauddin University, Clifton, Karachi, Pakistan
| | - Rida Tafveez
- Medical Students, Ziauddin University, Clifton, Karachi, Pakistan
| | | | - Ghani Rubina
- Department of Biochemistry, Sohail University, Karachi, Pakistan
| | - Mushtaq Shamim
- Department of Biochemistry, Ziauddin University, Clifton, Karachi, Pakistan
| | - Haider Ghulam
- Oncology Department, Jinnah Postgraduate Medical Center, Karachi, Pakistan
| |
Collapse
|
22
|
Decker JT, Kandagatla P, Wan L, Bernstein R, Ma JA, Shea LD, Jeruss JS. Cyclin E overexpression confers resistance to trastuzumab through noncanonical phosphorylation of SMAD3 in HER2+ breast cancer. Cancer Biol Ther 2020; 21:994-1004. [PMID: 33054513 DOI: 10.1080/15384047.2020.1818518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The efficacy of trastuzumab, a treatment for HER2+ breast cancer, can be limited by the development of resistance. Cyclin E (CCNE) overexpression has been implicated in trastuzumab resistance. We sought to uncover a potential mechanism for this trastuzumab resistance and focused on a model of CCNE overexpressing HER2+ breast cancer and noncanonical phosphorylation of the TGF-β signaling protein, SMAD3. Network analysis of transcriptional activity in a HER2+, CCNE overexpressing, trastuzumab-resistant cell line (BT474R2) identified decreased SMAD3 activity was associated with treatment resistance. Immunoblotting showed SMAD3 expression was significantly downregulated in BT474R2 cells (p < .01), and noncanonical phosphorylation of SMAD3 was increased in these CCNE-overexpressing cells. Also, in response to CDK2 inhibition, expression patterns linked to restored canonical SMAD3 signaling, including decreased cMyc and increased cyclin-dependent inhibitor, p15, were identified. The BT474R2 cell line was modified through overexpression of SMAD3 (BT474R2-SMAD3), a mutant construct resistant to CCNE-mediated noncanonical phosphorylation of SMAD3 (BT474R2-5M), and a control (BT474R2-Blank). In vitro studies examining the response to trastuzumab showed increased sensitivity to treatment for BT474R2-5M cells. These findings were then validated in NSG mice inoculated with BT474R2-5M cells or BT474R2 control cells. After treatment with trastuzumab, the NSG mice inoculated with BT474R2-5M cells developed significantly lower tumor volumes (p < .001), when compared to mice inoculated with BT474R2 cells. Taken together, these results indicate that for patients with HER2+ breast cancer, a mechanism of CCNE-mediated trastuzumab resistance, regulated through noncanonical SMAD3 phosphorylation, could be treated with CDK2 inhibition to help enhance the efficacy of trastuzumab therapy.
Collapse
Affiliation(s)
- Joseph T Decker
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Pridvi Kandagatla
- Department of Surgery, Henry Ford Health System , Detroit, MI, USA.,Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| | - Lei Wan
- Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| | - Regan Bernstein
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Jeffrey A Ma
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA.,Department of Surgery, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
23
|
Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020; 25:E3982. [PMID: 32882920 PMCID: PMC7504821 DOI: 10.3390/molecules25173982] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Biomedicine represents one of the main study areas for dendrimers, which have proven to be valuable both in diagnostics and therapy, due to their capacity for improving solubility, absorption, bioavailability and targeted distribution. Molecular cytotoxicity constitutes a limiting characteristic, especially for cationic and higher-generation dendrimers. Antineoplastic research of dendrimers has been widely developed, and several types of poly(amidoamine) and poly(propylene imine) dendrimer complexes with doxorubicin, paclitaxel, imatinib, sunitinib, cisplatin, melphalan and methotrexate have shown an improvement in comparison with the drug molecule alone. The anti-inflammatory therapy focused on dendrimer complexes of ibuprofen, indomethacin, piroxicam, ketoprofen and diflunisal. In the context of the development of antibiotic-resistant bacterial strains, dendrimer complexes of fluoroquinolones, macrolides, beta-lactamines and aminoglycosides have shown promising effects. Regarding antiviral therapy, studies have been performed to develop dendrimer conjugates with tenofovir, maraviroc, zidovudine, oseltamivir and acyclovir, among others. Furthermore, cardiovascular therapy has strongly addressed dendrimers. Employed in imaging diagnostics, dendrimers reduce the dosage required to obtain images, thus improving the efficiency of radioisotopes. Dendrimers are macromolecular structures with multiple advantages that can suffer modifications depending on the chemical nature of the drug that has to be transported. The results obtained so far encourage the pursuit of new studies.
Collapse
Affiliation(s)
| | - Carmen Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Du S, Luo C, Yang G, Gao H, Wang Y, Li X, Zhao H, Luo Q, Ma X, Shi J, Wang F. Developing PEGylated Reversed D-Peptide as a Novel HER2-Targeted SPECT Imaging Probe for Breast Cancer Detection. Bioconjug Chem 2020; 31:1971-1980. [PMID: 32660241 DOI: 10.1021/acs.bioconjchem.0c00334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human epidermal growth factor receptor-2 (HER2)-enriched breast cancer is characterized by strong invasiveness, high recurrence rate, and poor prognosis. HER2-specific imaging can help screening right patients for appropriate HER2-targeted therapies. Previously, we have developed a 99mTc-labeled HER2-targeted H6 peptide for SPECT imaging of breast cancer. However, the poor metabolic stability and high gallbladder uptake hamper its clinical application. In this study, a retro-inverso D-peptide of H6 (RDH6) was designed to increase the metabolic stability. PEGylation was used to improve its water solubility and in vivo pharmacokinetics. The results showed that the D-amino acids in 99mTc-PEG4-RDH6 brought better metabolic stability than 99mTc-PEG4-H6, thus achieving higher tumor uptake. As the length of the PEG chain increases, the hydrophilicity of the probes gradually increased, which may also be the main cause for the decreased liver uptake. Compared with radiotracers modified by PEG4 and PEG12, 99mTc-PEG24-RDH6 had a comparable tumor uptake and the lowest liver radioactivity. The SPECT imaging demonstrated that 99mTc-PEG24-RDH6 could specifically distinguish HER2-positive tumors from HER2-negative tumors with better imaging contrast, which thus has the potential for clinical screening of HER2-positive breast patients.
Collapse
Affiliation(s)
- Shuaifan Du
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chuangwei Luo
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Guangjie Yang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanpu Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaoda Li
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Huiyun Zhao
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Qi Luo
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Xiaotu Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiyun Shi
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| |
Collapse
|
25
|
A self-sustaining endocytic-based loop promotes breast cancer plasticity leading to aggressiveness and pro-metastatic behavior. Nat Commun 2020; 11:3020. [PMID: 32541686 PMCID: PMC7296024 DOI: 10.1038/s41467-020-16836-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
The subversion of endocytic routes leads to malignant transformation and has been implicated in human cancers. However, there is scarce evidence for genetic alterations of endocytic proteins as causative in high incidence human cancers. Here, we report that Epsin 3 (EPN3) is an oncogene with prognostic and therapeutic relevance in breast cancer. Mechanistically, EPN3 drives breast tumorigenesis by increasing E-cadherin endocytosis, followed by the activation of a β-catenin/TCF4-dependent partial epithelial-to-mesenchymal transition (EMT), followed by the establishment of a TGFβ-dependent autocrine loop that sustains EMT. EPN3-induced partial EMT is instrumental for the transition from in situ to invasive breast carcinoma, and, accordingly, high EPN3 levels are detected at the invasive front of human breast cancers and independently predict metastatic rather than loco-regional recurrence. Thus, we uncover an endocytic-based mechanism able to generate TGFβ-dependent regulatory loops conferring cellular plasticity and invasive behavior.
Collapse
|
26
|
Imaging and monitoring HER2 expression in breast cancer during trastuzumab therapy with a peptide probe 99mTc-HYNIC-H10F. Eur J Nucl Med Mol Imaging 2020; 47:2613-2623. [PMID: 32170344 DOI: 10.1007/s00259-020-04754-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/03/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE The novel molecular imaging probe 99mTc-HYNIC-H10F was developed for patient screening and efficacy monitoring of trastuzumab therapy by SPECT imaging of HER2 expression in breast cancer. METHODS 99mTc-HYNIC-H10F was developed by labeling H10F peptide with 99mTc following an optimized protocol. Biodistribution and SPECT/CT were performed in mouse models bearing HER2-positive SK-BR3 and HER2-negative MDA-MB-231 human breast cancer xenografts, respectively. The treatment response to trastuzumab was monitored and quantified by SPECT/CT in two HER2-positive breast cancer models (SK-BR3 and MDA-MB-361). The preliminary clinical study was performed in two patients with breast cancer. RESULTS SPECT/CT with 99mTc-HYNIC-H10F showed that the SK-BR3 tumors were clearly visualized, while the signals from MDA-MB-231 tumors were much lower. The tumor uptake of 99mTc-HYNIC-H10F could be blocked by excess unlabeled H10F peptide but not by excess trastuzumab. The growth of two HER2-positive tumors was prominently suppressed at day 11 post-treatment. However, SPECT/CT reflected much earlier therapy response at day 4 post-treatment. The HER2 expression in tumors of breast cancer patients could be detected by 99mTc-HYNIC-H10F SPECT/CT imaging. CONCLUSIONS 99mTc-HYNIC-H10F specifically accumulates in HER2-positive tumors. Compared with trastuzumab, 99mTc-HYNIC-H10F binds to a different domain of HER2 antigen, providing new opportunities to monitor HER2 expression levels before/during/after trastuzumab treatment for more effective personalized treatment.
Collapse
|
27
|
Schoninger SF, Blain SW. The Ongoing Search for Biomarkers of CDK4/6 Inhibitor Responsiveness in Breast Cancer. Mol Cancer Ther 2020; 19:3-12. [PMID: 31909732 PMCID: PMC6951437 DOI: 10.1158/1535-7163.mct-19-0253] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
CDK4 inhibitors (CDK4/6i), such as palbociclib, ribociclib, and abemaciclib, are approved in combination with hormonal therapy as a front-line treatment for metastatic HR+, HER2- breast cancer. Their targets, CDK4 and CDK6, are cell-cycle regulatory proteins governing the G1-S phase transition across many tissue types. A key challenge remains to uncover biomarkers to identify those patients that may benefit from this class of drugs. Although CDK4/6i addition to estrogen modulation therapy essentially doubles the median progression-free survival, overall survival is not significantly increased. However, in reality only a subset of treated patients respond. Many patients exhibit primary resistance to CDK4/6 inhibition and do not derive any benefit from these agents, often switching to chemotherapy within 6 months. Some patients initially benefit from treatment, but later develop secondary resistance. This highlights the need for complementary or companion diagnostics to pinpoint patients who would respond. In addition, because CDK4 is a bona fide target in other tumor types where CDK4/6i therapy is currently in clinical trials, the lack of target identification may obscure benefit to a subset of patients there as well. This review summarizes the current status of CDK4/6i biomarker test development, both in clinical trials and at the bench, with particular attention paid to those which have a strong biological basis as well as supportive clinical data.
Collapse
Affiliation(s)
| | - Stacy W Blain
- Departments of Pediatrics and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York.
| |
Collapse
|
28
|
Krasniqi E, Barchiesi G, Pizzuti L, Mazzotta M, Venuti A, Maugeri-Saccà M, Sanguineti G, Massimiani G, Sergi D, Carpano S, Marchetti P, Tomao S, Gamucci T, De Maria R, Tomao F, Natoli C, Tinari N, Ciliberto G, Barba M, Vici P. Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives. J Hematol Oncol 2019; 12:111. [PMID: 31665051 PMCID: PMC6820969 DOI: 10.1186/s13045-019-0798-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is a complex disease with primary or acquired incurability characteristics in a significant part of patients. Immunotherapeutical agents represent an emerging option for breast cancer treatment, including the human epidermal growth factor 2 positive (HER2+) subtype. The immune system holds the ability to spontaneously implement a defensive response against HER2+ BC cells through complex mechanisms which can be exploited to modulate this response for obtaining a clinical benefit. Initial immune system modulating strategies consisted mostly in vaccine therapies, which are still being investigated and improved. However, the entrance of trastuzumab into the scenery of HER2+ BC treatment was the real game changing event, which embodied a dominant immune-mediated mechanism. More recently, the advent of the immune checkpoint inhibitors has caused a new paradigm shift for immuno-oncology, with promising initial results also for HER2+ BC. Breast cancer has been traditionally considered poorly immunogenic, being characterized by relatively low tumor mutation burden (TMB). Nevertheless, recent evidence has revealed high tumor infiltrating lymphocytes (TILs) and programmed cell death-ligand 1 (PD-L1) expression in a considerable proportion of HER2+ BC patients. This may translate into a higher potential to elicit anti-cancer response and, therefore, wider possibilities for the use and implementation of immunotherapy in this subset of BC patients. We are herein presenting and critically discussing the most representative evidence concerning immunotherapy in HER2+ BC cancer, both singularly and in combination with therapeutic agents acting throughout HER2-block, immune checkpoint inhibition and anti-cancer vaccines. The reader will be also provided with hints concerning potential future projection of the most promising immutherapeutic agents and approaches for the disease of interest.
Collapse
Affiliation(s)
- E Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - G Barchiesi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - L Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - M Mazzotta
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - A Venuti
- HPV-UNIT, UOSD Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostic and Technological Innovation (RIDAIT), Translational Research Functional Departmental Area, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - M Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - G Sanguineti
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - G Massimiani
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - D Sergi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - S Carpano
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - P Marchetti
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy.,Medical Oncology Unit B, Policlinico Umberto I, Rome, Italy
| | - S Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Policlinico Umberto I, 'Sapienza' University of Rome, Rome, Italy
| | - T Gamucci
- Medical Oncology, Sandro Pertini Hospital, Rome, Italy
| | - R De Maria
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy.,Department of Medical Oncology, Policlinico Universitario "A. Gemelli", Rome, Italy
| | - F Tomao
- Department of Gynecology-Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - C Natoli
- Department of Medical, Oral and Biotechnological Sciences and Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - N Tinari
- Department of Medical, Oral and Biotechnological Sciences and Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - G Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - M Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy.
| | - P Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| |
Collapse
|
29
|
Xie BJ, Zhu LN, Ma C, Li JB, Dong L, Zhu ZN, Ding T, Gu XS. A network meta-analysis on the efficacy of HER2-targeted agents in combination with taxane-containing regimens for treatment of HER2-positive metastatic breast cancer. Breast Cancer 2019; 27:186-196. [DOI: 10.1007/s12282-019-01007-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 08/27/2019] [Indexed: 12/28/2022]
|
30
|
Wang J, Xu R, Yuan H, Zhang Y, Cheng S. Single-cell RNA sequencing reveals novel gene expression signatures of trastuzumab treatment in HER2+ breast cancer: A pilot study. Medicine (Baltimore) 2019; 98:e15872. [PMID: 31261495 PMCID: PMC6617483 DOI: 10.1097/md.0000000000015872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
Human epidermal growth factor receptor 2-positive (HER2+) breast cancer accounts for ∼20% of invasive breast cancers and is associated with poor prognostics. The recent outcome of HER2+ breast cancer treatment has been vastly improved owing to the application of antibody-targeted therapies. Trastuzumab (Herceptin) is a monoclonal antibody designed to target HER2+ breast cancer cells. In addition to improved survival in the adjuvant treatment of HER2+ breast cancer, trastuzumab treatment has also been associated with cardiotoxicity side effect. However, the molecular mechanisms of trastuzumab action and trastuzumab-mediated cardiotoxicity are still not fully understood. Previous research utilized bulk transcriptomics analysis to study the underlining mechanisms, which relied on averaging molecular signals from bulk tumor samples and might have overlooked key expression features within breast cancer tumor. In contrast to previous research, we compared the single cancer cell level transcriptome profile between trastuzumab-treated and nontreated patients to reveal a more in-depth transcriptome profile. A total of 461 significantly differential expressed genes were identified, including previously defined and novel gene expression signatures. In addition, we found that trastuzumab-enhanced MGP gene expression could be used as prognostics marker for longer patient survival in breast invasive carcinoma patients, and validated our finding using TCGA (The Cancer Genome Atlas) breast cancer dataset. Moreover, our study revealed a 48-gene expression signature that is associated with cell death of cardiomyocytes, which could be used as early biomarkers for trastuzumab-mediated cardiotoxicity. This work is the first study to look at single cell level transcriptome profile of trastuzumab-treated patients, providing a new understanding of the molecular mechanism(s) of trastuzumab action and trastuzumab-induced cardiotoxicity side effects.
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/epidemiology
- Breast Neoplasms/metabolism
- Calcium-Binding Proteins/metabolism
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/metabolism
- Extracellular Matrix Proteins/metabolism
- Female
- Gene Expression/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Pilot Projects
- Prognosis
- RNA, Messenger/metabolism
- Receptor, ErbB-2/metabolism
- Sequence Analysis, RNA
- Single-Cell Analysis
- Survival Analysis
- Transcriptome/drug effects
- Trastuzumab/therapeutic use
- Matrix Gla Protein
Collapse
Affiliation(s)
- Jun Wang
- Taixing People's Hospital, Taixing City, Jiangsu Province, China
| | - Rengen Xu
- Taixing People's Hospital, Taixing City, Jiangsu Province, China
| | - Haiyan Yuan
- Taixing People's Hospital, Taixing City, Jiangsu Province, China
| | - Yunning Zhang
- Taixing People's Hospital, Taixing City, Jiangsu Province, China
| | - Sean Cheng
- School of Medicine, Saint Louis University, Saint Louis, MO
| |
Collapse
|
31
|
Van Acker T, Buckle T, Van Malderen SJM, van Willigen DM, van Unen V, van Leeuwen FWB, Vanhaecke F. High-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers. Anal Chim Acta 2019; 1074:43-53. [PMID: 31159938 DOI: 10.1016/j.aca.2019.04.064] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
This work evaluates the possibility of placement of high-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) within precision medicine by assessing the suitability of LA-ICP-MS as a micro-analytical technique for the localization and quantification of membranous receptors in heterogeneous cell samples that express both the membrane-bound receptors C-X-C chemokine receptor type 4 (CXCR4) and epidermal growth factor receptor (EGFR). Staining of the breast cancer cell lines MDA-MB-231 X4 and MDA-MB-468 was achieved using receptor-specific hybrid tracers, containing both a fluorophore and a DTPA single-lanthanide chelate. Prior to LA-ICP-MS imaging, fluorescence confocal microscopy (FCM) imaging was performed to localize the receptors, hereby enabling direct comparison. Based on the different expression levels of CXCR4 and EGFR, a distinction could be made between the cell lines using both imaging modalities. Furthermore, FCM and LA-ICP-MS demonstrated complementary characteristics, as a more distinct discrimination could be made between both cell lines based on the EGFR-targeting hybrid tracer via LA-ICP-MS, due to the intrinsic CXCR4-related green fluorescent protein (GFP) signal present in the MDA-MB-231 X4 cells. Employing state-of-the-art LA-ICP-MS instrumentation in bidirectional area scanning mode for sub-cellular imaging of MDA-MB-231 X4 cells enabled the specific binding of the CXCR4-targeting hybrid tracer to the cell membrane to be clearly demonstrated. The stretching of cells over the glass substrate led to a considerably higher signal response for pixels at the cell edges, relative to the more central pixels. The determination of the expression levels of CXCR4 and EGFR for the MDA-MB-468 cell line was performed using LA-ICP-MS single-cell analysis (sc-LA-ICP-MS) and external calibration, based on the quantitative ablation of Ho-spiked dried gelatin droplet standards. Additionally, a second calibration approach was applied based on spot ablation of highly homogeneous dried gelatin gels in combination with the determination of the ablated volume using atomic force microscopy (AFM) and yielded results which were in good agreement with the expression levels determined via flow cytometry (FC) and mass cytometry (MC). Hybrid tracers enable a direct comparison between (i) FCM and LA-ICP-MS imaging for the evaluation of the microscopic binding pattern and between (ii) FC, MC and sc-LA-ICP-MS for the quantification of receptor expression levels in single cells.
Collapse
Affiliation(s)
- Thibaut Van Acker
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Stijn J M Van Malderen
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium; Ghent University, Department of Chemistry, X-ray Microspectroscopy and Imaging Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Vincent van Unen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| |
Collapse
|
32
|
Nava M, Dutta P, Farias-Eisner R, Vadgama JV, Wu Y. Utilization of NGS technologies to investigate transcriptomic and epigenomic mechanisms in trastuzumab resistance. Sci Rep 2019; 9:5141. [PMID: 30914750 PMCID: PMC6435657 DOI: 10.1038/s41598-019-41672-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
NGS (Next Generation Sequencing) technologies allows us to determine key gene expression signatures that correlate with resistance (and responsiveness) to anti-cancer therapeutics. We have undertaken a transcriptomic and chromatin immunoprecipitation followed by sequencing (ChIP-seq) approach to describe differences in gene expression and the underlying chromatin landscape between two representative HER2+ cell lines, one of which is sensitive (SKBR3) and the other which is resistant (JIMT1) to trastuzumab. We identified differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) between SKBR3 and JIMT1 cells. Several of the DEGs are components of the Polycomb Repressing Complex 2 (PRC2), and they are expressed higher in JIMT1 cells. In addition, we utilized ChIP-seq to identify H3K18ac, H3K27ac and H3K27me3 histone modifications genome-wide. We identified key differences of H3K18ac and H3K27ac enrichment in regulatory regions, found a correlation between these modifications and differential gene expression and identified a transcription factor binding motif for LRF near these modifications in both cell lines. Lastly, we found a small subset of genes that contain repressive H3K27me3 marks near the gene body in SKBR3 cells but are absent in JIMT1. Taken together, our data suggests that differential gene expression and trastuzumab responsiveness in JIMT1 and SKBR3 is determined by epigenetic mechanisms.
Collapse
Affiliation(s)
- Miguel Nava
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Pranabananda Dutta
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA
| | - Robin Farias-Eisner
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Nagai Y, Ji MQ, Zhu F, Xiao Y, Tanaka Y, Kambayashi T, Fujimoto S, Goldberg MM, Zhang H, Li B, Ohtani T, Greene MI. PRMT5 Associates With the FOXP3 Homomer and When Disabled Enhances Targeted p185 erbB2/neu Tumor Immunotherapy. Front Immunol 2019; 10:174. [PMID: 30800128 PMCID: PMC6375878 DOI: 10.3389/fimmu.2019.00174] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are a subpopulation of T cells that are specialized in suppressing immune responses. Here we show that the arginine methyl transferase protein PRMT5 can complex with FOXP3 transcription factors in Tregs. Mice with conditional knock out (cKO) of PRMT5 expression in Tregs develop severe scurfy-like autoimmunity. In these PRMT5 cKO mice, the spleen has reduced numbers of Tregs, but normal numbers of Tregs are found in the peripheral lymph nodes. These peripheral Tregs that lack PRMT5, however, display a limited suppressive function. Mass spectrometric analysis showed that FOXP3 can be di-methylated at positions R27, R51, and R146. A point mutation of Arginine (R) 51 to Lysine (K) led to defective suppressive functions in human CD4 T cells. Pharmacological inhibition of PRMT5 by DS-437 also reduced human Treg functions and inhibited the methylation of FOXP3. In addition, DS-437 significantly enhanced the anti-tumor effects of anti-erbB2/neu monoclonal antibody targeted therapy in Balb/c mice bearing CT26Her2 tumors by inhibiting Treg function and induction of tumor immunity. Controlling PRMT5 activity is a promising strategy for cancer therapy in situations where host immunity against tumors is attenuated in a FOXP3 dependent manner.
Collapse
Affiliation(s)
- Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mei Q Ji
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Fuxiang Zhu
- Unit of Molecular Immunology, Key Laboratory of Molecular Virology & Immunology, CAS Center for Excellence in Molecular Cell Science, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Xiao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yukinori Tanaka
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | | | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bin Li
- The Department of Immunology and Microbiology & Shanghai, Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Takuya Ohtani
- Penn Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
34
|
Matutino A, Amaro C, Verma S. CDK4/6 inhibitors in breast cancer: beyond hormone receptor-positive HER2-negative disease. Ther Adv Med Oncol 2018; 10:1758835918818346. [PMID: 30619511 PMCID: PMC6299331 DOI: 10.1177/1758835918818346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
The development of cyclin-dependent kinase (CDK) 4/6 inhibitors has been more prominent in hormone receptor (HR)-positive human epidermal growth factor receptor 2 (HER2)-negative breast cancers, with a significant improvement in progression-free survival (PFS) in first and later lines of metastatic breast cancer (MBC) therapy. Preclinical evidence suggests that there is activity of CDK4/6 inhibitors in nonluminal cell lines. Here, we present a review of the current preclinical and clinical data on the use of CDK inhibitors in HER2-positive and triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Adriana Matutino
- Medical Oncology Department, Tom Baker Cancer Centre, 1331 29th Street NW, Calgary, Alberta T2N 4N2, Canada
| | - Carla Amaro
- Medical Oncology Department, Hospital Beneficencia Portuguesa de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sunil Verma
- Medical Oncology Department, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| |
Collapse
|
35
|
Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nat Commun 2018; 9:4141. [PMID: 30297810 PMCID: PMC6175906 DOI: 10.1038/s41467-018-06271-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Controlling the biodistribution of nanoparticles upon intravenous injection is the key to achieving target specificity. One of the impediments in nanoparticle-based tumor targeting is the inability to limit the trafficking of nanoparticles to liver and other organs leading to smaller accumulated amounts in tumor tissues, particularly via passive targeting. Here we overcome both these challenges by designing nanoparticles that combine the specificity of antibodies with favorable particle biodistribution profiles, while not exceeding the threshold for renal filtration as a combined vehicle. To that end, ultrasmall silica nanoparticles are functionalized with anti-human epidermal growth factor receptor 2 (HER2) single-chain variable fragments to exhibit high tumor-targeting efficiency and efficient renal clearance. This ultrasmall targeted nanotheranostics/nanotherapeutic platform has broad utility, both for imaging a variety of tumor tissues by suitably adopting the targeting fragment and as a potentially useful drug delivery vehicle.
Collapse
|
36
|
Daneshmanesh AH, Hojjat-Farsangi M, Ghaderi A, Moshfegh A, Hansson L, Schultz J, Vågberg J, Byström S, Olsson E, Olin T, Österborg A, Mellstedt H. A receptor tyrosine kinase ROR1 inhibitor (KAN0439834) induced significant apoptosis of pancreatic cells which was enhanced by erlotinib and ibrutinib. PLoS One 2018; 13:e0198038. [PMID: 29856777 PMCID: PMC5983484 DOI: 10.1371/journal.pone.0198038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
There is a great unmet medical need in pancreatic carcinoma (PC) for novel drugs with other mechanisms of action than existing. PC cells express the onco-fetal RTK ROR1, absent on most normal post-partem cells. ROR1 is involved in proliferation, survival, EMT and metastasis of tumor cells in various malignancies. A small molecule inhibitor (KAN0439834) (530 Da) targeting the TK domain of ROR1 was developed and the activity in ROR1 expressing human PC cell lines (n = 8) evaluated. The effects were compared to a murine mAb against the external part of ROR1, gemcitabine, erlotinib and ibrutinib. KAN0439834 induced significant apoptosis of the tumor cells. EC50 values for KAN0439834 varied between 250–650 nM depending on the cell line. The corresponding values for erlotinib and ibrutinib were 10–40 folds higher. KAN0439834 was much more effective in inducing tumor cell death than the ROR1 mAb although both inhibited ROR1 phosphorylation and downstream non-canonical Wnt pathway molecules. Combination of KAN0439834 with erlotinib or ibrutinib had significant additive effects on tumor cell death. A first-in-class small molecule ROR1 inhibitor (KAN0439834) showed promising in vitro activity against a number of human PC cell lines. Interesting is the additive effects of erlotinib and ibrutinib which warrants further studies as both these agents are in clinical trials for pancreatic carcinoma.
Collapse
Affiliation(s)
- Amir Hossein Daneshmanesh
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna, Stockholm, Sweden
- Karolinska Institutet, Stockholm, Sweden
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna, Stockholm, Sweden
- Karolinska Institutet, Stockholm, Sweden
| | - Amineh Ghaderi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna, Stockholm, Sweden
- Karolinska Institutet, Stockholm, Sweden
| | - Ali Moshfegh
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna, Stockholm, Sweden
- Karolinska Institutet, Stockholm, Sweden
| | - Lotta Hansson
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna, Stockholm, Sweden
- Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Johan Schultz
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Jan Vågberg
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | | | - Elisabeth Olsson
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Thomas Olin
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Anders Österborg
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna, Stockholm, Sweden
- Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna, Stockholm, Sweden
- Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
37
|
Park SE, Park K, Lee E, Kim JY, Ahn JS, Im YH, Lee C, Jung H, Cho SY, Park WY, Cristescu R, Park YH. Clinical implication of tumor mutational burden in patients with HER2-positive refractory metastatic breast cancer. Oncoimmunology 2018; 7:e1466768. [PMID: 30221068 DOI: 10.1080/2162402x.2018.1466768] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023] Open
Abstract
This study explored the clinical implications of tumor mutational burden (TMB) in a well-defined HER2-positive metastatic breast cancer (MBC) patient population who had been previously treated but had subsequent disease progression. Whole exome sequencing was performed on formalin-fixed paraffin-embedded tumor samples and matched normal tissue. Among the 46 patients, 13 (28.3%) were estrogen receptor-positive and nine (19.6%) were progesterone receptor-positive by immunohistochemistry analysis. Twenty patients (43.5%) had recurrent MBC compared with de novo MBC (n = 26, 56.5%). Sixteen patients (34.6%) demonstrated more than 100 somatic non-synonymous SNV mutations, which was predefined as a high TMB. The median follow-up duration was 57.5 months. The median overall survival (mOS) differed significantly between low and high TMB status (44.9 months vs. 85.8 months, respectively, p = 0.016). In a multivariate Cox regression analysis, TMB was the only independent prognostic factor for good metastatic overall survival after adjusting for age and recurrence (Hazard ratio [HR] = 0.32, 95% confidence interval [CI], 0.103-0.998, p = 0.049). These data suggest that high TMB may be a prognostic marker for predicting good overall survival for patients undergoing conventional HER2-directed treatments and chemotherapy. Further, future clinical trials harnessing TMB may benefit by identifying an appropriate population who may have a favorable response to immunotherapy after recurrence following HER2-directed treatments.
Collapse
Affiliation(s)
- Song Ee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyunghee Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eunjin Lee
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Hyuck Im
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Hun Jung
- Yonsei Song-Dang Institute for Cancer Research, Seoul, Korea
| | - Soo Youn Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Al-Awadhi A, Lee Murray J, Ibrahim NK. Developing anti-HER2 vaccines: Breast cancer experience. Int J Cancer 2018; 143:2126-2132. [PMID: 29693245 DOI: 10.1002/ijc.31551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022]
Abstract
Breast cancer accounts for more than one million new cases annually and is the leading cause of death in women globally. HER2 overexpression induces cellular and humoral immune responses against the HER2 protein and is associated with higher tumor proliferation rates. Trastuzumab-based therapies are effectively and widely used as standard of care in HER2-amplified/overexpressed breast cancer patients; one cited mechanism of action is the induction of passive immunity and antibody-dependent cellular cytotoxicity against malignant breast cancer cells. These findings drove the efforts to generate antigen-specific immunotherapy to trigger the patient's immune system to target HER2-overexpressing tumor cells, which led to the development of various vaccines against the HER2 antigen. This article discusses the various anti-HER2 vaccine formulations and strategies and their potential role in the metastatic and adjuvant settings.
Collapse
Affiliation(s)
- Aydah Al-Awadhi
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James Lee Murray
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
39
|
Richard S, Selle F, Lotz JP, Khalil A, Gligorov J, Soares DG. Pertuzumab and trastuzumab: the rationale way to synergy. AN ACAD BRAS CIENC 2018; 88 Suppl 1:565-77. [PMID: 27275646 DOI: 10.1590/0001-3765201620150178] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/05/2015] [Indexed: 02/03/2023] Open
Abstract
It has now been 15 years since the HER2-targeted monoclonal antibody trastuzumab was introduced in clinical and revolutionized the treatment of HER2-positive breast cancer patients. Despite this achievement, most patients with HER2-positive metastatic breast cancer still show progression of their disease, highlighting the need for new therapies. The continuous interest in novel targeted agents led to the development of pertuzumab, the first in a new class of agents, the HER dimerization inhibitors. Pertuzumab is a novel recombinant humanized antibody directed against extracellular domain II of HER2 protein that is required for the heterodimerization of HER2 with other HER receptors, leading to the activation of downstream signalling pathways. Pertuzumab combined with trastuzumab plus docetaxel was approved for the first-line treatment of patients with HER2-positive metastatic breast cancer and is currently used as a standard of care in this indication. In the neoadjuvant setting, the drug was granted FDA-accelerated approval in 2013. Pertuzumab is also being evaluated in the adjuvant setting. The potential of pertuzumab relies in the dual complete blockade of the HER2/3 axis when administered with trastuzumab. This paper synthetises preclinical and clinical data on pertuzumab and highlights the mechanisms underlying the synergistic activity of the combination pertuzumab-trastuzumab which are essentially due to their complementary mode of action.
Collapse
Affiliation(s)
- Sandrine Richard
- Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l'Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France, Medical Oncology Department, Tenon Hospital, Paris , France
| | - Frédéric Selle
- Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l'Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France, Medical Oncology Department, Tenon Hospital, Paris , France
| | - Jean-Pierre Lotz
- Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l'Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France, Medical Oncology Department, Tenon Hospital, Paris , France.,Institut Universitaire de Cancérologie Université Pierre et Marie Curie (IUC-UPMC Univ Paris 06), Sorbonne Universités, 4 place Jussieu, 75005 Paris, France, Université Curie Paris 6, Institut Universitaire de Cancérologie, Université Pierre et Marie Curie, Paris , France
| | - Ahmed Khalil
- Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l'Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France, Medical Oncology Department, Tenon Hospital, Paris , France
| | - Joseph Gligorov
- Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l'Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France, Medical Oncology Department, Tenon Hospital, Paris , France.,Institut Universitaire de Cancérologie Université Pierre et Marie Curie (IUC-UPMC Univ Paris 06), Sorbonne Universités, 4 place Jussieu, 75005 Paris, France, Université Curie Paris 6, Institut Universitaire de Cancérologie, Université Pierre et Marie Curie, Paris , France
| | - Daniele G Soares
- Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l'Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France, Medical Oncology Department, Tenon Hospital, Paris , France
| |
Collapse
|
40
|
Mandikian D, Takahashi N, Lo AA, Li J, Eastham-Anderson J, Slaga D, Ho J, Hristopoulos M, Clark R, Totpal K, Lin K, Joseph SB, Dennis MS, Prabhu S, Junttila TT, Boswell CA. Relative Target Affinities of T-Cell-Dependent Bispecific Antibodies Determine Biodistribution in a Solid Tumor Mouse Model. Mol Cancer Ther 2018; 17:776-785. [PMID: 29339550 DOI: 10.1158/1535-7163.mct-17-0657] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022]
Abstract
Anti-HER2/CD3, a T-cell-dependent bispecific antibody (TDB) construct, induces T-cell-mediated cell death in cancer cells expressing HER2 by cross-linking tumor HER2 with CD3 on cytotoxic T cells, thereby creating a functional cytolytic synapse. TDB design is a very challenging process that requires consideration of multiple parameters. Although therapeutic antibody design strategy is commonly driven by striving for the highest attainable antigen-binding affinity, little is known about how the affinity of each TDB arm can affect the targeting ability of the other arm and the consequent distribution and efficacy. To our knowledge, no distribution studies have been published using preclinical models wherein the T-cell-targeting arm of the TDB is actively bound to T cells. We used a combined approach involving radiochemistry, invasive biodistribution, and noninvasive single-photon emission tomographic (SPECT) imaging to measure TDB distribution and catabolism in transgenic mice with human CD3ε expression on T cells. Using CD3 affinity variants, we assessed the impact of CD3 affinity on short-term pharmacokinetics, tissue distribution, and cellular uptake. Our experimental approach determined the relative effects of (i) CD3 targeting to normal tissues, (ii) HER2 targeting to HER2-expressing tumors, and (iii) relative HER2/CD3 affinity, all as critical drivers for TDB distribution. We observed a strong correlation between CD3 affinity and distribution to T-cell-rich tissues, with higher CD3 affinity reducing systemic exposure and shifting TDB distribution away from tumor to T-cell-containing tissues. These observations have important implications for clinical translation of bispecific antibodies for cancer immunotherapy. Mol Cancer Ther; 17(4); 776-85. ©2018 AACR.
Collapse
Affiliation(s)
| | | | - Amy A Lo
- Genentech, Inc., South San Francisco, California
| | - Ji Li
- Genentech, Inc., South San Francisco, California
| | | | | | - Jason Ho
- Genentech, Inc., South San Francisco, California
| | | | - Robyn Clark
- Genentech, Inc., South San Francisco, California
| | - Klara Totpal
- Genentech, Inc., South San Francisco, California
| | - Kedan Lin
- Department of Clinical Pharmacology, NGM Biopharmaceuticals Inc., South San Francisco, California
| | - Sean B Joseph
- Department of Pharmacology, Calibr, La Jolla, California
| | - Mark S Dennis
- Denali Therapeutics Inc., South San Francisco, California
| | | | | | | |
Collapse
|
41
|
Makkouk A, Sundaram V, Chester C, Chang S, Colevas AD, Sunwoo JB, Maecker H, Desai M, Kohrt HE. Characterizing CD137 upregulation on NK cells in patients receiving monoclonal antibody therapy. Ann Oncol 2017; 28:415-420. [PMID: 27831501 DOI: 10.1093/annonc/mdw570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background In the era of personalized cancer medicine, identifying techniques for effectively matching patients to efficacious treatments is a critical step in the treatment process. The advent of anti-cancer immunotherapies necessitates novel approaches to biomarker identification beyond traditional genomic profiling. One promising approach is incorporation of nomograms into treatment decisions. Nomograms are prediction tools, based on statistical modeling, designed to predict treatment outcomes. As a first step toward developing a nomogram, we conducted analyses to predict CD137 expression of natural killer cells after monoclonal antibody (mAb) treatment. Patients and methods Patient, tumor and immune characteristics were collected from 199 patients with breast cancer (N = 62), head/neck cancers (N = 46) and non-Hodgkin's lymphoma (NHL) (N = 91), who were receiving mAb therapy as part of clinical trials. The difference in CD137 expression before and after mAb therapy was assessed by flow cytometry. To evaluate those who respond to mAb therapy via increased CD137 expression, we applied classification and regression trees (CART), multivariable lasso regression tools and Random Forest. Results The CD137 expression was significantly different for each cancer type [mean (SD): Breast: 6.6 (6.5); Head/Neck: 11.0 (7.0); NHL: 7.5 (7.1), P < 0.0001]. For breast cancer and NHL, FcR polymorphism and baseline CD137 expression were significant predictors of increased CD137 expression; for head/neck cancer, FcR polymorphism and age were significant predictors of increased expression. Conclusions Our preliminary results suggest that FcR polymorphism, pre-treatment CD137 expression and age are significant predictors of CD137 upregulation in patients. This study demonstrates that the development of a nomogram for therapy response is feasible. Further work validating our models in an independent cohort will provide the next steps in developing a nomogram that may be used to individualize this therapeutic approach for patients (NCT01114256).
Collapse
Affiliation(s)
- A Makkouk
- Department of Medicine, Division of Oncology, Stanford University , Stanford, CA, USA
| | - V Sundaram
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, CA, USA
| | - C Chester
- Department of Medicine, Division of Oncology, Stanford University , Stanford, CA, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - S Chang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - A D Colevas
- Department of Medicine, Division of Oncology, Stanford University , Stanford, CA, USA
| | - J B Sunwoo
- Department of Otorhinolaryngology, Stanford University, Stanford, USA
| | - H Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - M Desai
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, CA, USA
| | - H E Kohrt
- Department of Medicine, Division of Oncology, Stanford University , Stanford, CA, USA
| |
Collapse
|
42
|
Menderes G, Bonazzoli E, Bellone S, Altwerger G, Black JD, Dugan K, Pettinella F, Masserdotti A, Riccio F, Bianchi A, Zammataro L, de Haydu C, Buza N, Hui P, Wong S, Huang GS, Litkouhi B, Ratner E, Silasi DA, Azodi M, Schwartz PE, Santin AD. Superior in vitro and in vivo activity of trastuzumab-emtansine (T-DM1) in comparison to trastuzumab, pertuzumab and their combination in epithelial ovarian carcinoma with high HER2/neu expression. Gynecol Oncol 2017; 147:145-152. [PMID: 28705408 PMCID: PMC5605415 DOI: 10.1016/j.ygyno.2017.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy. The objective of this study was to compare the anti-tumor activity of HER2/neu-targeting monoclonal antibodies, trastuzumab (T), pertuzumab (P), combination of trastuzumab and pertuzumab (T+P) and trastuzumab-emtansine (T-DM1) in EOC with high HER2/neu expression. METHODS Primary EOC cell lines were established and cell blocks were analyzed for HER2/neu expression. Cytostatic, apoptotic and antibody-dependent cell-mediated cytotoxicity (ADCC) activities of T, P, T+P and T-DM1 were evaluated in vitro. The in vivo antitumor activity was tested in xenograft models with 3+ HER2/neu expression. RESULTS High (3+) HER2/neu expression was detected in 40% of the primary EOC cell lines. T, P, T+P, and T-DM1 were similarly effective in inducing strong ADCC against primary EOC cell lines expressing 3+ HER2/neu. The combination of T and P was more cytostatic when compared with that of T or P used alone (p<0.0001 and p<0.0001, respectively). T-DM1 induced significantly more apoptosis when compared with T+P (p<0.0001). Finally, T-DM1 was significantly more effective in tumor growth inhibition in vivo in EOC xenografts overexpressing HER2/neu when compared to T alone, P alone and T+P (p=0.04). CONCLUSION In vitro and in vivo experiments with 3+ HER2/neu expressing EOC revealed limited anti-tumor activity of T or P. T-DM1 showed superior anti-tumor activity to T and P as single agents and as a combination. Our preclinical data support the design of clinical studies with T-DM1 for the treatment of chemotherapy-resistant EOC overexpressing HER2/neu.
Collapse
Affiliation(s)
- Gulden Menderes
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Elena Bonazzoli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Jonathan D Black
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Katherine Dugan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Francesca Pettinella
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Alice Masserdotti
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Francesco Riccio
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Anna Bianchi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Luca Zammataro
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Christopher de Haydu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, CT 06520, USA
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, CT 06520, USA
| | - Serena Wong
- Department of Pathology, Yale University School of Medicine, CT 06520, USA
| | - Gloria S Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Babak Litkouhi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Elena Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Dan-Arin Silasi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Masoud Azodi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Peter E Schwartz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA.
| |
Collapse
|
43
|
Beigbeder A, Chartier FJM, Bisson N. MPZL1 forms a signalling complex with GRB2 adaptor and PTPN11 phosphatase in HER2-positive breast cancer cells. Sci Rep 2017; 7:11514. [PMID: 28912526 PMCID: PMC5599542 DOI: 10.1038/s41598-017-11876-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 01/25/2023] Open
Abstract
HER2/ErbB2 is overexpressed in a significant fraction of breast tumours and is associated with a poor prognosis. The adaptor protein GRB2 interacts directly with activated HER2 and is sufficient to transmit oncogenic signals. However, the consequence of HER2 activation on global GRB2 signalling networks is poorly characterized. We performed GRB2 affinity purification combined with mass spectrometry analysis of associated proteins in a HER2+ breast cancer model to delineate GRB2-nucleated protein interaction networks. We report the identification of the transmembrane protein MPZL1 as a new GRB2-associated protein. Our data show that the PTPN11 tyrosine phosphatase acts as a scaffold to bridge the association between GRB2 and MPZL1 in a phosphotyrosine-dependent manner. We further demonstrate that the formation of this MPZL1-PTPN11-GRB2 complex is triggered by cell attachment to fibronectin. Thus, our data support the importance of this new signalling complex in the control of cell adhesion of HER2+ breast cancer cells, a key feature of the metastatic process.
Collapse
Affiliation(s)
- Alice Beigbeder
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC G1R 3S3, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC G1R 3S3, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC G1V 0A6, Canada
| | - François J M Chartier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC G1R 3S3, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC G1R 3S3, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC G1V 0A6, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC G1R 3S3, Canada.
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC G1R 3S3, Canada.
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC G1V 0A6, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
44
|
Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy. Molecules 2017; 22:E1401. [PMID: 28832535 PMCID: PMC5600151 DOI: 10.3390/molecules22091401] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023] Open
Abstract
Dendrimers are highly branched polymers with easily modifiable surfaces. This makes them promising structures for functionalization and also for conjugation with drugs and DNA/RNA. Their architecture, which can be controlled by different synthesis processes, allows the control of characteristics such as shape, size, charge, and solubility. Dendrimers have the ability to increase the solubility and bioavailability of hydrophobic drugs. The drugs can be entrapped in the intramolecular cavity of the dendrimers or conjugated to their functional groups at their surface. Nucleic acids usually form complexes with the positively charged surface of most cationic dendrimers and this approach has been extensively employed. The presence of functional groups in the dendrimer's exterior also permits the addition of other moieties that can actively target certain diseases and improve delivery, for instance, with folate and antibodies, now widely used as tumor targeting strategies. Dendrimers have been investigated extensively in the medical field, and cancer treatment is one of the greatest areas where they have been most used. This review will consider the main types of dendrimer currently being explored and how they can be utilized as drug and gene carriers and functionalized to improve the delivery of cancer therapy.
Collapse
Affiliation(s)
- Livia Palmerston Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, Brazil.
| | - Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Corona SP, Sobhani N, Ianza A, Roviello G, Mustacchi G, Bortul M, Zanconati F, Generali D. Advances in systemic therapy for metastatic breast cancer: future perspectives. Med Oncol 2017; 34:119. [PMID: 28526922 DOI: 10.1007/s12032-017-0975-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/29/2017] [Indexed: 12/16/2022]
Abstract
Breast cancer (BC) is the most common cancer in women worldwide. One in eight women will develop the disease in her lifetime. Notwithstanding the incredible progress made in this field, BC still represents the second most common cause of cancer-related death in women. Targeted drugs have revolutionised breast cancer treatment and improved the prognosis as well as the life expectancy of millions of women. However, the phenomenon of primary and secondary pharmacological resistance is becoming increasingly evident, limiting the efficacy of these agents and calling for a better in-depth knowledge and understanding of the biology as well as the biochemical crosstalk underlying the disease. The advent of laboratory technologies in the clinical setting such as the routine use of next generation sequencing has allowed identification of new genetic alterations as well as providing a precise picture of the molecular landscapes of each tumour. Consequently, new specific therapeutic approaches are becoming available to minimise or delay the occurrence of resistance. In this review, we analyse the latest research and news from the clinical development side for each BC subtype.
Collapse
Affiliation(s)
- S P Corona
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - N Sobhani
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - A Ianza
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - G Roviello
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - G Mustacchi
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - M Bortul
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - F Zanconati
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - D Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy.
| |
Collapse
|
46
|
Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models. PLoS One 2017; 12:e0174230. [PMID: 28306722 PMCID: PMC5357064 DOI: 10.1371/journal.pone.0174230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/05/2017] [Indexed: 11/30/2022] Open
Abstract
ErbB2 is a member of the ErbB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ErbB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ErbB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ErbB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ErbB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ErbB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ErbB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ErbB2: a major population located in large clusters and a minor population outside these structures. Upon ErbB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ErbB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ErbB2 and beta1 integrin activity in breast cancer cells.
Collapse
|
47
|
Li L, Wu Y, Wang Z, Jia B, Hu Z, Dong C, Wang F. SPECT/CT Imaging of the Novel HER2-Targeted Peptide Probe 99mTc-HYNIC-H6F in Breast Cancer Mouse Models. J Nucl Med 2017; 58:821-826. [PMID: 28104744 DOI: 10.2967/jnumed.116.183863] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022] Open
Abstract
Overexpression of human epidermal growth factor receptor 2 (HER2) plays important roles in tumorigenesis and tumor progression in breast cancer. Nuclear imaging of HER2 expression in tumors might detect all HER2-positive tumors throughout the body and guide HER2-targeted therapies for patients. We therefore aimed to develop a HER2-targeted peptide probe for breast cancer imaging. A novel SPECT imaging probe, 99mTc-HYNIC-H6F, was prepared and then evaluated in breast cancer animal models. Methods: The HER2-targeted peptide H6F (YLFFVFER) was conjugated with the bifunctional chelator hydrazinonicotinamide (HYNIC). 99mTc-HYNIC-H6F was prepared, and the in vivo characteristics of 99mTc-HYNIC-H6F were investigated in MDA-MB-453 (HER2-positive) and MDA-MB-231 (HER2-negative) models using small-animal SPECT/CT. Moreover, to investigate the specificity of the H6F peptide toward HER2 and the potential applications in monitoring therapies involving trastuzumab, unlabeled H6F and trastuzumab were used as blocking agents in cell competition studies and SPECT imaging. Results: A standard tricine/trisodium triphenylphosphine-3,3',3″-trisulfonate labeling procedure demonstrated that the radiochemical purity was greater than 95%. 99mTc-HYNIC-H6F displayed excellent HER2-binding specificity both in vitro and in vivo. SPECT/CT imaging revealed that the MDA-MB-453 tumors were clearly visualized (percentage injected dose per gram, 3.58 ± 0.01 at 30 min after injection), whereas the signals in HER2-negative MDA-MB-231 tumors were much lower (0.73 ± 0.22 at 30 min after injection). Tumor uptake of MDA-MB-453 was blocked by the coinjection of excess H6F but not by excess trastuzumab. Conclusion: The 99mTc-HYNIC-H6F peptide probe specifically accumulates in HER2-positive tumors and is therefore promising for the diagnosis of HER2-positive cancers. Because 99mTc-HYNIC-H6F and trastuzumab target different regions of the HER2 receptor, this radiotracer also has great potential for monitoring the therapeutic efficacy of trastuzumab by rechecking the expression level of HER2 without blocking effect during therapy.
Collapse
Affiliation(s)
- Liqiang Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yue Wu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zihua Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Medical and Healthy Analytical Center, Peking University, Beijing, China; and
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, China
| | - Chengyan Dong
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, China .,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Anti-angiogenic treatment in breast cancer: Facts, successes, failures and future perspectives. Cancer Treat Rev 2017; 53:98-110. [PMID: 28088074 DOI: 10.1016/j.ctrv.2016.12.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/06/2023]
Abstract
Angiogenesis is one of the hallmarks of cancer and a crucial requisite in the development of tumors. Interrupting this process by blocking the vascular endothelial growth factor (VEGF) with the monoclonal antibody bevacizumab has been considered a possible breakthrough in the treatment of various types of cancer, especially for advanced disease. However in breast cancer, studies have shown ambivalent results causing debate about the value of this drug. In this article, we review the evidence for anti-angiogenic treatment options for breast cancer, as well as discuss the possible factors limiting the effectiveness of anti-angiogenic agents and offer a recommendation regarding the future research on these therapies for the treatment of breast cancer.
Collapse
|
49
|
Puhalla S, Wilks S, Brufsky AM, O'Shaughnessy J, Schwartzberg LS, Berrak E, Song J, Vahdat L. Clinical effects of prior trastuzumab on combination eribulin mesylate plus trastuzumab as first-line treatment for human epidermal growth factor receptor 2 positive locally recurrent or metastatic breast cancer: results from a Phase II, single-arm, multicenter study. BREAST CANCER-TARGETS AND THERAPY 2016; 8:231-239. [PMID: 27994483 PMCID: PMC5153255 DOI: 10.2147/bctt.s98696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eribulin mesylate, a novel nontaxane microtubule dynamics inhibitor in the halichondrin class of antineoplastic drugs, is indicated for the treatment of patients with metastatic breast cancer who previously received ≥2 chemotherapy regimens in the metastatic setting. Primary data from a Phase II trial for the first-line combination of eribulin plus trastuzumab in human epidermal growth factor receptor 2 positive patients showed a 71% objective response rate and tolerability consistent with the known profile of these agents. Here, we present prespecified analyses of efficacy of this combination based on prior trastuzumab use. Patients received eribulin mesylate 1.4 mg/m2 (equivalent to 1.23 mg/m2 eribulin [expressed as free base]) intravenously on days 1 and 8 plus trastuzumab (8 mg/kg intravenously/cycle 1, then 6 mg/kg) on day 1 of each 21-day cycle. Objective response rates, progression-free survival, and tolerability were assessed in patients who had and had not received prior adjuvant or neoadjuvant (neo/adjuvant) trastuzumab treatment. Fifty-two patients (median age: 59.5 years) received eribulin/trastuzumab for a median treatment duration of ~31 weeks; 40.4% (n=21) had been previously treated with neo/adjuvant trastuzumab prior to treatment with eribulin plus trastuzumab for metastatic disease (median time between neo/adjuvant and study treatment: 23 months). In trastuzumab-naïve patients (n=31) compared with those who had received prior trastuzumab, objective response rate was 77.4% versus 61.9%, respectively; duration of response was 11.8 versus 9.5 months, respectively; clinical benefit rate was 87.1% versus 81.0%, respectively; and median progression-free survival was 12.2 versus 11.5 months, respectively. The most common grade 3/4 treatment-emergent adverse events (occuring in ≥5% of patients) in patients who received prior trastuzumab versus trastuzumab naïve patients, respectively, were neutropenia (47.6% vs 32.3%), peripheral neuropathy (14.3% vs 25.8%), febrile neutropenia (14.3% vs 3.2%), fatigue (9.5% vs 6.5%), nausea (9.5% vs 0%), vomiting (9.5% vs 3.2%), and leukopenia (9.5% vs 3.2%). In patients with human epidermal growth factor receptor 2 positive metastatic breast cancer, first-line eribulin/trastuzumab treatment demonstrated substantial antitumor activity and was well tolerated, regardless of prior neo/adjuvant trastuzumab treatment.
Collapse
Affiliation(s)
- Shannon Puhalla
- Department of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Sharon Wilks
- Department of Hematology Oncology, US Oncology-Cancer Care Centers of South Texas, San Antonio, TX
| | - Adam M Brufsky
- Department of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Joyce O'Shaughnessy
- Department of Medical Oncology, Texas Oncology-Baylor Charles A. Sammons Cancer Center US Oncology, Dallas, TX
| | - Lee S Schwartzberg
- Department of Hematology/Oncology, West Cancer Center, University of Tennessee Health Science Center, Memphis, TN
| | - Erhan Berrak
- Department of Medical Affairs, Formerly of Eisai Inc., Woodcliff Lake, NJ
| | - James Song
- Department of Medical Affairs, Formerly of Eisai Inc., Woodcliff Lake, NJ
| | - Linda Vahdat
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
50
|
Graziano V, Scognamiglio MT, Zilli M, Giampietro J, Vici P, Natoli C, Grassadonia A. Is the skin a sanctuary for breast cancer cells during treatment with anti-HER2 antibodies? Cancer Biol Ther 2016; 16:1704-9. [PMID: 26552483 PMCID: PMC4847805 DOI: 10.1080/15384047.2015.1108490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The occurrence of skin metastases is a common event in patients affected by advanced breast cancer, usually associated with systemic disease progression. Here we describe 2 cases of diffuse cutaneous metastases from HER2-overexpressing breast cancer occurring despite a dramatic response in liver and bone, respectively, during treatment with anti-HER2 antibodies Trastuzumab and Pertuzumab. We discuss the reasons for this discrepancy and suggest a possible implication of impaired immune response in the skin. Future research should provide strategies to overcome the induction of immune privilege in the skin in order to avoid discontinuation of effective treatments.
Collapse
Affiliation(s)
- Vincenzo Graziano
- a Department of Medical ; Oral and Biotechnological Sciences; University "G. D'Annunzio" ; Chieti , Italy
| | | | - Marinella Zilli
- c Medical Oncology Unit; "SS. Annunziata" Hospital ; Chieti , Italy
| | | | - Patrizia Vici
- d Division of Medical Oncology B; Regina Elena National Cancer Institute ; Rome , Italy
| | - Clara Natoli
- a Department of Medical ; Oral and Biotechnological Sciences; University "G. D'Annunzio" ; Chieti , Italy
| | - Antonino Grassadonia
- a Department of Medical ; Oral and Biotechnological Sciences; University "G. D'Annunzio" ; Chieti , Italy
| |
Collapse
|